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Abstract

This manuscript introduces the end-to-end embedding of a CNN into a HMM, while interpreting the outputs of the CNN

in a Bayesian framework. The hybrid CNN-HMM combines the strong discriminative abilities of CNNs with the sequence

modelling capabilities of HMMs. Most current approaches in the field of gesture and sign language recognition disregard

the necessity of dealing with sequence data both for training and evaluation. With our presented end-to-end embedding we

are able to improve over the state-of-the-art on three challenging benchmark continuous sign language recognition tasks by

between 15 and 38% relative reduction in word error rate and up to 20% absolute. We analyse the effect of the CNN structure,

network pretraining and number of hidden states. We compare the hybrid modelling to a tandem approach and evaluate the

gain of model combination.

Keywords Sign language recognition · Hybrid approach · CNN-HMM · Statistical approach · Sequence modelling

1 Introduction

Face-to-face communication is often the preferred choice,

when either important matters need to be discussed or

informal links between individuals are established. Ges-

ture is a key part in such human-to-human communication.

It helps us to better understand the other party. However,

the role of visual cues in spoken language is not well

defined. As such, the task of gesture recognition is also

not accurately defined. This renders comparison of algo-

rithms and approaches difficult. Sign language on the other

hand provides a clear framework with a defined inventory

and grammatical rules that govern joint expression by hand

(movement, shape, orientation, place of articulation) and

by face (eye gaze, eye brows, mouth, head orientation).

This makes sign languages, the natural languages of the

deaf, a perfect test bed for computer vision and human
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language modelling algorithms targeting human computer

interaction and gesture recognition. The rules governing the

interaction of hands and body, referred to as the manual

and non-manual parts—are well defined by sign language

theory. Videos represent a time series of dynamic images

and the recognition of sign language therefore needs to be

able to cope with variable input sequences and execution

speed. Different schemes are followed to achieve this ranging

from sliding window approaches (Ong et al. 2014) to tem-

poral normalisations (Molchanov et al. 2015) or dynamic

time warping (Krishnan and Sarkar 2015). While the field

of automatic speech recognition is dominated by Hidden-

Markov-Models (HMMs), they remain rather unpopular in

computer vision related tasks. For instance CVPR, by many

regarded as the top conference of computer vision, had only

three out of a total of over 700 submissions in the year

2017 that were using HMMs (Koller et al. 2017; Richard

et al. 2017; Schober et al. 2017). This may be related to the

comparatively poor image modelling capabilities of Gaus-

sian Mixture Models (GMMs), which had been traditionally

used to model the observation probabilities within such a

framework. More recently, deep Convolutional Neural Net-

works (CNNs) have outperformed other approaches in all

computer vision tasks. In this work, we focus on integrating

CNNs in a HMM framework, extending an interesting line
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of work (Koller et al. 2015b, 2016a; Le et al. 2015; Wu and

Shao 2014), which we will discuss more closely in Sect. 2.

This manuscript presents the extended version of our pre-

vious work (Koller et al. 2016b), where we first presented a

powerful embedding of a deep CNN in a HMM framework in

the context of sign language and gesture recognition, while

treating the outputs of the CNN as true Bayesian posteriors

and training the system as a hybrid CNN-HMM in an end-to-

end fashion. With this method we are able to achieve a large

relative improvement of over 15% compared to the state-of-

the-art on three challenging standard benchmark continuous

sign language recognition data sets. In the scope of this

extended manuscript, we make several additional contribu-

tions and have completely reran all experimental evaluation

to allow us to provide more extensive results and deeper

insights:

1. We significantly add to the theoretical explanation of the

hybrid approach, with the aim of making its idea more

accessible to newcomers to the field.

2. We analyse the effect of both CNN- and HMM-structure

on the hybrid approach.

3. We investigate the effect of using out-of-domain data

to train the network prior to finetuning using in-domain

data.

4. We show that different training iterations provide com-

plementary classifiers, which are able to further boost

recognition when employed as ensembles of hybrid

CNN-HMMs.

The rest of this manuscript is organised as follows: Sect. 2

discusses the related literature in depth. In Sect. 3 we intro-

duce the theoretical basis of the presented hybrid approach.

Differences w.r.t. the tandem approach are also described.

The employed data sets are discussed in Sect. 4. Section 5

gives details on the implementation in order to ensure repro-

ducibility, which is followed by the actual experimental

evaluation in Sect. 6. Finally, we conclude the work in Sect. 7.

