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Short read sequencing of mouse chromosome 17<p>Methods for accurate identification of nucleotide and structural variation using <it>de novo</it> short read sequencing of mouse chro-mosomes are described.</p>

Abstract

Genome sequences are essential tools for comparative and mutational analyses. Here we present

the short read sequence of mouse chromosome 17 from the Mus musculus domesticus derived

strain A/J, and the Mus musculus castaneus derived strain CAST/Ei. We describe approaches for the

accurate identification of nucleotide and structural variation in the genomes of vertebrate

experimental organisms, and show how these techniques can be applied to help prioritize candidate

genes within quantitative trait loci.

Background
Mouse genetics has its origins with mouse fanciers who bred

and maintained individuals lines of mice because of their

unusual coat color or behavior [1,2]. The derivation of the

classical laboratory mouse strains, however, only commenced

early last century, driven by a desire to model human disease

mechanisms [3]. It is now clear that these classical mouse

strains are derived from a common pool of founders because

haplotypes are shared, but have been shuffled, between

strains prior to being fixed by inbreeding to select for desira-

ble trait characteristics [4-7]. In contrast, wild-derived strains

are highly divergent from these classical strains of mice, hav-

ing been founded by inbreeding of wild-derived isolates [8].

In addition to the sequence of the reference strain, C57BL/6J,

there are two large resources for genomic sequence of inbred

mouse strains. Four laboratory strains were included by Cel-

era in a whole genomic shotgun sequence of the mouse: A/J,

DBA/2J, 129X1/SvJ, and 129S1/SvImJ [9]. The data consist

of 27.4 million capillary sequence reads giving a total of 5.3×

coverage of the mouse genome. Sequences are from both ends

of size-selected 2-, 10-, and 50-kbp clones derived from ran-

domly sheared mouse genomic DNA. Second, the National

Institute of Environmental Health Sciences contracted Perle-

gen Sciences to resequence by hybridization 15 inbred mouse

strains [10]. This set includes 11 classical strains (129S1/

SvImJ, A/J, AKR/J, BALB/cBy, C3H/HeJ, DBA/2J, FVB/NJ,
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NOD/LtJ, BTBR T+tf/J, KK/HlJ and NZW/LacJ) and four

strains derived from the wild (WSB/EiJ, PWD/PhJ, CAST/

EiJ and MOLF/EiJ), which represent the Mus musculus

domesticus, Mus musculus musculus, Mus musculus cas-

taneus and Mus musculus molossinus subspecies. Unlike the

Celera resource, the hybridization approach used by Perlegen

does not generate sequence reads and can only reliably detect

single nucleotide polymorphisms (SNPs). Furthermore, the

hybridization technology queried only 1.49 billion bases of

the reference genome. This represents about 58% of the

C57BL/6J sequence that is non-repetitive. The Perlegen

approach was also found to have a false negative rate as high

as 50% [8]. Therefore, currently available sequence data lack

the coverage and breadth of strains to make a universal

resource.

Here we present the sequence and analysis of mouse chromo-

some 17 from A/J and CAST/Ei generated using massively

parallel sequencing and illustrate the power of this approach

for the accurate and sensitive analysis of mouse genome var-

iation. We selected mouse chromosome 17 for this sequencing

project because at 95 Mb in length it is a shorter mouse auto-

some, and has a distinct cytogenetic profile that allows it to be

easily and cleanly flow sorted. Biologically, mouse chromo-

some 17 is of great interest because the mouse major histo-

compatibility complex (MHC) resides on this chromosome

[11], as well as the murine t-complex, which in some wild-

derived strains is responsible for transmission ratio distor-

tion [12-14]. The strains A/J and CAST/Ei were selected for

this pilot sequencing experiment because Celera has previ-

ously generated a significant number of shotgun capillary

reads for A/J [9], and while A/J is related to C57BL/6J, and

these strains share several haplotype blocks on chromosome

17 [8], CAST/Ei is highly divergent from the reference [8].

Indeed, the M. m. castaneus subspecific lineage is thought to

have contributed less than 2% of the genomic material that

makes up the classical laboratory strains of mice [8]. In addi-

tion, a large panel of congenic strains was derived from a con-

somic strain that has chromosome 17 from A/J substituted

onto a C57BL/6J background [15]. These congenic strains

have been extensively phenotyped to identify quantitative

trait loci (QTLs) between C57BL/6J and A/J on chromosome

17. In particular, we were interested in using the A/J sequence

of mouse chromosome 17 to refine a QTL reported to protect

against high liver triglyceride levels [16]. We flow sorted

mouse chromosome 17 from A/J and CAST/Ei and generated

22× and 34× coverage of these chromosomes, respectively.

Using these data we identify and validate novel SNPs and

structural variants between A/J, CAST/Ei, and the reference,

and attempt a de novo assembly of these chromosomes. We

illustrate that short read sequencing technology can be used

to generate accurate assemblies of vertebrate experimental

organisms such as mouse, allowing for the generation of a

rich catalogue of variation between strains and the analysis of

candidate genes within QTL intervals.

Results
Sequencing of mouse chromosome 17 using massively 

parallel short-read sequencing technology and 

mapping to the reference genome

We prepared primary mouse embryonic fibroblast cultures

from E14.5 A/J and CAST/Ei embryos derived from pedi-

greed stock housed at MRC-Harwell. Genetic purity was con-

firmed by genotyping the embryos and their parents with a

panel of polymorphic markers. Exponentially growing cul-

tures were arrested in metaphase and chromosome 17 iso-

lated by flow sorting [17]. A/J chromosome preparations

were sheared to 150 to 200 bp in size and used to generate a

library for paired-end sequencing on the Illumina Genome

Analyzer platform [18]. In total, 10 lanes of sequencing was

performed, producing 112,046,098 reads (Table 1). Reads

containing uncallable bases were removed and the sequence

was mapped to the C57BL/6J reference genome (version 37)

using the Mapping and Assembly with Quality (MAQ) algo-

rithm [19]. We successfully mapped 91.9% of sequence reads

to the reference genome, 67.3% to chromosome 17 (Table 1

and Figure 1a). Reads mapping to chromosomes other than 17

may be the result of contamination of the chromosomal prep-

aration with DNA from other chromosomes, the presence of

sequence repeated on both chromosome 17 and another chro-

mosome, or due to the translocation of sequence from chro-

mosome 17 to another chromosome in the A/J genome.

Duplicate reads, where the outer genomic co-ordinates of

read pairs were identical, were removed, yielding an average

A/J sequence depth over chromosome 17 of 22× (calculated

as the number of reads mapping to the chromosome multi-

plied by the length of the reads and divided by the length of

the chromosome). Figure 2 shows the mapping depth across

all points on the chromosome.

We examined the effect of generating increasing amounts of

sequence from the same library by mapping an increasing

number of lanes of sequence data to the reference genome.

Figure 1b shows that the coverage over chromosome 17 is

directly proportional to the amount of sequence mapped,

indicating that we did not exhaust the diversity present in our

A/J chromosome 17 library. Figure 1c illustrates that the

number of blocks, a stretch of genome where no base has a

zero sequence depth over it, drops as the amount of sequence

increases, but at 18× coverage (4 lanes) this figure asymp-

totes, suggesting that further sequencing of this library would

not greatly increase the proportion of the genome covered.

We defined the sequenceable fraction of mouse chromosome

17, using our approach, to be 98.5%. This figure may be

restrained, in part, by the complexity of the library, or by the

fact that the library had a defined insert size, but is also likely

to reflect the underlying differences between the A/J genome

and that of C57BL/6J. To sequence CAST/Ei chromosome 17,

we employed a similar approach yielding 173,021,348 reads

from 10 lanes of sequencing (Table 1). Figure 1a shows that a

similar proportion of reads map to chromosome 17 as for A/

J. There is a small increase in the number of reads mapping
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to other chromosomes in CAST/Ei. This is to be expected

since M. m. castaneus is more evolutionarily distant from

C57BL/6J, which, like A/J, is a classical inbred mouse strain

and largely M. m. domesticus derived [8,10]. Relationships

between the amount of sequence, coverage, and the number

of blocks for CAST/Ei were similar to those observed for A/J.

