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Abstract

Efficient algorithms for collision-free energy sub-optimal path plan-
ning for formations of spacecraft flying in deep space are presented.
The idea is to introduce a set of way-points through which the space-
craft are required to pass, combined with parameterizations of the
trajectories which are energy-optimal for each spacecraft. The re-
sulting constrained optimization problem is formulated as a quasi-
quadratic parameter optimization problem in terms of the way-points
parameters. The mathematical structure of the problem is further ex-
ploited to develop gradient-based algorithms in which the gradients
are computed analytically. The collision avoidance constraints are
approximated such that closed form solutions are generated. This
combination results in fast and robust numerical algorithms which
work very well for scenarios involving a large number of spacecraft
(e.g. 20).

KEY WORDS—path planning for multiple mobile robot sys-
tems, formation flying spacecraft, trajectory generation

Notation

al acceleration vector of spacecraft l
alk component of acceleration vector of spacecraft l

on axis k (k = x, y, z)
Alk upper limit on the absolute value of alk
c j , d j coefficients for the energy optimal trajectory of

one spacecraft
dlm distance between spacecraft l and m
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dlm� global minimum of the distance between
spacecraft l and m with respect to �

dmin minimum distance
d� distance evaluated at x�
g direction of movement in the DIG and

DJ algorithms
H Hessian of the penalty function
Jl energy of spacecraft l
J� � energy of the formation
n direction of movement in the JG algorithm
N number of spacecraft
P(x), P penalty function
rl position vector of spacecraft l
r(t) position vector
rl0 initial position vector of spacecraft l
rlT final position vector of spacecraft l
R forbidden sphere radius
Rl forbidden sphere radius of spacecraft l
s step size in the JG algorithm
t time
t j time of the jth way-point
T duration of the maneuver
v j velocity vector at the j-th way-point
vl velocity vector of spacecraft l
�l0 initial velocity vector of spacecraft l
�l j velocity vector of spacecraft l at the j-th way-point
�lT final velocity vector of spacecraft l
w j position vector of the jth way-point
x vector of optimization variables
xt tentative value of x
x� predicted value of x at the next step
� parameter of the line search used in DIG and DJ

algorithms
� x maximum allowed variation in x
�J� gradient of J�
�P gradient of P(x)
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�l energy weight for spacecraft l
� dimensionless time
� c dimensionless time at which dmin is attained
� lm� dimensionless time at which dlm� is attained
� l j

dimensionless time of spacecraft l at the j-th way-
point

1. Introduction

1.1. History and Motivation

In the late 1960s data from the European Space Research Or-
ganization, USA, and USSR satellites were correlated to study
how large solar flares interact with the Earth, thereby achiev-
ing the first contemporaneous spatial sampling by a group of
separated spacecraft (Manno and Page 1969). About a decade
later Labeyrie proposed forming a stellar interferometer from
free-flying telescopes (Labeyrie 1978). Today there are sev-
eral missions that use the formation flying spacecraft con-
cept (Bristow et al. 2000), which refers to a set of spatially
distributed spacecraft capable of interacting and cooperating
with one another. A formation of flying spacecraft is aimed
at achieving the functionality of a very large spacecraft with
multiple small spacecraft or at carrying out missions which
cannot be completed by a single spacecraft. The benefits of
this new concept include flexible mission capabilities achieved
through the reconfiguration of the formation, lower life-cycle
cost, more adaptability to changing mission goals and less sus-
ceptibility to the loss of individual spacecraft: if a spacecraft
is malfunctioning it can easily be replaced or the formation
can be reconfigured to compensate for the loss (Inalhan et al.
2002).

Formation flying spacecraft missions can be categorized as
planetary orbital environment flying missions, where space-
craft have significant orbital dynamics, and deep-space mis-
sions, where spacecraft dynamics usually reduces to double in-
tegrators (Scharf et al. 2002). The first category includes mis-
sions like TechSat21 (Das and Cobb 1998), Earth-Observing-1
(Folta and Quinn 1997), whereas the latter category, which is
of interest to this article, includes long-baseline infrared in-
terferometry missions like the Terrestrial Planet Finder (TPF�
Beichman 1998), Darwin (Fridlund 2000� Li and Williams
2004), etc. These missions will use formation flying exten-
sively for time-varying gravity field measurements, in situ
magnetosphere and radiation measurements and 3-D mapping
for planetary explorers, among others. For example, by com-
bining the high sensitivity of space telescopes with novel imag-
ing technologies, TPF will measure the size, temperature, and
placement of planets as small as the Earth in distant solar sys-
tems. TPF will use formation flying spacecraft to synthesize
a large baseline interferometer operating in the infrared. The
present TPF concept assumes four 3.5 m diameter telescopes,
each on its own spacecraft, and a central spacecraft that houses

the beam combining apparatus and astronomical instrumenta-
tion (Beichman 1998). An alternative to TPF is the Darwin
mission, which assumes that a larger number of observatory-
spacecraft (six in the current scenario) are equidistantly dis-
tributed on the circumference of a circle which is centered at a
seventh spacecraft, the combiner, in charge of collecting and
processing the information from the observatory-spacecraft.
An additional spacecraft, the master, will be positioned out of
the plane of the seven spacecraft and will be in charge of com-
municating with the Earth as well as monitoring the relative
position of the spacecraft (Li and Williams 2004).