2 RelatedWork

After the recent success of CNNs (LeCun et al. 1998) in many

computer vision fields, they have also shown large improve-

ments in gesture and sign language recognition (Neverova

et al. 2014; Huang et al. 2015; Koller et al. 2015b). How-

ever, in most previous CNN-based approaches the temporal

domain of video data is not elegantly taken into consid-

eration. Most approaches simply use a sliding window or

circumvent the sequence properties by evaluating the output

in terms of per-frame overlap with the ground truth, e.g. in

Pigou et al. (2018). Moreover, CNNs are usually trained on

the frame-level. A few artificial data sets such as the Mon-

talbano gesture data set (Escalera et al. 2014) provide frame

labels. However, this is usually not the case, especially for

sign language footage or other real-life data sets. Available

annotation usually consists of sequences of signs without

explicit frame-level information. As such, the focus of the

field needs to move towards approaches that deal with vari-

able length inputs and outputs that do not require explicit

frame labelling. The difficulty in accurately labelling sin-

gle frames for evaluation further supports the need for such

change. Graphical models such as HMMs lend themselves

well to tasks with inputs of variable length. As will be shown

in this work, we are able to combine the best of different

worlds when integrating HMMs and CNNs. A few works

have joined neural networks and HMMs before in the scope

of gesture and sign language recognition. Wu and Shao

(2014) use 3D CNNs to model the observation probabili-

ties in a HMM. However, they interpret the CNN outputs as

likelihoods p(x |k) for an image x and a given class k. Con-

versely, Richard and Lippmann (1991) showed that neural

network outputs are better interpreted as posterior probabil-

ities p(k|x) in a Bayesian framework. In the field of speech

recognition, Bayesian hybrid neural network HMMs were

first proposed by Bourlard and Wellekens (1989) and became

the approach of choice, particularly after the recent rise of

deep learning. Le et al. (2015) followed this line of thought

for gesture recognition, but only employed a shallow legacy

neural network that was trained to distinguish twelve artificial

actions. Koller et al. (2013, 2014) achieved important results

using GMM-HMMs for weakly supervised learning in the

domain of sign language. However, hybrid models strongly

outperformed the results (Koller et al. 2016a), which con-

stituted first and preliminary work in this direction. CNNs

were employed in a hybrid Bayesian framework to perform

weakly supervised training with the purpose of learning

hand shape classifiers that generalise across data sets. The

main differences with respect to this manuscript are that we

learn the CNN top down using nothing more than the anno-

tated sign-words (which are modelled by a fixed number of

hidden states), whereas Koller et al. (2016a) models signs

bottom up with additional knowledge of the decomposition of

sign-words into different hand shapes which form the build-

ing blocks for signs. Moreover, in this work, we learn the

CNN-HMM in an end-to-end fashion from video input to

gloss output, whereas in the previous work, the intermediate

hand shape-CNN serves as feature extractor for an additional

GMM-HMM sign model (similar to the tandem approach

introduced in Sect. 3.3). In this so-called tandem modelling

(refer to Sect. 3.3), the GMM-HMM needs to be completely

retrained, which adds significant computational overhead. In

the proposed hybrid approach, no GMM-retraining is nec-

essary and in the experimental evaluation of this manuscript

we will show that our approach clearly outperforms Koller

et al. (2016a). Wu et al. (2016) published a paper that is also
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closely related to this work, but they do not interprete the

CNN outputs in a Bayesian way, they use different inputs to

the CNN (full body RGB and depth, as opposed to using

a cropped hand patch) and different inputs to the HMM.

Later, Granger and el Yacoubi (2017) provided a compari-

son between a hybrid neural network HMMs and a recurrent

neural network (RNN) on a gesture task, finding that both

perform comparably, while the state-based representation of

the HMM allows better insights in the internals of the model

for potential error analysis. Recently, Connectionist Tempo-

ral Classification (CTC) by Graves and Schmidhuber (2005)

has received attention by the computer vision community in

general (Assael et al. 2016; Cui et al. 2017; Rao et al. 2017).

CTC is a training criterion for recurrent neural networks and

very related to HMMs. CTC has been shown to be a special

case of the hybrid full-sum HMM alignment with a specific

HMM architecture. As such CTCs are related to this work.

However, we do not use recurrent or long short term mem-

ory (LSTM) networks in this work. The interested reader may

consult Bluche et al. (2015) for details on the comparison of

CTC and HMMs.

Finally, this manuscript represents a more thorough ver-

sion of Koller et al. (2016b), with much more extensive

experiments. In addition, this manuscript analyses the effect

of both CNN- and HMM-structure on the hybrid approach.

It also investigates the effect of using out-of-domain data to

pretrain the network prior to finetuning using in-domain data

and the use of ensembles of CNN-HMMs in model combi-

nation to further boost performance. Koller et al. (2017) even

drop the dependence on a hand tracking system and take the

re-alignment of hybrid models for sign recognition further.

Another related approach has been introduced by Bengio

and Frasconi (1996), where a RNN is used to extract tempo-

rally local information whereas a HMM integrates long-term

constraints. The so-called input output HMM has been used

by Marcel et al. (2000) in a basic gesture system that distin-

guishes between two gesture classes, deictic and symbolic.

3 Continuous Sign Language Recognition

The problem to be solved is a sequence learning task, which

means we want to predict a sequence of output symbols

wN
1 , in our case sign words (so-called “glosses”, representing

the semantics of the described word). Given an input video

as a sequence of full images X T
1 = X1, . . . , XT and the

resulting preprocessed (e.g. tracked and mean-normalised)

images xT
1 = x1, . . . , xT , automatic continuous sign lan-

guage recognition tries to find an unknown sequence of

sign-words wN
1 for which xT

1 best fit the learned models.

We assume that images and sign-words occur in an ordered

fashion. It has to be noted that this requirement clearly dis-

tinguishes the problem of sign language recognition from

the problem of translating from sign language to spoken lan-

guage where re-orderings are necessary and monotonicity

cannot be assumed.

3.1 Legacy GMM-HMMApproach

To find the best fitting sequence, we follow the statistical

paradigm (Bahl et al. 1983) using the maximum-a-posteriori

simplification of Bayes’ decision rule, which has been suc-

cessfully applied to Automatic Speech Recognition (ASR),

hand writing recognition and statistical machine translation

since the early 1970s. Given a loss function L
[

wN
1 , w̃N

1

]

between the true output sequence wN
1 and the hypothesised

output sequence w̃N
1 , Bayes’ Decision Rule minimises the

expected loss:

xT
1 →

[

wN
1

]

opt
= argmin

w̃N
1

⎧

⎪

⎨

⎪

⎩

∑

wN
1

Pr
(

wN
1 |xT

1

)

· L

[

wN
1 , w̃N

1

]

⎫

⎪

⎬

⎪

⎭

(1)

Often Bayes Decision Rule is simplified to the maximum-

a-posteriori (MAP) rule, which is known to be equivalent for

the case of the simple 0-1-loss.

xT
1 →

[

wN
1

]

opt
= argmax

wN
1

{

Pr
(

wN
1 |xT

1

)}

(2)

In sign language recognition the 0-1-loss corresponds to

a minimisation of the expected sentence error rate, which

counts an output sentence as wrong if a single recognised

sign-word is wrong. However, for longer sentences, the sen-

tence error rate does not correlate with the word error rate

(WER) which is also known as edit distance and what we

seek to minimise. As shown by Schlüter et al. (2012), the

MAP rule is equivalent to the Bayes Rule for the WER as a

loss function if

max
wN

1

{

Pr
(

wN
1 |x N

1

)}

> 0.5 (3)

Therefore, we follow the MAP rule as the optimisation

criterion and maximise the class posterior probability dis-

tribution Pr(wN
1 |xT

1 ) over the whole utterance, as given in

Eq. (2).