Figure 3 shows the mapping depth at each point on the chro-

mosome.

Nucleotide variant calling from A/J and CAST/Ei short 

read sequence data

We used the MAQ algorithm to identify candidate SNPs

between A/J, CAST/Ei and the reference C57BL/6J sequence

(NCBI m37). We then applied the MAQ SNP filter to filter the

candidate SNPs on the basis of quality and indicators of

repetitive sequence. In total, 181,442 homozygous and 10,209

heterozygous SNPs passed the filter and were identified

between the A/J sequence and the reference C57BL/6J

sequence of chromosome 17. For CAST/Ei, 657,558

homozygous and 34,173 heterozygous SNPs were identified

on comparison to the reference and passed the MAQ SNP fil-

ter. The distribution of homozygous and heterozygous SNPs

is shown in Figures 2 and 3. Importantly, heterozygous SNPs,

which should not be present in the genome of a homozygous

inbred mouse, cluster in regions with an increased mapping

depth, suggesting that heterozygous SNPs mark the presence

Mapping of short read sequence to the mouse genomeFigure 1

Mapping of short read sequence to the mouse genome. The MAQ algorithm was used to map the short read sequences to the NCBI 37 mouse genome 
assembly. (a) The percentage of reads that map to chromosome 17, other mouse chromosomes, or not at all to the C57BL/6J reference assembly. (b) 

The actual average sequence depth over chromosome 17 after duplicate sequence reads have been removed, plotted against the nominal depth if all reads 
were unique and mapped to chromosome 17. (c) The number of contiguous blocks of sequence, defined as a stretch of sequence where all bases have 
non-zero sequencing depth over them, plotted against nominal depth (see above).
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Read depth and SNP density for A/J on chromosome 17Figure 2

Read depth and SNP density for A/J on chromosome 17. Plot shows depth (black) and density of homozygous (red) and heterozygous (green) SNPs 
compared to the C57BL/6J reference along chromosome 17. Gray or hashed bars are gaps in the reference assembly.
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of segmentally duplicated sequences, of which one copy is

mutated, rather than the presence of genuinely heterozygous

genomic positions.

To benchmark the success of SNP variant calling, we first

compared SNPs called by MAQ with a collection of highly

curated SNPs designated the 'Mouse HapMap' collection

[20]. This set contains 3,003 positions on chromosome 17

that are polymorphic between A/J and C57BL/6J, of which all

but 7 were identified correctly by MAQ, an accuracy of 99.77%

(Figure 4). Importantly, these SNPs are derived from a collec-

tion used as part of a hybridization genotyping protocol and,

as such, are in non-repetitive regions of the mouse genome.

We next compared our MAQ SNP calls to a collection of

158,869 positions reported to be polymorphic between A/J

and C57BL/6J in the dbSNP database (release 126). Of these

SNPs, 134,177 (84%) were called by MAQ. This leaves 57,474

novel SNPs identified by MAQ. dbSNP A/J SNPs are largely

derived from variant calling from the shotgun capillary read

sequencing of A/J by Celera; thus, the increased accuracy of

calling Mouse HapMap SNPs is likely to be due to the fact that

the SNPs from the mouse HapMap are verified, and that they

are easy to genotype SNPs, suggesting they are located in less

repetitive regions of the genome. Figure 5 presents the same

analysis for MAQ calls derived from the short read sequenc-

ing of CAST/Ei chromosome 17 where 96% of informative

mouse HapMap SNPs and 94% of CAST/Ei SNPs in dbSNPs

were called correctly. A far higher proportion of the SNPs in

dbSNP between CAST/Ei and C57BL/6J are present in our

sequencing data, although they represent a much smaller

proportion of the SNPs called. Again, this is probably due to

the fact that known SNPs between CAST/Ei and C57BL/6J

are in easy to genotype regions of the genome. The novel

SNPs identified here represent a greater than 35-fold increase

in the number of known SNPs between CAST/Ei and C57BL/

6J on chromosome 17, illustrating the power of this technol-

ogy for nucleotide variant discovery.

In order to quality control our MAQ SNP calls, we divided the

novel SNPs between A/J and C57BL/6J into 6 equal bins

based on the MAQ quality score for each SNP and randomly

selected 50 homozygous SNPs from each bin. We also

selected 20 heterozygous SNPs with a high quality and aver-

age sequence depth. We reasoned that such SNPs are most

likely to represent genuine heterozygous SNPs. These SNPs

were genotyped using the Sequenom genotyping platform

using DNA derived from the embryo from which chromo-

some 17 was isolated, the parents of this embryo, and two sib-

ling embryos. In total, 199 of the homozygous and 10 of the

heterozygous SNPs were successfully genotyped. Impor-

tantly, the allele called for each SNP was the same in all of the

five genotyped samples, meaning that all the SNPs genotyped

are likely to be homozygous. This lends support to the

hypothesis that heterozygous SNPs called in the sequence

data represent repetitive regions or denote structural variants

rather than genuine heterozygous SNPs. In 88.4% of cases the

allele called by the genotyping assay was the same as the allele

called by MAQ from the sequence data. Figure 6a shows the

proportion of novel SNPs that were confirmed by genotyping

in each quality bin. The probability of confirming a SNP dra-

matically increases with qualities over 25. However, discard-

ing all SNPs with qualities less than 50 would result in the loss

of many genuine SNPs. In order to find a more sensitive

method of quality controlling SNPs, we combined the quality

score of the SNPs with the sequencing depth over them. For

each SNP we calculated the proportion of SNPs in the geno-

typed sample with the same or higher depth and quality that

were confirmed and used this to assign a p-score to each SNP.

This allows a much more sensitive quality control of novel

SNPs (Figure 6b). Taking the 46,676 novel homozygous SNPs

with a p-score of 0.95 or greater only, we estimate a false dis-

covery rate of 5.9% and with 99.97% of the genuine SNPs

being called.

In order to discover why we had missed SNPs recorded in

dbSNP, we choose 300 at random and genotyped them on the

Sequenom platform. In total, we successfully genotyped 172

loci. In 27.9% of cases the allele called by the genotyping

experiment agreed with our sequencing data, suggesting that

in these cases the SNP recorded in dbSNP is not present in the

A/J isolate we sequenced (Figure 6c). This figure was similar

irrespective of the verification status of the SNP in dbSNP.

Assuming that this is true of all SNPs present in dbSNP but

absent from our sequencing data, we estimate our sensitivity

at finding known SNPs to be 88.4%. Examining the loci where

our genotyping suggested the allele specified in dbSNP was

present in our sample, we found that in 53.5% of cases the

correct base was called by MAQ, but was filtered out as being

of low quality by the MAQ SNP filter. In 14.0% of cases no

base was called by MAQ. This was generally due to no

sequencing reads mapping to this location. In only 4.6% of

cases did MAQ make an incorrect base call (Figure 6c).