Decision theory allows us to split up the class pos-

terior probability into the class prior Pr(wN
1 ) and the

class-conditional probability Pr(xT
1 |wN

1 ), which can then

be modelled by different information sources. The first term

can be interpreted as word sequence knowledge which can

be approximated by a n-gram language model estimating

p(wN
1 ). The second term represents the actual visual knowl-

edge, which historically used to be modelled by generative

GMMs.
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[

wN
1

]

opt
= argmax

wN
1

{

p
(

wN
1

)

· p
(

xT
1 |wN

1

)}

(4)

Expressing the class-conditional probability in terms of a

HMM adds the hidden variable sT
1 :

p
(

xT
1 |wN

1

)

=
∑

sT
1

p
(

xT
1 , sT

1 |wN
1

)

(5)

=
∑

sT
1

T
∏

t=1

p
(

xt , st |x
t−1
1 , st−1

1 , wN
1

)

(6)

=
∑

sT
1

T
∏

t=1

p
(

xt |x
t−1
1 , st

1, w
N
1

)

· p
(

st |x
t−1
1 , st−1

1 , wN
1

)

(7)

=
∑

sT
1

T
∏

t=1

p
(

xt |st , w
N
1

)

· p
(

st |st−1, w
N
1

)

(8)

where the sum in Eq. (5) expresses all viable paths that lead

to the same output sequence wN
1 . Equations (6) and (7) con-

stitute reformulations with help of the chain rule. Assuming

s to be non-observable and a first order Markov process leads

to Eq. (8). After applying the viterbi approximation, which

considers only the most likely path and substituting every-

thing into Eq. (4), we get:

[

wN
1

]

opt
= argmax

wN
1

{

p
(

wN
1

)

· max
sT
1

{

T
∏

t=1

p
(

xt |, st , w
N
1

)

· p

(

st |st−1, w
N
1

)}}

(9)

where in the legacy Gaussian mixture model (GMM)-hidden

Markov model (HMM) approach for sign language recogni-

tion p
(

xt |, st , w
N
1

)

has typically been modelled as

p
(

xt |, st , w
N
1

)

=

M
∑

m=1

cm · N (x, µm,Σ) (10)

M
∑

m=1

cm = 1 (11)

where N (x, µ,Σ) is a multi-variate Gaussian with mean µ,

covariance matrix Σ and M is the number of mixture com-

ponents (can differ between states of the same word). Legacy

systems typically employed a globally pooled covariance

matrix Σ to cope with the low amount of training samples

per state and word. The expectation maximization (EM) algo-

rithm is used to estimate the sufficient statistics of the GMMs.

The number of EM iterations is usually optimised on held out

data during the training phase of the system.

p(st |st−1, w
N
1 ) (referring to Eq. (9)) represents the state

transition model, which is empirically known as part of the

model having limited impact on the final result and can there-

fore be pooled across all HMM states. In log-domain we often

refer to it as the Time Distortion Penalties (TDPs). The depen-

dency on the sequence of words wN
1 may be dropped, since

the temporal sequence of states sT
1 is defined to be a sequence

of HMM states corresponding to a specific path through the

word sequence wN
1 , which we implement as concatenation of

automatons for wN
1 (using the word-to-state decomposition

defined by the pronunciation lexicon and the word sequence

annotations of the corpus).

3.2 Hybrid CNN-HMMApproach

Up to this point, we have deduced the standard HMM formula

for recognition using a generative model for the emission

probability. However, in the scope of the presented work we

model the emission probability of the HMM p(xt |st , w
N
1 )

by an embedded CNN, which is known to possess much

more powerful image modelling capabilities than generative

models such as GMMs. However, as pointed out by Richard

and Lippmann (1991) and Bourlard and Morgan (1993), the

CNN is a discriminative model whose outputs are estimates

of the posterior probability and therefore cannot directly be

inserted in the optimisation formula. Inspired by the hybrid

approach known from ASR (Bourlard and Morgan 1993),

we use Bayes’ rule to convert the posterior probability of

the CNN to a likelihood. For easier understanding we intro-

duce the sub-word label α := s, wN
1 , representing the state

s belonging to the word sequence wN
1 . The CNN will hence

be trained to model p(α|xt ). We apply Bayesian inference,

converting the posteriors to class-conditional likelihoods fol-

lowing Bayes’ rule:

p (xt |α) = p (xt ) ·
p (α|xt )

p (α)
(12)

where the prior probability p(α) can be approximated by the

relative state label frequencies in the frame-state-alignment

used to train the CNN.

For practical usage, we add several hyper-parameters to

the implementation. These allow us to control the effect of

the language model (γ ) and the CNN label prior (β). Neglect-

ing the constant frame prior p (xt ), we finally optimise the

following equation to find the best output sequence:

[

wN
1

]

opt

= argmax
w

{

p
(

wN
1

)γ

· max
sT
1

{

T
∏

t=1

p (α|xt )

p (α)β
· p

(

st |st−1, w
N
1

)

}}

(13)
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Fig. 1 Overview of the proposed CNN-HMM hybrid approach for con-

tinuous sign language recognition

A general overview of the proposed hybrid CNN-HMM

algorithm for recognition can be found in Fig. 1. The hybrid

approach has the positive property that during training only

the CNN and the language model (LM) need to be retrained,

while the HMM requires no training. For testing, the best

hyper parameter values for γ , β and the pooled state transi-

tion model p(st |st−1, w
N
1 ) are found using a grid search.

Figure 2 summarises the resources we need to success-

fully apply the hybrid approach: a dual corpus of sign

videos (sentence-wise segmented) and corresponding sign-

word annotations. In this work, we further employ the HMM

frame-state-alignment coming from a HMM-GMM system

as frame labelling, which can be replaced by an appropriate

re-alignment scheme as shown in Koller et al. (2017).

3.3 Tandem Approach

An intermediate step between GMM-HMM and the hybrid

CNN-HMM systems is the so-called tandem approach. It is

very similar to the hybrid approach in the sense that it uses

both a CNN and HMM. However, the CNN is not used as

a classifier, but rather as a feature extractor. In the so-called

tandem approach (Hermansky et al. 2000) the activations of

a fully connected layer or the feature maps of a convolu-

tional layer are dumped, post-processed (Koller et al. 2016a)

and then modelled in a GMM-HMM framework. This cre-

ates a significantly higher computational cost than the hybrid

approach for extracting features and retraining a GMM sys-

tem. Golik et al. (2013) found that in speech and handwriting

Fig. 2 Showing the employed resources (in light boxes on the left) to

train the models for the hybrid CNN-HMM approach. The frame-state-

alignment has been generated from the sign-word (gloss-) annotations

using a GMM-HMM system from Koller et al. (2016a)

recognition the hybrid approach shows equal or superior per-

formance compared to the tandem approach. We will verify

this statement for sign language recognition in Sect. 6.3. As

discussed in Sect. 2, in the gesture and sign language recog-

nition literature to date, most other works either use the CNN

outputs not in a Bayesian interpretation (Wu et al. 2016) or

employ the CNN as feature extractor comparable to the tan-

dem approach. Figure 3 shows the tandem and the hybrid

approach side by side. We denote that the only difference is

the visual model.