In this study we have increased the number of known SNPs

between A/J and C57BL/6J on the reference assembly of

chromosome 17 by 29% (46,676) and with an estimated accu-

racy of 94.1% and a sensitivity of 88.2% using a p-score

threshold of 0.95 (for the effects of different p-score thresh-

Table 1

Sequencing statistics

A/J CAST/Ei

Number of Illumina lanes 10 10

Total number of bases (bp) 3,828,787,991 5,476,237,877

Total number of reads 112,046,098 173,021,348

% Mapped (in pairs) 91.9% (87.9%) 88.3% (80.0%)

% Duplicate read pairs 22.1% 18.2%

Modal insert size (± 1 SD) 130 (± 24) bp 118 (± 12) bp

SD, standard deviation.
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Read depth and SNP density for CAST/Ei on chromosome 17Figure 3

Read depth and SNP density for CAST/Ei on chromosome 17. Plot shows depth (black) and density of homozygous (red) and heterozygous (green) SNPs 
compared to the C57BL/6J reference along chromosome 17. Gray or hashed bars are gaps in the reference assembly.
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olds see Additional data file 1). Although all genotyping was

carried out in A/J samples using SNPs identified in A/J

sequence, we expect that our performance in calling SNPs

between CAST/Ei and C57BL/6J to be similar since an iden-

tical approach was used. In this way we identify 631,273 novel

homozygous SNPs (increasing the number of known CAST/Ei

SNPs on chromosome 17 35-fold), with a similar estimated

accuracy and sensitivity (see Additional data file 2 for differ-

ent p-score thresholds).

As well as SNPs, short insertion and deletion mutations

(indels) can also be important in changing the function of the

DNA sequence. We attempted to predict indels from the Illu-

mina sequence for the two strains. In total, we predicted

32,564 indels in the A/J sequence when compared to the ref-

erence, and 97,784 indels between the reference and CAST/

Ei. In order to assess the performance of our indel prediction,

we compared these indels to those predicted from the 2.5×

shotgun capillary sequence of the A/J genome generated by

Celera. Of the 24,142 indels predicted from the capillary

sequence, we found perfect matches for 4,348 in the short

read sequence. In 7,351 cases an indel of the correct type (that

is, insertion or deletion) was found in the right place, but the

predicted base change was different. In 857 cases we found

indels at the correct position, but of the incorrect type (that is,

insertion where their should be a deletion and vice versa). A

Venn diagram of this analysis is provided in Additional data

file 3. This indicates that although indels can be predicted

from short-read sequence, the quality of such calls cannot be

assured to the same extent as the SNP calls.

Identification of deletions and copy number variants

It is becoming increasingly evident that structural variation

between strains and individuals is more widespread than had

been previously appreciated [21-23]. We examined structural

variation using two approaches. Firstly, we used information

on the mapping of pairs of reads to identify regions that were

potentially deleted between A/J or CAST/Ei when compared

to the reference. Secondly, we used mapping depth and den-

sity of heterozygous SNPs to identify regions of increased or

decreased copy number.

To call deletions in the sequence in comparison to the refer-

ence sequence, we identified clusters of reads for which the

two ends of the pairs map further apart from each other than

would be expected. We identified 864 cases in the A/J

sequence where two or more overlapping pairs of reads were

separated by more than 4 standard deviations from the aver-

age length of paired-end sequenced molecules. In order to

quality control these calls, we selected 52 cases where these

regions overlapped with exons in the reference sequence and

sequenced the region in C57BL/6J and A/J genomic DNA

samples using a traditional PCR and capillary sequencing

approach. In 92% of cases where the predicted deleted region

is longer than 450 bp or found in 4 or more read pairs, we

found a deletion in the A/J sequence compared to the refer-

ence sequence. In one of these cases we also found a deletion

in the C57BL/6J sequence, suggesting that the genome of the

C57BL/6J individual we sequenced is different from the ref-

erence sequence, or there is an error in the reference genome.

We found a deletion in only 2.5% of cases where the predicted

deleted region is both less than 450 bp and found in fewer

than 4 read pairs. Therefore, we filtered our predicted dele-

tions for those either larger than 450 bp or found in 4 or more

deletion pairs. Thus, we predicted 416 deletions on chromo-

some 17 of A/J compared to the reference sequence (Figure

7a; Additional data file 4). We predicted 776 deletions on

Analysis of SNPs found in A/J sequenceFigure 4

Analysis of SNPs found in A/J sequence. SNPs were called by the MAQ 
algorithm and then filtered using the MAQ SNP filter. An overlap of SNPs 
called by MAQ using the A/J Illumina data (MAQ Calls), those present in 
dbSNP, and those present in the 'Mouse HapMap'.

MAQ calls

dbSNP

57,474
(30%)

134,177

24,692

(16%)

7

(0.2%)
2,996

HapMap

Analysis of SNPs found in CAST/Ei sequenceFigure 5

Analysis of SNPs found in CAST/Ei sequence. SNPs were called by the 
MAQ algorithm and then filtered using the MAQ SNP filter. The overlap 
between the SNPs called by MAQ using the CAST/Ei Illumina data (MAQ 
Calls), those present in dbSNP, and those present in the 'Mouse HapMap'.

MAQ calls

dbSNP

674,686

(98%)

17,045

1,174

(6.4%)

95

(4%)
2,105

HapMap
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Quality control analysis of novel A/J SNPsFigure 6

Quality control analysis of novel A/J SNPs. A sample of novel SNPs was genotyped using the Sequenom platform. (a) Plot shows the proportion of calls 
confirmed by genotyping for differing qualities of SNP. (b) Quality controlling SNPs on basis of mapping depth as well as quality. Confirmation data were 
used to calculate a score for each SNP based on quality and depth. Plot shows estimated sensitivity and false discovery rate (FDR) based on using different 
thresholds of p-score. (c) SNPs missed by MAQ. A sample of SNPs present in dbSNP but absent from the MAQ was were genotyped. The reason for the 
absence of each SNP is shown. 'Filtered' SNPs were called by MAQ but filtered out as being of low quality. 'dbSNP errors' are SNPs where our genotyping 
agrees with the MAQ call but not dbSNP. 'No base call SNPs' are SNPs for which MAQ did not make a base call (generally due to zero depth). MAQ 
errors are bases where our genotyping agreed with the dbSNP call.
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chromosome 17 of CAST/Ei compared to the reference in the

same way (Figure 7b; Additional data file 5).

In addition to calling deletions using aberrantly mapping

read pairs, we also identified regions of increased or

decreased copy number. The central idea behind our copy

number variation (CNV) detection algorithm is that the align-

ment of reads from regions with copy number gains (with

respect to the reference genome) will be 'collapsed' to a single

location on the reference genome. The effect of this will be

two-fold. First, the sequence depth of the location on the ref-

erence genome will be increased by an integral amount corre-

Structural variants on chromosome 17Figure 7

Structural variants on chromosome 17. Copy number variants (CNVs) were called in the sequence using a hidden Markov model (HMM), using both depth 
information and density of heterozygous SNPs (for amplifications). Deletions were called using aberrantly mapping pairs of reads. (a) Density of CNVs and 
deletions across chromosome 17 of A/J. CNVs called by the HMM are shown in dark red/green on the left-hand axis. Deletions called from aberrantly 
mapping read pairs are shown in bright red on the right hand axis. (b) As (a) but for CAST/Ei chromosome 17. Cut-out shows an example of output from 
the HMM for a region with two amplifications and a loss.
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sponding to the relative number of copies that exist in the

individual. Second, any base-pair differences between the

copied regions will appear to contain heterozygous SNPs.

This fact is crucial to our model as laboratory strains of mice,

and indeed wild-derived strains, are inbred to be effectively

homozygous at every position in the genome [6,8,24], hence

any apparent heterozygous SNPs that are not the result of

sequencing or mapping errors are actually from collapsed

regions. The read alignments of regions with copy number

losses will be distributed over the corresponding copies in the

reference genome, and hence the reference regions will have

lower sequence depth (with the important distinction that

there should not be a heterozygous SNP signal). We devel-

oped a hidden Markov model (HMM) to exploit these facts

and detect copy number gain, or loss (JT Simpson et al., sub-

mitted).