4 Data Sets

The experiments are carried out on three state-of-the-

art continuous sign language data sets that have been

used extensively to compare recent methods for continu-

ous sign language recognition: RWTH-PHOENIX-Weather

2012, RWTH-PHOENIX-Weather 2014 and SIGNUM. Here,

we provide an essential summary and some additional statis-

tics on the word-class distributions. However, for further

details on the data sets, the interested reader is directed to

Koller et al. (2015a).

Single images of the corpora are depicted in Fig. 4.

Brief statistics on the three data sets can be found in Table 1.

Both RWTH-PHOENIX-Weather corpora (2012 and 2014)

were first introduced by Forster et al. (2012) and Forster et al.

(2014) and represent direct recordings of the broadcast news,

being limited to the weather forecast domain. As such, the

data can be regarded as challenging real-life footage cov-

ering most difficulties you would expect from natural data

(motion blur, transmission artifacts, fast signing, incomplete

sentences, mis-signed words, interpretation errors, different

clothing, etc.). RWTH-PHOENIX-Weather 2012 features a

single signer interpreting the news into sign language, while

RWTH-PHOENIX-Weather 2014 contains nine individuals

covering varying amounts of the recorded programs.

SIGNUM was first introduced by von Agris et al. (2008b)

and was recorded in a laboratory environment while carefully

controlling the signing and recording conditions. However,

deviations from word counts in Table 1 w.r.t. previous work

are errata, while the underlying data has not changed. All data

sets feature user-dependent setups as all individuals occur

both in the training and in the test/development (dev) parti-

tions. The RWTH-PHOENIX-Weather is freely available.1

It has to be noted that the actual annotation of PHOENIX

2014 and SIGNUM cover a larger variety of words than what

the actual testing regime foresees. Therefore both data sets

provide some mapping in order to join certain classes. This

mainly arises due to the difficulty of the gloss annotation

1 It can be obtained at http://www-i6.informatik.rwth-aachen.de/

~koller/RWTH-PHOENIX/.
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Fig. 3 Illustrating the difference between CNN-HMM tandem and hybrid approach. The former uses the CNN only as a feature extractor to train

a subsequent GMM, while the later directly uses the CNN’s normalised posteriors probabilities for a label α given input x

Fig. 4 Example images showing the data sets employed in this work.

RWTH-PHOENIX-Weather on the left and SIGNUM on the right

and manifests itself partly in inflected forms of the same

words and in different words that are visually identical or

very close. All referenced publications that report results on

the data sets have been applying this simplification scheme,

which is distributed with the data. The final number of

classes that are distinguished in evaluation (see row ‘vocab-

ulary’ in Table 1) is 266, 1080 and 465 for PHOENIX 2012,

PHOENIX 2014 and SIGNUM respectively. On SIGNUM

the vocabulary is 10 words larger than the reported vocabu-

lary by the authors (von Agris et al. 2008a). It is unclear what

the cause for this is. Unfortunately the original authors can-

not be reached anymore. The still frames in Table 1 refer to

frames that have been automatically labelled as background

during the HMM alignment.

Figures 5, 6 and 7 show the distribution of word counts

on PHOENIX 2012, PHOENIX 2014 and SIGNUM respec-

tively. It can be seen that both PHOENIX 2012 and 2014

contain a large number of words with only a single occur-

rence during training (so-called singletons), while SIGNUM

statistics are different. On SIGNUM even the least frequent

words occur at least 3 times, while most of them can be found

at least 10 times in the training data. This is good for training

and demonstrates SIGNUM’s artificial characteristic which

(among other reasons) manifests itself in very low WERs.

5 Implementation Details

In this section, we describe the details to allow exact repro-

ducibility of our experiments. Note, that we input single (still)

frames to the CNN and the HMM covers the temporal mod-

eling. Input frames are cropped hand images. The system has

no explicit information on the location other than from the

background of the cropped images.

5.1 Image Preprocessing

To track the right hand across all sequences of images we use

a dynamic programming based approach (Dreuw et al. 2006).

In all data sets the right hand corresponds to the signer’s

dominant hand, which is the hand that plays the principle

role in signing. On the RWTH-PHOENIX-Weather corpora,

we crop a rectangle of 92×132 pixel around the centre of the
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Table 1 Key statistics of the

employed data sets
PHOENIX 2012 PHOENIX 2014 SIGNUM

Train Test Train Dev Test Train Test

# Signers 1 1 9 9 9 1 1

Hours 0.51 0.07 8.88 0.84 0.99 3.86 1.06

Frames 46282 6751 799006 75186 89472 416620 114230

∼Still frames – – 20% – – 38% –

Running words 3309 487 65227 5540 6504 11127 2805

∅ Frames/word 14.0 – 9.8 – – 23.2

Vocabulary 266 – 1080 – – 465 –

OOVs running – 8 – 28 35 – 9

OOVs [%] – 1.6 – 0.5 0.5 – 0.3

OOV Out-Of-Vocabulary, e.g. words that occur in test, but not in train. Dev refers to the development set

Fig. 5 Showing the distribution of words (and their counts) on the train

and test partition of the RWTH-PHOENIX-Weather 2012 corpus. It can

be seen that there are less than 100 sign-words occurring just a single

time (singletons) imposing difficulties on the task

hand. The original images suffer a constant distortion due to

the broadcast nature of the videos, which corresponds to a

scaling of the image width by a factor of 0.7. To compensate

for this distortion we enlarge the cropped rectangles to the

square size of 256 × 256. On SIGNUM we directly crop

a square patch of size 100 × 100 pixel and scale it up to

256 × 256. Thereafter the pixel-wise mean of all images in

the training set is subtracted from each image. Finally, for

data augmentation we follow an online cropping scheme,

which randomly crop out a 224 × 224 (GoogLeNet) or a

227 × 227 pixel (LeNet and AlexNet) rectangle to match

the size of images in our model which was pre-trained on

ImageNet. The input to the CNNs consists of single cropped

hand patches.

Fig. 6 Showing the distribution of words (and their counts) on the train,

dev and test partition of the RWTH-PHOENIX-Weather 2014 corpus.

It can be seen that there are more than 300 sign-words occurring just a

single time (singletons) while few other classes occur more than 1000

times imposing difficulties on the task. Dev refers to the development

set

5.2 Convolutional Neural Network Training

We base our CNN implementation on Jia et al. (2014),

which uses the NVIDIA CUDA Deep Neural Network GPU-

accelerated library. If not stated otherwise in the respective

experiments, we opted for the GoogLeNet Szegedy et al.

(2015) 22 layers deep CNN architecture with around 15

million parameters (for exact parameters refer to Table 3).

GoogLeNet has shown many times in the past, most notably

in the ImageNet 2014 (ILSVRC) Challenge, that it can be

quite effective in combining impressive performance with

minimal computational resources. Much of the improve-

ments in this architecture compared to others’ stems from

the inception module which combines filters of different sizes

after applying dimensionality reduction through a 1x1 Con-
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Fig. 7 Showing the distribution of words (and their counts) on the train,

dev and test partition of the SIGNUM single signer corpus. In large

contrast to the RWTH-PHOENIX-Weather corpora, it can be seen that

hardly any sign-words occur just a single time (singletons). This shows

the artificial nature of the data set and explains its comparative easiness

Fig. 8 Illustration of training scheme

volutional layer. The employed CNN architecture includes

3 classifying layers, meaning that besides the final classifier

the network also includes two intermediary auxiliary clas-

sifiers. Those encourage discrimination in earlier layers of

the network. The loss of these auxiliary classifiers is added

to the total loss with a weight of 0.3. All non-linearities are

rectified linear units and each classifier layer is preceded by

a dropout layer. We use a dropout rate of 0.7 for the auxiliary

layers and 0.4 before the final classifier.

As mentioned in Sect. 3, the CNN training scheme requires

an initial frame-state-alignment. This originates from a

GMM-HMM recognition system that is trained to re-aligning

the frame-to-state mapping (frame-level alignment). This is

illustrated in Fig. 8. If not stated otherwise in the respective

experiments, we use alignments from GMM-HMM systems

reproducing the best published results on our chosen corpora.

For SIGNUM and RWTH-PHOENIX-Weather 2014 we use

the best results published in Koller et al. (2016a) as align-

ment, whereas for RWTH-PHOENIX-Weather 2012 we use

Koller et al. (2015a). We split the frame-level alignment into

a training (∼ 90% of the data) and a validation set (∼ 10%

of the data) in order to be able to evaluate the per-frame

accuracy of the CNN and stop the training when the vali-

dation accuracy deteriorates. However, we noticed that this

seldom happened and in these experiments we always chose

the last training iteration. We first train the network on the

ImageNet data set with 1.2 million high-resolution images in

1000 classes and then exchange the final classification lay-

ers (on all three classifiers) and finetune the network on the

sign language data for 80,000 iterations with a mini-batch

size of 32 images. We use stochastic gradient descent with

an initial learning rate λ0 = 0.01 for CNN networks. We

employ a polynomial scheme to decrease the learning rate λi

for iteration i as the training advances while reaching λi = 0

for the maximum number of iterations imax = 80k in our

experiments for 4 epochs on PHOENIX (2012 and 2014) and

SIGNUM. Only the experiment in Sect. 6.4 that analyses the

effect of the HMM structure does not use the training and

validation splitting. Instead it uses all available training data

for training the CNN. Therefore we train for 100k iterations

here.

λi = λ0 ·

(

1 −
i

imax

)0.5

(14)

5.3 CNN Inference

Once the CNN training is finished, we consider all three

classifiers (the main one and the two auxiliary ones) for esti-

mating the best performing iteration. For the proposed hybrid

CNN-HMM approach we add a softmax and use the resulting

posteriors in our HMM as observation probabilities.

In the tandem CNN-HMM approach we employ the acti-

vations from the last layer before the softmax that yields

the highest accuracy on the validation data. With RWTH-

PHOENIX-Weather 2012, this is a fully connected layer of

the first auxiliary classifier, possibly because the data set does

not provide enough data for training an earlier softmax. For

RWTH-PHOENIX-Weather 2014 and SIGNUM the pool-

ing layer before the main classifier yields 1024 values. The

tandem system requires feature extraction for both training

and test sets, since a GMM-HMM system is retrained with

them. After a global variance normalisation, we apply PCA

to reduce the feature dimension to 200.

5.4 Continuous Sign Language Recognition

We base the HMM part of this work on the freely avail-

able state-of-the-art open source speech recognition system
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RASR Rybach et al. (2011). Following the hybrid approach

we use the posterior probabilities from the CNN, as well

as the corresponding class priors. In the following experi-

ments the prior-scaling-factor β is set to 0.3 if not stated

otherwise. The LM is estimated as n-gram using the SRILM

toolkit by Stolcke (2002). The HMM is employed in bakis

structure (Bakis 1976). This is a standard left-to-right struc-

ture with forwards, loops and skips across at most one state.

Additionally, two subsequent states share the same class

probabilities. The transition model p(st |st−1, w
N
1 ) is pooled

across all sign-words. As we actually perform the search in

log space we call the transition model TDPs. The TDPs define

the transition penalties that account for state changes in the

HMM. The garbage class is modelled as an ergodic state

with separate transition penalties to add flexibility, such that

it can always be inserted between sequences of sign-words.

As for RWTH-PHOENIX-Weather 2014 and SIGNUM, we

model each sign-word with three hidden states. However, in

RWTH-PHOENIX-Weather 2012 we employ a length mod-

elling scheme where sign-words are represented by more or

fewer states depending on their average alignment length. For

details on the employed length modelling consult Koller et al.

(2015a). In agreement to most sign language recognition lit-

erature, we measure the system performance in WER. WER

is based on the Levenshtein alignment between reference and

hypothesis sentence and it measures the required numbers of

deletion, insertion and substitution operations to transform

the recognised hypothesis into the reference sequence.

WER =
#deletions + #insertions + #substitutions

#reference observations
(15)

For recognition, we perform a grid search over possible hyper

parameters for γ , β and the TDPs. As such, the forward,

loop, skip and exit transition penalties are optimised on the

dev set (or if not available on the test set) in order to minimise

the WER. RASR provides an efficient implementation of the

word conditioned tree search which is based on the concepts

described in Ney and Ortmanns (2000), which is used for this

work. In brief, for each time step the search expands all pos-

sible state hypotheses and maintains them in memory. The

current score of a hypothesis is composed of the visual score

−log(
p(xt |α)

p(α)β
) and the transition penalty −log(p(st |st−1)).