This HMM identified 31 copy number gains and 43 copy

number losses on A/J chromosome 17 (average length 46.83

kb and 17.9 kb, respectively) and 66 copy number gains and

48 copy number losses on CAST/Ei chromosome 17 (average

length 35.0 kb and 26.0 kb respectively). The distribution of

these CNVs on chromosome 17 is shown in Figure 7. A com-

plete list of regions is available in Additional data file 6. In

order to assess the success of our HMM for identifying CNVs,

we compared the CNVs called to those called by She et al. [23]

in an extensive microarray-based comparative genomic

hybridization (aCGH) study [23]. For A/J, we identified 71%

(0.64 Mb of sequence) of the copy number gains identified by

aCGH. For CAST/Ei, 91% (0.87 Mb) of the aCGH copy

number gains were identified by our model. In both strains

the regions of copy number loss called by our algorithm and

aCGH differed widely (23% concordance for A/J and 38% for

CAST/Ei) owing to the relative difficulty of calling CNV losses

compared to gains. For many CNVs we were able to more

accurately refine the boundary of the CNV using the sequenc-

ing data. We also predict 66 new copy number gains that had

not been described previously (22 for A/J and 44 for CAST/

Ei), and 71 novel copy number losses (35 for A/J and 36 for

CAST/Ei).

Together these data show that we can effectively call both

small deletions and larger structural variants from paired end

sequence data by exploiting read-pair and mapping depth

information and the distribution of heterozygous SNPs.

Coding differences between genes on chromosome 17

Coding variation is thought to contribute significantly to the

phenotypic differences between mouse strains. In total, we

identified 2,386 SNP differences within coding sequence

between A/J and C57BL/6J (Additional data file 7) and 5,959

SNP differences between CAST/Ei and C57BL/6J (Additional

data file 8), of which 1,100 and 2,574 positions, respectively,

represented non-synonymous coding changes, or changed a

splice site. The SNP differences most likely to have a measur-

able effect on the protein product of a gene are changes

(either gain or loss) to stop codons. Of the coding SNPs we

identified, 10 genes in A/J and 25 genes in CAST/Ei were pre-

dicted to carry either gains or losses of stop codons (Table 2);

one gene, 9130008F23Rik (ENSMUSG00000054951), was

found to carry two stop codons in CAST/Ei. Interestingly, in

three cases (the gain of a stop-codon at codon 70 of Rpp21,

and loss of stops in both Rmcs2/H2-Ab1 and

ENSMUSG00000073373), both the A/J and the CAST/Ei

sequences contain the same changes compared to C57BL/6J,

suggesting that the A/J and CAST/Ei alleles may be derived

from the ancestral alleles of these genes.

We also predicted coding sequences that are affected by struc-

tural rearrangements. In principle, a structural rearrange-

ment can overlap with a coding exon in four ways: the borders

of the rearrangement can completely contain an exon, the

rearrangement can be completely contained within an exon,

or the overlap can affect only the start or end of an exon.

Given that the borders of deletions called from aberrantly

mapping read pairs have a resolution of around 50 bp and

those of CNVs from the HMM a resolution of around 10 kb,

we are only confident that a deletion overlaps with an exon

where the exon is completely contained within the deletion or

the overlap is at least 50 bp. Similarly, we are only confident

of the overlap between a CNV and an exon where the exon is

completely contained within the CNV region. A higher

number of protein coding sequences are potentially affected

by structural rearrangements than changes in stop codons.

There were nine genes predicted to have exons overlapping

with deletions predicted from A/J sequence and ten genes

from CAST/Ei sequence (Table 3). Of these, all those in the A/

J sequence have been confirmed by traditional capillary

sequencing (see above). A total of 53 and 54 genes have exons

within regions identified as having copy number gain by the

CNV HMM in A/J and CAST/Ei sequences, respectively (427

and 520 ensembl exons), while 15 and 16 genes (66 and 95

ensembl exons) have exons contained within regions identi-

fied as having copy number loss (Additional data file 9). The

effect of a copy number gain may be less than that of complete

exon deletion, so it is perhaps not surprising that a larger

number of exons are amplified than deleted, especially as in

the majority of cases of exon amplification, all exons of a gene

are predicted to be amplified.

One important region on mouse chromosome 17 is the MHC,

which codes for a large number of genes involved in immunity

[11]. A large number of genes affected by coding changes are

associated with the MHC complex (Table 2) and more genes

annotated as members of the MHC complex under the Gene

Ontology are predicted to be in CNV regions (Table 4). A sig-

nificant enrichment of MHC genes amongst those genes with

such changes (P = 2.23 × 10-9 for A/J, and P = 3.55 × 10-5 for

CAST/Ei, Fisher's exact test), indicates that this region is sig-

nificantly more variable than other regions of the chromo-

some.



http://genomebiology.com/2009/10/10/R112 Genome Biology 2009,     Volume 10, Issue 10, Article R112       Sudbery et al. R112.11

Genome Biology 2009, 10:R112

De novo assembly of mouse chromosome 17 from A/J 

and CAST/Ei

The analysis described so far is based on mapping reads to the

C57BL/6J reference sequence. This approach, while informa-

tive of SNPs and structural variation, does not tell us about

additional sequence present in A/J or CAST/Ei but not in the

reference. To assess this we explored de novo assemblies of

the reads. For CAST/Ei chromosome 17, we used a novel de

Bruijn graph based algorithm called Fuzzypath to generate

short sequence contigs from the Illumina reads of this chro-

Table 2

Stop codons gained and lost relative to reference

Gene Description Codon

A/J

Stops gained

Abca3 ATP-binding cassette sub-family A member 3 1069/1704

Lmf1 Transmembrane protein 12 182/188

ENSMUSG00000073427 Adult male hypothalamus cDNA 109/132

ENSMUSG00000002791 109/311

EG630249 Butyrophilin-like 7 570/580

H2-T23 H-2 class I histocompatibility antigen, D-37 alpha chain precursor 218/357

Rpp21 Ribonuclease P protein subunit p21 70/71

ENSMUSG00000073395 Adult male epididymis cDNA 158/163

Stops lost

Rmcs2 Response to metastatic cancers 2 gene 263/263

ENSMUSG00000073373 12 days embryo female mullerian duct includes surrounding region cDNA 42/42

CAST/Ei

Stops gained

Pabpc3 Poly(A) binding protein, cytoplasmic 3 gene 631/644

ENSMUSG00000073464 Putative uncharacterized protein 107/140

Smok2a Sperm motility kinase 2B gene 96/505

BC052484 Mesothelin-like gene 673/686

Uhrf1 bp1 UHRF1 (ICBP90) binding protein 1 gene 89/93

C920016K16Rik RIKEN cDNA C920016K16 gene 13/468

ENSMUSG00000067203 3/385

2610110G12Rik RIKEN cDNA 2610110G12 gene 398/399

H2-T9 Histocompatibility 2, T region locus 22 gene 126/380

Rpp21 Ribonuclease P 21 subunit (human) gene 70/72

ENSMUSG00000044538 305/320

Olfr138 Olfactory receptor 138 gene 203/313

9130008F23Rik ENSMUSG00000054951 RIKEN cDNA 9130008F23 gene 55+106/182

Trem2 Triggering receptor expressed on myeloid cells 2 gene 148/250

EG328839 Predicted gene, EG328839 13/115

Yipf4 Yip1 domain family, member 4 gene 30/290

ENSMUSG00000079336 3/13

ENSMUSG00000066938 Putative uncharacterized protein fragment 94/108

Thada Thyroid adenoma associated gene 1791/1950

ENSMUSG00000071036 Putative uncharacterized protein MCG125396 53/120

Stops lost

Rmcs2 Response to metastatic cancers 2 gene 263/263

H2-Bl Histocompatibility 2, blastocyst gene 263/263

Foxn2 Forkhead box N2 gene 212/212

ENSMUSG00000073373 Putative uncharacterized protein 42/42
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mosome and then to present these to the Phusion assembler

[25]. A full description of this algorithm is available from the

Fuzzypath website [26].