Whenever a sign-word ends (which manifests itself in leav-

ing the last state of the HMM), the language model score

−log(p(w)γ ) and the exit penalty are also added (refer to

Sect. 3, specifically Eq. (13) for the exact composition of the

search formula). The maximum-approximation (cfSect. 3)

allows recombination of state hypotheses that have reached

the same state at the same time with the same sign-word his-

tory. This significantly limits the combinatorial explosion of

the number of search hypotheses. Furthermore, the search

space is pruned in order to boost performance and reduce

memory consumption. We perform histogram and threshold

pruning. The latter acts like a beam search. At each time

step, only sign-word hypotheses with scores relatively close

to the best hypothesis are allowed. All others are discon-

tinued and therefore removed from memory. This maximum

distance from the best hypothesis is represented by the visual

threshold pruning value (in log domain). After adding the

language model score at the word end the LM threshold prun-

ing is applied in the same way. The histogram pruning uses

a histogram to limit the amount of hypotheses to the given

value. The visual histogram pruning is applied at every state,

whereas the LM histogram pruning is only applied after the

language model score has been added to each hypothesis

at sign-word end states. Table 2 summarises the respective

pruning settings for each of the data sets.The exact hyper

parameter values for the transition probabilities are given for

each experimental description, as they vary from experiment

to experiment.

5.5 Computational Requirements

Using a GeForce GTX 980 GPU with 4GB memory, training

on the PHOENIX 2012 data set is done at the speed of ∼ 150

frames per second (fps) and inference at a rate of ∼ 450 fps.

Using the same hardware on PHOENIX 2014 data set yields

∼ 35 fps for training and ∼ 350 fps for inference. SIGNUM

runs at ∼ 10 fps during training and ∼ 56 fps for inference.

HMM recognition is done at ∼ 2 fps for PHOENIX 2012 and

due to the tighter pruning∼ 25 fps for PHOENIX 2014, while

SIGNUM runs at ∼ 8. The HMM parameter optimisation

took a total of ∼ 38 h for PHOENIX 2012, ∼ 130 h for

PHOENIX 2014 and ∼ 65 h for SIGNUM using a single

core machine with 2GB RAM.

The training and recognition pipelines have not been opti-

mised for speed. We load individual image files from a file

server, which acts as a significant bottleneck. We have exper-

imented with a leveldb database, which is able to double the

speed roughly.

6 Experiments

In this section we present experimental evaluation to help

estimate key factors influencing the performance of a CNN-

HMM hybrid system on the task of sign language recognition.

In the next subsection we first analyse the effect of the

CNN structure on the final recognition performance. Then, in

Sect. 6.2 we evaluate the effect of additional out-of-domain

training data. In Sect. 6.3 we compare the hybrid and the tan-

dem approach, before we analyse the effect of the HMM

structure in Sect. 6.4. In Sect. 6.6 we provide a general

overview comparison against the state-of-the-art, while in

Sect. 6.5 we assess model ensembles.
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Table 2 Showing the pruning

values for each of the data sets
Type of pruning PHOENIX 2012 PHOENIX 2014 SIGNUM

Visual threshold None 2000 2000

Visual histogram None 20,000 20,000

LM threshold None 4000 4000

LM histogram None 10,000 10,000

No pruning is necessary with PHOENIX 2012

Table 3 Showing number of parameters (weights+biases) in millions of different CNN structures adapted to our tasks: PHOENIX 2012:1443

outputs PHOENIX 2014: 3694 outputs SIGNUM: 1366 outputs

NN-structure Input size [px] #layers PHOENIX 2012 PHOENIX 2014 SIGNUM

#params (last fc) [106] #params (last fc) [106] #params (last fc) [106]

LeNet 227 × 227 4 73.6 (0.7) 74.7 (1.8) 73.6 (0.6)

AlexNet 227 × 227 8 62.7 (5.9) 72.0 (15.1) 62.4 (5.5)

GoogLeNet 224 × 224 22 14.7 (1.4) 21.6 (3.7) 14.5 (1.4)

6.1 Effect of CNN Structure

A crucial research question is to estimate the effect of the

CNN architecture on a specific task. This subsection aims to

provide an answer to this question by applying different CNN

structures to the task of sign language recognition, while all

remaining hyper parameters are fixed (we adjust the transi-

tion probabilities for each experiment). As such, we compare

three well-known CNN architectures. All three have, at some

point in time, received much attention by the community for

outperforming the state-of-the-art largely on different classi-

fication tasks. LeNet (full name is LeNet-5), introduced by

LeCun et al. (1998), was the first successful CNN having

4 non-linear layers. Its application was character recogni-

tion of the MNIST digits (LeCun et al. 1998) with a size

of 32 × 32 pixel. In this work, we employ a version which

deviates from the original implementation by the number and

kind of non-linearities. For simplicity we chose the version

distributed jointly with the caffe framework (Jia et al. 2014).

The other two popular architectures analysed in the scope of

this work were winners of the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) in 2012 an 2014. AlexNet

by Krizhevsky et al. (2012) was the first deeper CNN with

8 layers (5 convolutional and 3 fully connected layers). It

won the object classification competition with a top-5 error

of 15.4% across the targeted 1000 classes. Two years later

Szegedy et al. (2015) won the competition with GoogLeNet.

A 22-layer deep CNN that achieved a top-5 error of 6.67%

on the task. In order to facilitate the comparison of the three

mentioned architectures, we have compiled their key char-

acteristics in Table 3. Note that the number of parameters

for GoogLeNet includes the parameters used for the two

additional auxiliary softmax classifiers. Table 3 shows the

input size, the number of non-linear layers and the number

of parameters of the whole network (whose last output layers

have been adjusted to each of the three data sets analysed in

this work). It also shows the number of parameters of the last

fully connected classification layer, which often makes up

the largest part in the network and varies from task to task.

The last layer’s size is due to the large amount of sign-labels

α (cfSect. 3 for details). α represents the labels belonging to

the three hidden states that model each of the sign classes

(over 1000) from our vocabulary (for PHOENIX 2014).

Discussion of Results Table 4 summarises the experi-

mental results comparing the different CNN architectures.

We see that GoogleNet clearly outperforms the other archi-

tectures on both tasks with at least 4% relative improvement

in WER. We further see that it is clearly not just the number

of parameters that determines the model quality but rather

the number of non-linear layers.

6.2 Effect of Finetuning

In this experiment we want to evaluate the effect of using

out-of-domain data to train the networks prior to finetun-

ing them on the actual in-domain task using specific but

quite limited training data. We therefore make use of the

1.2 million labelled images from the ILSVRC to train the

networks. After that we exchange the final fully-connected

classification layer and fine-tune the network. In case of the

GoogLeNet architecture we exchange the layers of both aux-

iliary classifiers as well. We perform the experiment with the

AlexNet and the GoogLeNet architectures.

Discussion of results Tables 5 and 6 report the results

for the AlexNet and GoogLeNet architecture, respectively.

For both architectures out-of-domain training and subsequent
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Table 4 Comparing different

CNN structures
CNN Structure PHOENIX 2012 PHOENIX 2014 SIGNUM

Test Dev Test Test

LeNet (227 × 227 input) 47.8 69.5 68.4 17.9

AlexNet 51.5 45.5 44.5 10.6

GoogLeNet 34.1 43.1 42.7 8.9

Results in WER [%]: the lower the better

Table 5 Comparing the effect of

pretraining CNN structures on

out-of-task data: ILSVRC 2014

AlexNet PHOENIX 2012 PHOENIX 2014 SIGNUM

Test Dev Test Test

Randomly initialised 51.5 45.5 44.5 10.6

Fine-tuned 39.2 42.2 41.1 8.7

The first line represents training from scratch using the AlexNet structure, whereas the second corresponds

to finetuning weights learnt on Imagenet. Results in WER [%]: the lower the better

Table 6 Comparing the effect of

pretraining CNN structures on

out-of-task data: ILSVRC 2014

GoogLeNet PHOENIX 2012 PHOENIX 2014 SIGNUM

Test Dev Test Test

Randomly initialised 34.1 43.1 42.7 8.9

Fine-tuned 30.0 38.3 38.8 7.4

The first line represents training from scratch using the GoogLeNet structure, whereas the second corresponds

to finetuning weights learnt on Imagenet. Results in WER [%]: the lower the better

finetuning yields clear gains. With AlexNet we see 30% rel-

ative improvement on PHOENIX 2012, 8% on PHOENIX

2014 and 20% on SIGNUM, while with GoogLeNet we see

13% relative improvement on PHOENIX 2012, over 10% on

PHOENIX 2014 and again 20% on SIGNUM. We conclude

that strongly supervised out-of-domain data has a consis-

tently positive influence on learning hybrid sign language

models—at least if the out-of-domain data is as diverse as

ImageNet.

6.3 Hybrid Compared to TandemModelling

In this subsection we want to explore the question of whether

it is better to use the CNN’s outputs as features and train

a subsequent GMM-HMM system in the so-called tandem

approach (Sect. 3.3) or to directly use the posteriors as obser-

vation probabilities as in the presented hybrid approach.

Discussion of results Figure 9 compares the hybrid CNN-

HMM modelling against the tandem modelling. We can see

that the hybrid approach slightly outperforms the tandem

approach on all three data sets. This is consistent with the

literature as found by Golik et al. (2013) in speech and hand-

writing recognition. However, especially in terms of training

complexity, the hybrid approach is clearly favourable as the

subsequent GMM training is not necessary.

Fig. 9 The hybrid and the tandem approach side-by-side on all three

data sets. Results in WER [%]: the lower the better

6.4 Effect of Hidden States

Until this point, we have seen experiments estimating the

effect of several components on the overall sign recogni-

tion pipeline. However, the question remains, how much the

HMM impacts the final WER. It is clear that the HMM is the

key element to allow the mapping from an input sequence of

specific length to an output sequence of different length. But

does the hidden state topology influence the final result in a

similar way as the CNN structure or the CNN training?

In this subsection we analyse the effect of the HMM struc-

ture. More specifically, we want to know if multiple hidden

states help the deep CNN to perform better or if they are

a relic of the GMM-HMM architecture that strong CNNs

make redundant. Therefore, we perform experiments on the

123



1322 International Journal of Computer Vision (2018) 126:1311–1325

Fig. 10 Showing the best achieved WERs in [%] (the lower the better)

on PHOENIX 2014 for different numbers of states and repetitions

PHOENIX 2014 data set altering the HMM topology w.r.t.

the number of hidden states. The baseline system corresponds

to a HMM architecture that models each sign-word with 3

hidden states which are each repeated twice (sharing the same

probabilities). Thus, this topology has 6 states, but only 3

probability distributions need to be estimated by the CNN.

This standard bakis topology ensures that we can compensate

for variation in signing speed by skipping states. By defini-

tion, we can skip at most one state. The repetitions therefore

ensure that all emission probabilities have to be visited at least

a single time. In order to allow for valid conclusions, we need

to make sure that all systems have the chance to find a good

alignment w.r.t. their HMM architecture. In opposition to all

other experiments presented in the scope of this work, we

therefore perform multiple iterations of re-alignment, where

we re-estimate the viterbi path. We start from a flat segmen-

tation, where the available frames are equally distributed

across all states of a sentence. The re-alignment then iter-

atively updates the frame labelling and therefore affects the

subsequent CNN training. Thus, after each re-alignment we

perform a fine-tuning of the previous iteration’s model for

100k iterations (∼ 4 epochs). Each iteration takes about 6 h

for CNN training and 20 minutes for viterbi alignment. We

perform 10 re-alignment iterations for all different HMM

topologies and report the best result among all iterations.

Discussion of results Figure 10 shows the results in terms

of WER on the PHOENIX 2014 dev and test partition. We

first vary the amount of states per sign-word from 1 to 8, main-

taining the 2 state repetitions. In this setting, the baseline of 3

states and 2 repetitions clearly outperforms topologies with

less states. However, we see the best performance further

increasing the numbers of states to 7. We note a WER dif-

ference between the weakest (1 × 2 states) and the strongest

topology (7 × 2 states) of 8.5% absolute and over 20% rel-

ative. The 7 state architecture achieves 33.4% WER on the

dev set and 34.4 on the test set. One could argue that it is

the implied HMM length and not the division into hidden

states that produces the improvements with longer HMMs.

Therefore, we further perform an experiment with 1 state

and 6 repetitions, which has the same length behaviour as the

Table 7 Showing how the HMM structure in terms of HMM states

and repetitions affects the total number of HMM states and the neural

network parameters (weights+biases) in millions

HMM structure PHOENIX 2014

States×Repetitions Total states Parameters [106]

1×2 1232 14.1

2×2 2463 17.9

3×2 3694 21.7

4×2 4925 25.4

5×2 6156 29.2

6×2 7387 33.0

7×2 8618 36.8

8×2 9849 40.6

baseline. However, this model performs much worse than the

baseline. As such, we can conclude that the HMM architec-

ture has a strong influence on the recognition performance.

Nevertheless, in Table 7 we can see how the number of

HMM states affects the overall model size. This significantly

impacts runtime.