The resulting assembly of the chromosome totaled 76 Mb in

length with an N50 of 2,315 bp (N50 is the length of the short-

est contig such that the sum of contigs of equal length or

longer is at least 50% of the total length of all contigs).

We compared the performance of FuzzyPath on these data

with two other assembly algorithms designed for generating

de novo assemblies from short read sequencing - the widely

used Velvet algorithm [27] and the newly released algorithm

AbySS [28]. A kmer length of 24 was used for each algoithm

but all other parameters were default. FuzzyPath outper-

formed Velvet by a wide margin on all the metrics we consid-

ered (Table 5), particularly N50. We were unable to use the

latest version of Velvet as the 192 Gb of RAM on our machine

was insufficient. The difference between FuzzyPath and

ABySS was similar for assembled bases and contig coverage,

but the N50 for the FuzzyPath was more than twice that of the

ABySS assembly.

For A/J the read coverage was 22×, significantly lower than

for CAST/Ei and the read quality was also lower, and we were

only able to obtain an assembly of 55.87 Mb with an N50 of

959 bp. However, 2.5× whole genome shotgun capillary read

coverage of A/J is available from sequence generated by Cel-

era. Assembling this sequence on its own generates a better

assembly than the short-read sequencing, demonstrating the

difficulties of assembling short reads compared to long read

sequence (Table 5). One of the most important novel features

of FuzzyPath is its ability to combine both short and long

reads. Thus, we were able to combine the capillary sequence

data of A/J chromosome 17 with the Illumina sequence data

of this chromosome to generate a hybrid assembly (see Mate-

rials and methods). The resulting de novo assembly showed a

slight improvement of contig coverage and assembled bases

and a significant increase in N50 (from 3,377 to 5,793). Table

5 lists the statistics for the assemblies that were generated.

We could not be align 144 kb of the A/J assembly generated

using both the Celera reads and Illumina data and 170 kb of

the short read CAST/Ei assembly anywhere on the entire

C57BL/6J reference genome assembly (>95% match); these

therefore represent 'novel sequence'. Analysis of this

sequence revealed that some of it could be aligned to

sequence in the NCBI trace archive derived from mouse

strains other than the reference, some of it aligned to the rat

genome assembly, and some of the contigs appeared to be

novel 'repeat-like' sequence possibly of telomeric or centro-

Table 3

Genes and transcripts affected by deletions predicted from aberrantly mapping sequence pairs

Gene Transcript Strain Exons

1700001C19Rik ENSMUST00000073143 CAST/Ei 1

Alk ENSMUST00000086639 A/J 19

Capn13 ENSMUST00000095208 CAST/Ei 7

EN ENSMUST00000052440 CAST/Ei 1, 2

ENSMUST00000077420 CAST/Ei 1

ENSMUST00000079363 CAST/Ei 1

ENSMUST00000086423 CAST/Ei 1

ENSMUSG00000060087 ENSMUST00000077584 A/J 1, 2

Galnt14 ENSMUST00000024858 CAST/Ei 15

Gfer ENSMUST00000046839 A/J 3

ENSMUST00000046839 CAST/Ei 3

mmu-mir-692-1 ENSMUST00000102263 A/J 1

ENSMUST00000102263 CAST/Ei 1

Olfr55 ENSMUST00000112168 CAST/Ei 1

Prss28 ENSMUST00000015267 A/J 1-7

Rpl35a ENSMUST00000087940 A/J 1

ENSMUST00000087940 CAST/Ei 1

Tbc1d24 ENSMUST00000040474 A/J 9

ENSMUST00000040474 CAST/Ei 9

ENSMUST00000097376 CAST/Ei 10

U6 ENSMUST00000102026 A/J 1

V1rf3 ENSMUST00000077301 CAST/Ei 1

Wiz ENSMUST00000087699 A/J 4
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Table 4

Genes and transcripts associated with the MHC complex affected by CNVs as predicted by a hidden Markov model

Gene Transcript Type Strain Exons

2410017I17Rik ENSMUST00000090537 Gain A/J 1- 7

ENSMUST00000090537 Loss CAST/Ei 1-6

CR974462.5-201 ENSMUST00000087244 Gain CAST/Ei 1-5

H2-D1 ENSMUST00000087173 Gain A/J 1-8

ENSMUST00000078966 Gain A/J 1-7

ENSMUST00000087173 Gain CAST/Ei 1-8

ENSMUST00000078966 Gain CAST/Ei 1-7

H2-DMb2 ENSMUST00000114232 Gain A/J 1-6

H2-K1 ENSMUST00000114311 Gain A/J 1-7

ENSMUST00000087189 Gain A/J 1-9

ENSMUST00000025181 Gain A/J 1-8

ENSMUST00000046131 Gain A/J 1-7

ENSMUST00000114311 Gain CAST/Ei 1-7

ENSMUST00000087189 Gain CAST/Ei 1-9

ENSMUST00000025181 Gain CAST/Ei 1-8

ENSMUST00000046131 Gain CAST/Ei 1-7

H2-M10.5 ENSMUST00000041531 Gain A/J 1

H2-M10.6 ENSMUST00000041398 Gain CAST/Ei 1, 2

H2-Q1 ENSMUST00000105041 Gain A/J 1-3

ENSMUST00000073208 Gain A/J 1-8

ENSMUST00000074806 Gain A/J 1-7

ENSMUST00000078205 Loss A/J 1-8

ENSMUST00000113887 Loss A/J 6, 7

ENSMUST00000081435 Loss A/J 5, 6

ENSMUST00000078205 Gain CAST/Ei 1-3

ENSMUST00000105041 Gain CAST/Ei 2

ENSMUST00000073208 Gain CAST/Ei 4-8

ENSMUST00000113887 Gain CAST/Ei 1-4

ENSMUST00000081435 Gain CAST/Ei 1-3

ENSMUST00000074806 Gain CAST/Ei 1-7

ENSMUST00000078205 Loss CAST/Ei 1-8

ENSMUST00000113887 Loss CAST/Ei 6, 7

ENSMUST00000081435 Loss CAST/Ei 5, 6

H2-Q10 ENSMUST00000056774 Gain A/J 1-4

ENSMUST00000068291 Gain A/J 1-3

ENSMUST00000040279 Gain A/J 1-3

ENSMUST00000056774 Gain CAST/Ei 1-4

ENSMUST00000068291 Gain CAST/Ei 1-3

ENSMUST00000040279 Gain CAST/Ei 1-3

H2-Q2 ENSMUST00000040240 Gain A/J 1-6

H2-Q7 ENSMUST00000071951 Gain A/J 7

H2-Q7 ENSMUST00000076256 Gain A/J 7, 8

H2-T10 ENSMUST00000074201 Loss A/J 1-10

H2-T18 ENSMUST00000025312 Gain A/J 1-6

ENSMUST00000095300 Gain A/J 1-4

ENSMUST00000097329 Gain A/J 1, 2

ENSMUST00000113714 Gain A/J 1-4

ENSMUST00000102675 Gain A/J 1-6

ENSMUST00000025312 Gain CAST/Ei 1-6
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meric origin. Unaligned contigs are available for download

from [29].

Identification of candidate genes that regulate liver 

triglyceride levels on chromosome 17

An extensive chromosome 17 substitution strain panel was

generated by interbreeding C57BL/6J and A/J mice [15] and

was used to identifying several regions that contain loci that

regulate liver triglyceride levels [16]. Importantly, a locus

between the centromere and 27.8 Mb was identified that has

a protective effect on high liver triglyceride levels since male

consomic mice carrying this interval from A/J (Obrq13) were

found to have lower liver triglyceride levels when placed on a

high fat diet compared to C57BL/6J controls [16] (Figure 8).

Within the Obrq13 interval there are six strong candidate

genes implicated in lipid metabolism. These are the insulin-

like growth factor II receptor (Igf2r), insulin-like growth fac-

tor binding protein (Igfals), acetyl-coenzyme A acetyl trans-

ferase 2 (Acat2) and Acat3, the tubby-like protein 4 (Tulp4),

and the lipase maturation factor (Lmf1). Using the sequence

of A/J chromosome 17, we were able to profile all of the cod-

ing and non-coding variants in and around these genes (Fig-

ure 8). We found that the genes Acat2 and Acat3 carried no

intergenic or coding SNPs; in fact, we found no SNPs 5 kb

upstream or downstream of these genes. While it is possible

that a mutation in a far upstream regulatory element may

control the function of these genes, they seem the less likely

candidate genes within the interval. Similarly, the gene Igf2r

contains no coding SNPs and only four SNPs are found within

this gene, all of them intronic and none in the untranslated

regions. The three genes carrying the highest number of pol-

ymorphisms were Lmf1, Igfals and Tulp4, which all carry a

significant number of proximal promoter variants. Notably,

Tulp4 was predicted to carry several CNVs (Additional data

file 9). Intriguingly, Lmf1 was found to contain a splice site

SNP, and a stop codon in a splice variant of the gene (Figure

8). Importantly, mice with loss of function mutations in Lmf1

develop severe hypertriglyceridemia [30]. Thus, by having

the sequence of A/J chromosome 17 we have been able to

rank three genes within the interval (Igfals, Tulp4 and Lmf1)

as the most worthy genes for follow up functional analysis.

Discussion
Here we present the first new-technology sequencing of a

murine chromosome. This gives a glimpse of what will be

achievable from the larger project we are undertaking to

sequence the entire genomes of 17 mouse strains [31]. We

ENSMUST00000095300 Gain CAST/Ei 1-4

ENSMUST00000097329 Gain CAST/Ei 1, 2

ENSMUST00000113714 Gain CAST/Ei 1-4

ENSMUST00000102675 Gain CAST/Ei 1-6

H2-T9 ENSMUST00000058801 Loss A/J 1-9

ENSMUST00000077960 Loss A/J 1-10

ENSMUST00000080015 Loss A/J 1-9

NM_001025208.1 ENSMUST00000064686 Gain A/J 1-9

ENSMUST00000064686 Gain CAST/Ei 1-9

Table 4 (Continued)

Genes and transcripts associated with the MHC complex affected by CNVs as predicted by a hidden Markov model

Table 5

Assembly statistics

Assembler Sequencing Strains Insert size Read 
length (bp)

Number of 
reads

Raw read 
coverage

Assembled 
bases (Mb)

Contig 
coverage

Contig N50

FuzzyPath Illumina CAST/
Ei

200 bp 36 173 million 65× 76.03 80.0% 2,315

Velvet* Illumina CAST/
Ei

200 bp 36 173 million 65× 58.09 61.15% 391

ABySS Illumina CAST/
Ei

200 bp 36 173 million 65× 72.80 76.63% 1,022

FuzzyPath Illumina A/J 200 bp 36 112 million 42× 55.87 58.8% 959

Phusion Capillary A/J 3-5 kb 400-900 357,100 2.5× 81.2 85.5% 3,377

FuzzyPath Hybrid A/J† Hybrid† Hybrid† Hybrid† Hybrid† 85.54 90.0% 5,793

*Version 0.4. We also tried the latest version 0.7, which had been much improved in terms of contig length, but ran out of memory on a computer 
with 192 Gb RAM. †Assembly incorporating the A/J Illumina reads and Celera capillary reads.
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show that short-read sequencing of the mouse genome on the

Illumina platform is an efficient way of discovering both

nucleotide and structural variation and that it is possible to

use these data to generate chromosomal assemblies, which

provide a valuable substrate for comparative and mutational

analysis.

Nucleotide variant discovery

Using MAQ, we called 181,442 homozygous and 10,209 het-

erozygous SNPs by comparing A/J chromosome 17 to the ref-

erence C57BL/6J assembly. Similarly, we identified 657,558

homozygous and 34,173 heterozygous SNPs by sequencing

CAST/Ei chromosome 17. To the best of our knowledge this is

the first report to assess the accuracy of the novel SNP calling.

Previous studies have assessed the accuracy of SNP calling by

comparison to known variant sites represented on genotyping

arrays. These easy to type sites are analogous to our mouse

HapMap SNP set, where we found a similarly high concord-

ance. The accuracy of novel SNP calling is slightly lower,

showing that it is possible that these SNPs are in harder to

sequence and genotype regions of the genome. However, we

have demonstrated that by carefully assessing the quality of

each predicted SNP, this accuracy can be increased with only

a small loss of sensitivity. Homozygous A/J SNPs are distrib-

uted in blocks along the chromosome (Figure 2) delineating

conserved haplotypes between A/J and C57BL/6J. In con-

Analysis of SNPs in candidate genes within the Obrq13 QTL region of mouse chromosome 17 that has a protective effect on liver triglyceride levelsFigure 8

Analysis of SNPs in candidate genes within the Obrq13 QTL region of mouse chromosome 17 that has a protective effect on liver triglyceride levels. Shown 
is an example of histology of the liver of a C57BL/6J male and a consomic mouse carrying the Obrq13 region from A/J, which has a protective effect on the 
accumulation of liver triglycerides when animals are placed on a high fat diet [16]. Using the sequence of A/J chromosome 17, we called SNPs against the 
reference C57BL/6J genome and positioned them in candidate genes within the Obrq13 region. Non-coding SNPs are shown as red circles, non-
synonymous SNPs are shown in green, synonymous SNPs are shown in yellow while the truncating and essential splice site SNPs found in a transcript of 
Lmf1 are shown as an open circle and an orange circle, respectively. The orientation of each gene relative to the forward strain is shown above the gene 
name as an arrow and genes are grouped together based on size (a scale is shown above each group of genes). Genes are displayed with 5 kb of genomic 
sequence 5' and 3'.
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trast, CAST/Ei SNPs are evenly distributed along the chromo-

some. There were, however, several discrete regions towards

the telomeric end of the chromosome that are SNP-poor and

may thus represent M. m. castaneus-derived regions of the

C57BL/6J genome. Since all classical and wild-derived mouse

strains are inbred and their genomes fixed, they are

homozygous at all loci. Thus, the identification of hetero-

zygous SNPs is likely to denote regions of segmental duplica-

tion between the strains. Importantly, we show that the vast

majority of these heterozygous variants fall within regions

where there was an increase in the density of mapped

sequenced reads, suggesting that the copy number of these

regions varies between the strains. Fortunately, because we

were working with inbred mouse strains we could disam-

biguate this pattern. Determining if a SNP is truly hetero-

zygous in an outbred population or indeed in humans will be

considerably more challenging. Importantly, we found that

the accuracy of calling SNPs varies significantly. SNP calling

in repetitive regions of chromosome 17 was less sensitive than

in non- repetitive regions owing largely to our ability to

uniquely place read pairs, and the resultant coverage of reads

obtainable in these regions. In this experiment flow sorted

chromosomal DNA was a limiting reagent and after having

sorted chromosome 17 from over 108 cells we had only 300 ng

of DNA. Genomic DNA will not, however, be a limiting rea-

gent when sequencing entire mouse genomes, making it pos-

sible to generate multiple Illumina libraries with different

insert sizes, which, together with longer sequence reads,

should facilitate the sequencing of repetitive and complex

regions. Importantly, we identified 29 nucleotide variants in

28 genes in A/J and CAST/Ei that are predicted to be truncat-

ing loss of function alleles. Given that mice are homozygous at

every loci along chromosome 17, these are effectively null alle-

les. These truncated genes may include those that, from the

point of view of the animals' development and reproduction,

are non-essential or neutral mutations. Others may be muta-

tions that have been selected for during the derivation of the

strains. Several mutations, including those in the genes

Rpp21, Rmcs2 and ENSMUSG00000073373, are present in

A/J and CAST/Ei but not in the reference C57BL/6J genome

(Table 2). This is interesting since it may represent an exam-

ple of how these strains have diverged. Indeed, it will be inter-

esting to genotype these variants in a larger panel of strains to

determine the origin of these alleles.