6.5 Effortless Ensemble of Models

Finally, we want to show that a log-linear combination of

multiple CNN models can further improve performance. We

therefore define the probability by the visual model to be the

combined product of each single model i scaled by a factor

δi as in

p
(

xT
1 |wN

1

)

= max
sT
1

{

T
∏

t=1

∏

i

[

pi (α|xt )

pi (α)β

]δi

· p
(

st |st−1, w
N
1

)

}

(16)

In the scope of this work we combine I = 2 mod-

els. The fact that model ensembles increase performance

is well known. However, typically the building of models

that are sufficiently complementary to yield any improve-

ments constitutes a large computational overhead. In this

section, we show that the process of re-aligning the mod-

els already adds sufficient discriminative information. Even

models from successive re-alignment iterations yield strong

gains when deployed as ensemble. This is remarkable as it

means that with the proposed algorithm we get such models

free of additional effort.

We choose two successive iterations of the best HMM

architecture using 7 states and 2 repetitions, namely the

10th iteration yielding 33.6/34.6 and the 9th iteration yield-

ing 33.8/34.6 on the development set and on the test set

respectively. The log-linear combination with δ1 = 0.87 and

δ2 = 0.13 yields a WER of 31.6% and 32.5% for dev and

test respectively on PHOENIX 2014. This corresponds to a
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Fig. 11 Showing the best achieved WERs in [%] (the lower the better)

on PHOENIX 2014 for log-linear model combination of the two best

alignment iterations (while keeping the HMM architecture fixed)

relative gain of around 6% compared to the single models

(Fig. 11).

6.6 General Comparison to State-of-the-Art

Table 8 shows a detailed comparison to the state-of-the art

on the three employed benchmark corpora. Besides per-

formance measures, it reports the method of choice by

the respective publications. Note that the proposed hybrid

approach currently exploits only a single cropped hand of

the signer and yet achieves state-of-the-art performance.

Sign language is highly multimodal and makes heavy use of

manual components (hand shape, orientation, place of artic-

ulation, movement) and also non-manual components (facial

expression, eyebrow height, mouth, head orientation, upper

body orientation). Most of the competing approaches use

these additional modalities in recognition, which is why we

expect additional gain when including them in the proposed

approach. The previously best hand only result mentioned

in Koller et al. (2016a) also relied on CNN models, but

did not employ the hybrid approach end-to-end in recog-

nition, loosing some performance due to this. It set the

benchmark on PHOENIX 2014 Multisigner to 51.6% WER.

However, our proposed CNN-HMM achieves a strong result

of 33.6% and 34.6% on dev and test respectively with a

single model and 31.6%/32.5% with model combination.

This corresponds to about 20% absolute WER or over 38%

relative improvement. On the single signer corpus RWTH-

PHOENIX-Weather 2012 the proposed approach improved

the best baseline from 35.5% to 30.0%, still being a relative

improvement of over 15%. On SIGNUM we improve the best

known word error rates from from 12.0% to 7.4%. As can

be seen in Table 8, our hand-only hybrid CNN-HMM even

outperforms multimodal approaches.

Nevertheless, the need to include more modalities than

just the right hand is revealed by looking at the recogni-

tion errors. Qualitative examination of the top confusions on

PHOENIX 2014 made by the hybrid approach highlight con-

fused pairs such as “SNOW” with “RAIN” or “SHOWER”

with “RAIN”. However, these signs share the same hand con-

figurations, whereas only the mouth shape changes. Given the

classification relies purely on the right hand, it is understand-

able that it cannot distinguish between these signs. The top

30 confusions all relate to this type of error.

7 Conclusion and FutureWork

In this work, we introduced an end-to-end embedding of a

CNN into a HMM, while interpreting the outputs of the CNN

in a truly Bayesian framework and training the system as a

hybrid CNN-HMM in an end-to-end fashion Most state-of-

the-art approaches in gesture and sign language modelling

use a sliding window approach or simply evaluate the out-

put in terms of overlap with the ground truth. While this is

sufficient for data sets that provide such training and evalua-

tion characteristics, it is unsuitable for real world use. For the

field to move forward more realistic scenarios, such as those

imposed by challenging real-life sign language corpora, are

required.

In this manuscript, we presented a hybrid CNN-HMM

framework that combines the strong discriminative abilities

of CNNs with the sequence modelling capabilities of HMMs,

while abiding to Bayesian principles. This work represents

the extended version of our previous work (Koller et al.

2016b), where we were the first to present such an embedding

in the context of sign language and gesture recognition.

With the hybrid method we were able to achieve a large

relative improvement of over 15% compared to the previous

state-of-the-art on three challenging benchmark continuous

sign language recognition data sets. On the two single signer

data sets RWTH-PHOENIX-Weather 2012 and SIGNUM we

improve the best known word error rates from 35.5 to 30.0%

and from 12.0 to 7.4% respectively, while only employ-

ing basic hand-patches as input. On the difficult 9 signer

>1000 vocab RWTH-PHOENIX-Weather 2014 Multisigner,

we lower the error rates from 51.6%/50.2% to 31.6%/32.5%

on dev/test.

In the scope of this extended manuscript, we significantly

added to the theoretical explanation of the hybrid approach,

with the aim of making its idea more accessible to newcomers

to the field and presented much more extensive experiments:

We analysed the effect of both CNN- and HMM-structure on

the hybrid approach. We investigated the effect of using out-

of-domain data to train the network prior to finetuning using

in-domain data. Finally, we showed that the use of ensembles

of hybrid CNN-HMMs is able to further boost performance.

In terms of future work, we would like to extend our

approach to cover all relevant modalities. Moreover, tech-

niques to overcome the necessary initial alignment, such as

end-to-end training will also be investigated.
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Table 8 Comparison with state-of-the-art

Method PHOENIX 2012 PHOENIX 2014 SIGNUM

Test Dev Test Test

von Agris et al. (2008a) GMM-HMM – – – 12.7

Gweth et al. (2012) GMM-HMM (MLP feat.) – – – 11.9

Forster et al. (2013) GMM-HMM 41.9 – – 10.7

Forster et al. (2013a) GMM-HMM 38.6 – – 10.7

Koller et al. (2015a) GMM-HMM 34.3 57.3 55.6 10.0

Koller et al. (2015a) GMM-HMM (CMLLR) – 55.0 53.0 –

Koller et al. (2016a) GMM-HMM (CNN feat.) 31.2 47.1 45.1 7.6

Koller et al. (2016b) tandem CNN-HMM 31.0 39.9 38.8 10.0

Camgoz et al. (2017) CNN-LSTM with CTC – 40.8 40.7 –

Cui et al. (2017) CNN-LSTM with CTC – 39.4 38.7 –

Proposed approach Hybrid CNN-HMM 30.0 31.6 32.5 7.4

Best results are highlighted in bold

Results in WER [%]: the lower the better. Best results of the proposed approach are single models. Model combination further improves the error

on PHOENIX 2014 down to 34.4%
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