Although expected to be less frequent than SNP mutations,

indels are expected to have a large effect on gene function.

However, we failed to be able to accurately confirm our indel

predictions, with a concordance rate of only 18% between

indels predicted from capillary sequence and short-read

sequence (rising to 52% if only the position of indels, and not

their content, is considered). It is not known if this disagree-

ment is due to differences in the algorithms used to identify

the mutations or due to a more fundamental difference in the

data. Indel prediction from short-read sequence is clearly an

area that would benefit from future attention.

Copy number variation

We exploited two approaches for the identification of struc-

tural variants between C57BL/6J and A/J and CAST/Ei chro-

mosome 17. The first involved using read pair information to

identify aberrantly mapped reads defining regions where

there has been a deletion relative to the reference genome. We

identified 416 variants on A/J chromosome 17 and 776 on

CAST/Ei chromosome 17 that are collectively predicted to

affect 15 genes (Figure 7, Table 3). All these variants are novel.

The second approach exploits the observation that hetero-

zygous SNPs cluster together in regions where there are

changes in the density of reads mapping to a location. Using

a novel HMM-based algorithm that incorporates the density

of heterozygous SNPs and read depth, we identified 74% to

91% of the copy number gains described in a previous high-

resolution survey of CNV in the mouse genome and in many

cases we were able to use our data to refine the resolution of

these CNVs. We also predict 43 new variants that had not

been described previously (Figure 7). These CNVs affect 82

genes (Additional data file 9). That we found a higher propor-

tion of known CNV gains compared to losses demonstrates

the value of using the extra information provided by the den-

sity of heterozygous SNPs for identifying gains.

De novo chromosome assembly

To fully realize the goal of being able to interrogate the

genomes of different mouse strains, it is desirable to generate

de novo assemblies of each strain. We employed a new algo-

rithm called 'Fuzzypath' to assemble our short read sequences

of A/J and CAST/Ei chromosome 17. Fuzzypath exploits a de

Bruijn graph algorithm [32] to build assembly trees and then

ultimately contigs and outperformed other commonly used

de novo assembly algorithms (Table 5). Remembering that

the sequence of mouse chromosome 17 from A/J and CAST/

Ei were derived from a single 150 to 200 bp paired-end Illu-

mina library, we were able to obtain respectable N50 contig

lengths and for A/J we were able to use Fuzzypath to generate

a hybrid assembly using capillary shotgun reads that was sig-

nificantly better than assemblies generated purely from short

or longer read sequences individually (Table 5). The differ-

ence in N50 between the purely short-read assemblies and

that of the hybrid assembly demonstrates the value of such

hybrid methods. Longer reads and variable insert sizes are

likely to greatly facilitate the accuracy and quality of de novo

assemblies of the mouse genome, which, being homozygous

and inbred, should be significantly easier to assemble than

those of humans or other experimental vertebrate models.

Using short read-sequencing data to help rank 

candidate genes in QTL intervals

Analysis of the phenotypic differences between mouse strains

is a powerful way of identifying new disease genes and mech-

anisms. Here we show that sequencing of a whole mouse

chromosome is a powerful approach for variant discovery

that facilitates the ranking of candidate genes within QTL

intervals (Figure 8). This approach is generally applicable
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across the many mouse QTLs that have been collected over

many decades of mouse genetics.

Conclusions
We have shown that whole chromosome, and by inference

whole genome, sequencing of mouse strains is a viable

approach for generating dense maps of genetic variation

between mouse strains. We have also shown for the first time

that the accuracy of novel SNP discovery from short-read

sequencing can be almost as high as the typing of known

SNPs, given the proper quality controls are applied. We dem-

onstrate the value of using heterozygous SNP density, when

combined with read depth, to predict copy number gains, and

suggest that such an approach could be generalized to other

inbred genomes. We also illustrate what can be achieved with

short read sequencing technologies now, and with the

expected increases in read lengths and sequence yield from

these technologies complete de novo assemblies of mouse

strain genomes will soon be well within reach. We show that

whole chromosome sequencing can be applied to derive a

high-resolution picture of QTL regions and helps to rank can-

didate genes for follow-up analysis.

Materials and methods
Mice

Pedigreed A/J mice were obtained from MRC-Harwell

(Oxfordshire, UK), who derived these mice from the Jackson

Labs (Bar Harbour, Maine, USA). CAST/Ei mice were also

derived from Jackson Lab stock but had been maintained as

an independent colony for several years. Mice were geno-

typed with a set of polymorphic markers to confirm their

genetic purity. Murine embryonic fibroblasts were prepared

from E14.5 embryos using standard procedures.

Chromosome isolation

Mitotic cells were arrested by treatment with 0.1 μg/ml

demecolcine for 8 hours. Chromosomes were isolated and

stained as described previously [17] using a flow cytometer

(MoFlo, DAKO, Glostrup, Produktionsvej, Denmark)

equipped with two Innova 300 series lasers (Coherent, Santa

Clara, CA). Sorted chromosomes were treated with proteinase

K and sodium lauroyl sarcosine followed by phenylmethyl-

sulphonyl fluoride before recovering DNA by precipitation.

Paired-end library preparation and sequencing

Libraries were prepared and sequenced essentially as

described [18]. Briefly, 300 ng of isolated chromosomes were

fragmented using a disposable nebulizer (Invitrogen, Paisley,

Scotland, UK) and purified using a qiaquick column (Qiagen,

Valencia, CA, USA). DNA was end-repaired as described and

an adaptor ligated to the ends of the DNA (adaptor sequences:

5'ACACTCTTTCCCTACACGACGCTCTTCCGATCxT (x =

phosphorothioate bond) and 5'-phosphate-GATCGGAA-

GAGCGGTTCAGCAGGAATGCCGAG [18]. Fragments of

approximately 200 bp were gel-purified and PCR amplified.

Flow cells were prepared, clusters generated, and processed

Flowcells were sequenced on an Illumina Genome Analyzer 2

and data analyzed using standard methods (Illumina, Little

Chesterford, Essex).

Mapping of sequence reads and analysis of mapping

Reads with uncalled bases were removed from analysis and

the remaining reads mapped to the build 37 of the NCBI

mouse reference sequence, using MAQ version 0.6.6, with the

insert size parameter set to 200 bp and duplicates removed,

and using an expected heterozygous rate of 1 in 10,000.

Nominal mean sequence depth was calculated as:

Actual mean sequence depth was calculated as:

Contiguous blocks of sequence were calculated by moving

through an ordered list of mapped reads, adding overlapping

reads to the current block. When non-overlapping reads were

encountered, a new block was initiated.

SNP calling and confirmation

SNPs were called from mapped sequence data using standard

parameters, except that a heterozygous SNP rate of 1/10,000

was used as described above [19]. SNPs were filtered using

the MAQ SNP filter using a minimum maximum mapping

quality of 60 and maximum depth of 50 (for A/J) or 85 (for

CAST/Ei). SNPs were downloaded from dbSNP (version 126).

HapMap SNPs were downloaded from [20] and genome coor-

dinates converted to version 37 of the mouse reference

genome using the LiftOver tool [33]. In order to select novel

SNPs for confirmation, the range of quality scores for SNPs

was divided into 6 equally sized bins and 50 SNPs from each

bin selected at random. Three-hundred SNPs present in

dbSNP but not in the filtered MAQ calls were selected at ran-

dom. SNPs were genotyped using the Sequenom genotyping

platform. P-scores for non-genotyped SNPs were calculated

as:

Indel calling and comparison with capillary data

Indels were called using the samtools package, version 0.1.4

[34], and filtered using the samtools indelFilter script. Indels

were called from capillary data downloaded from the Celera

website (see below) using ssahaSNP [35]. ssahaSNP output

was filtered so that only indels predicted by more than one

read were considered. When comparing the two methods, a

window of 18 bp in each direction was allowed due to differ-
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ences in how the two algorithms assign coordinates to the

indels.

Calling of structural variants

An average and standard deviation for the insert size was cal-

culated by fitting a normal distribution to the main peak of a

histogram of all insert sizes. Read pairs where the average

insert size was greater than the average plus four standard

deviations were isolated. Read pairs were allocated to 'clus-

ters' based on whether they overlapped and if the difference

in their end points was not more than the mean insert length

plus four standard deviations. Overlapping clusters were then

overlapped. Only those clusters containing two or more read

pairs were retained for further analysis.

We constructed a HMM to detect copy number gains and

losses from the alignments of the sequence reads to the refer-

ence genome. As previously stated, the underlying assump-

tion is that regions with copy number gains will have an

integral increase in sequence depth and regions with copy

number losses will have an integral decrease in depth. Addi-

tionally, duplicated regions can appear to contain hetero-

zygous SNPs, a fact our model exploits. The input to the HMM

is the sequence read depth, the number of heterozygous SNPs

and the average number of hits per read calculated over 1-kb

windows of the reference sequence. Initially, the parameters

of the model are learned using the Baum-Welch and Viterbi

training algorithms, respectively. The state classifications are

then determined using the Viterbi algorithm. These classifi-

cations are post-processed to extract high-confidence calls of

at least 10 kb in size.

Confirmation of deletions identified by aberrantly 

mapped read-pairs

Deletions predicted in the A/J sequence that overlapped with

Ensembl exons (V50) were selected for confirmation. Primers

that flanked the deleted region were selected using the

Primer3 software. Regions were amplified by PCR using

standard protocols from both A/J and C57BL/6J genomic

DNA. PCR products were treated with Exonuclease I and

Shrimp alkaline phosphatase for 2 hours and then sequenced

from both ends with the same primers, using capillary

sequencing technologies.

De novo assemblies

For de novo assembly of chromosome 17 data we used a new

short read assembler: Fuzzypath [26]. For Illumina data, the

assembly process consists of two steps: read extension and

then assembly. Using the de Bruijn graph algorithm, raw Illu-

mina reads are first extended into segments of consensus

sequences each with a maximum length of 2 kb. Sequence

extension starts from kmer seeds, which are randomly sam-

pled to ensure overlaps among extended segments. These

extended reads are then presented to the Phusion assembler.

In the case of A/J and CAST/Ei these extended reads had

between 10 and 15× coverage of the reference genome assem-

bly. To generate a hybrid assembly for A/J, 11.6 million

mouse whole-genome shotgun reads were aligned to the ref-

erence NCBI_M37.fa and only those reads (357,100) that

could be uniquely placed on chromosome 17 were combined

with the extended reads, described above, and presented to

the Phusion assemblier. Velvet [27] and AbySS [28] were

used as described.

Data availability

The sequence data generated in this study have been submit-

ted to the European Short Read Archive (ERA)

[ERA000077]. SNPs have been submitted to dbSNP under

the handle SC_MOUSE_GENOMES. A/J SNPs have dbSNP

accessions starting from [dbSNP:ss130462797] and CAST/Ei

SNPs start from [dbSNP:ss130459410].

Assemblies are available at [29]. Additional data files can be

downloaded from [36].
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aCGH: microarray-based comparative genomic hybridiza-

tion; CNV: copy number variation; HapMap: haplotype map;

HMM: hidden Markov model; indel: insertion and deletion

mutations; MAQ: Mapping and Assembly with Quality;

MHC: major histocompatibility complex; QTL: quantitative

trait locus; SNP: single nucleotide polymorphism.
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Additional data files
The following additional data are available with the online

version of this paper: a spreadsheet showing the effects of

applying different p score thresholds on the accuracy and sen-

sitivity of SNP calling from A/J sequence (Additional data file

1); a spreadsheet showing the effects of applying different p-

score thresholds on the accuracy and sensitivity of SNP call-

ing from CAST/Ei sequence (Additional data file 2); a presen-

tation showing analysis of the accuracy of indel calling from

A/J Illumina and capillary data (Additional data file 3); a

spreadsheet listing A/J deletions identified using read pairs

by comparison to the reference C57BL/6J genome (Addi-

tional data file 4); a spreadsheet listing CAST/Ei deletions

identified using read pairs by comparison to the reference

C57BL/6J genome (Additional data file 5); a spreadsheet list-

ing variants predicted by HMM structural variants (both

amplifications and deletions) predicted by the HMM based
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on mapping depth and heterozygotes (Additional data file 6);

a spreadsheet listing predicted coding SNP differences in A/J

(Additional data file 7); a spreadsheet listing predicted coding

SNP differences in CAST/Ei (Additional data file 8); a spread-

sheet listing genes affected by predicted structural variants

(Additional data file 9).

Additional data file 1Effects of applying different p score thresholds on the accuracy and sensitivity of SNP calling from A/J sequenceEffects of applying different p score thresholds on the accuracy and sensitivity of SNP calling from A/J sequence.Click here for fileAdditional data file 2Effects of applying different p-score thresholds on the accuracy and sensitivity of SNP calling from CAST/Ei sequenceEffects of applying different p-score thresholds on the accuracy and sensitivity of SNP calling from CAST/Ei sequence.Click here for fileAdditional data file 3Analysis of the accuracy of indel calling from A/J Illumina and cap-illary dataAnalysis of the accuracy of indel calling from A/J Illumina and cap-illary data.Click here for fileAdditional data file 4A/J deletions identified using read pairs by comparison to the ref-erence C57BL/6J genomeA complete list of deletions in A/J passing quality control filters, predicted by examining aberrantly mapping read pairs to the C57BL/6J genome. The list includes predicted start and end coor-dinates, the length of the deletion and the number of read pairs that predict the deletion.Click here for fileAdditional data file 5CAST/Ei deletions identified using read pairs by comparison to the reference C57BL/6J genomeA complete list of deletions in A/J passing quality control filters, predicted by examining aberrantly mapping read pairs to the C57BL/6J genome. The list includes predicted start and end coor-dinates, the length of the deletion and the number of read pairs it is predicted by.Click here for fileAdditional data file 6Variants predicted by HMM structural variants (both amplifica-tions and deletions) predicted by the HMM based on mapping depth and heterozygotesVariants predicted by HMM structural variants (both amplifica-tions and deletions) predicted by the HMM based on mapping depth and heterozygotes.Click here for fileAdditional data file 7Predicted coding SNP differences in A/JSingle nucleotide differences between C57BL/6J and A/J that affect Ensembl coding exons, marked as either synonymous, non-synonymous or splice site changes. Also indicated are the sequenc-ing depth and phred-like quality score.Click here for fileAdditional data file 8Predicted coding SNP differences in CAST/EiSingle nucleotide differences between C57BL/6J and CAST/Ei that affect Ensembl coding exons, marked as either synonymous, non-synonymous or splice site changes. Also indicated are the sequenc-ing depth and phred-like quality score.Click here for fileAdditional data file 9Genes affected by predicted structural variantsGenes affected by predicted structural variants (predicted by both read-pair mapping and the HMM) in both strains. The genes, strain, type of variant and exons affected are indicated. Type is either deletion (as predicted from read-pair mapping), copy number loss (CN_Loss) or copy number gain (CB_Gain).Click here for file
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