Another exciting example of a formation flying space-
craft application is the next generation optical space telescope.
It is well known that conventional space telescopes with a
monolithic principal mirror (e.g. Hubble Space Telescope)
are upper bounded in terms of the principal mirror diameter
and control system authority, resulting in limitations on the
light/information gathering capability (Zhu et al. 1995). By
attaching mirrors to individual spacecraft a much larger aper-
ture can be synthesized, hence considerably increasing the sci-
entific return of a distributed space telescope. In this context
formation flying spacecraft control becomes crucial and can
be used to modify the optical characteristics of the space tele-
scope (e.g. the focal distance, the diameter of the virtual mir-
ror, its shape, etc.). By sharing the individual measurements,
the resolution of the spacecraft formation is potentially much
higher than the resolution of any individual spacecraft. Ad-
ditionally the individual information can be fused into much
more reliable, fault tolerant and redundant information than
if from a single spacecraft. A distributed space telescope
requires precise, coordinated control of a larger number of
spacecraft than in the TPF (5) or Darwin (6–8 spacecraft) mis-
sions.

The new technology of formation flying spacecraft brings
along numerous challenges into the field of guidance, navi-
gation, control, and communication (Mesbahi and Hadaegh
2001� Tillerson et al. 2002). Formation flying guidance and
control requires autonomous fleet reconfiguration for which a
path planner is needed to compute spacecraft maneuvers. The
most important requirement is that the path planner guarantees
collision-free trajectories� eventually some performance index
(fuel, energy, maneuver time, etc.) is optimized (see Scharf et
al. 2002 for a comprehensive survey of formation flying guid-
ance). Since the size of future formation flying missions is ex-
pected to increase continuously, path planners capable of han-
dling large scale formations and a large number of conflicting
trajectories are desired. Another requirement is that these plan-
ning algorithms should be computationally simple enough for
onboard implementation and be able to compute collision-free
trajectories very fast (ideally in real-time).

This article addresses these issues by presenting path plan-
ning algorithms which are fast and robust even in the case
of large scale formations flying in deep space, as illustrated
by the examples considered. In the following we present a
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quick overview of related work along with their advantages
and deficiencies with respect to the above mentioned require-
ments.

1.2. Previous and Related Work

Collision avoidance and trajectory generation problems have
been the subject of extensive research in formation flying spa-
cecraft (Seereram et al. 2000� Singh and Hadaegh 2001� Beard
and McLain 2001�Mesbahi and Hadaegh 2001� Richards et al.
2002� Prasanth et al. 2002� McQuade et al. 2002� Rathbun et
al. 2002� Tillerson et al. 2002� Inalhan et al. 2002� Kim et
al. 2003� Phillips et al. 2003), air traffic control (Tomlin et al.
1998� Faiz et al. 2001� Frazzoli et al. 2001� Hu et al. 2002�
Clements 2002� Richards and How 2002), robotics (Kavraki
et al. 1996� Barraquand et al. 1997� Lygeros et al. 1998�
Kavraki et al. 1998� Hsu et al. 1999� Hsu et al. 2000� Foskey
et al. 2001� Garber and Lin 2002� Dunbar and Murray 2002�
Frazzoli et al. 2002� Saber et al. 2003� Cerven et al. 2003).
These problems are in general difficult to solve because the set
of feasible solutions is non-convex, possibly infinitely dimen-
sional and defined using an infinite number of constraints. As
a consequence several methods have been suggested to gen-
erate solvable approximations in which the trajectories are re-
stricted to a set of basis functions and in which the constraints
are imposed at a finite number of points in time (Singh and
Hadaegh 2001� Faiz et al. 2001). These approaches gener-
ally result in very large feasibility problems, whose numerical
solution is difficult, especially for large scale formation flying.
For example Faiz et al. (2001) propose a solution based on dif-
ferentially flat systems theory in which a number of nonlinear
optimization problems have to be solved in order to compute
an inner polytopic approximation of the feasible set defined by
the constraints. Additionally a set of basis functions is used to
represent the solution and a collocation grid in time is used to
solve the problem.

Several authors (Richards et al. 2002� Prasanth et al. 2002�
Richards and How 2002) propose the use of Mixed Integer
Linear Programming (MILP) or Mixed Integer Linear Matrix
Inequalities (MI/LMI) techniques for solution. Casting the
problem as a MILP or MI/LMI requires many simplifications
at the modeling and constraints formulation level (Richards et
al. 2002). Because MILP techniques deal with linear prob-
lems, it is necessary to represent the system dynamics in lin-
ear form, as well as the constraints (e.g. convex polygons).
A major drawback of solving a MILP is that the computation
time increases at least polynomially with the number of vari-
ables and constraints. MILP problems are also known to be NP
complete (Richards et al. 2002) and, in general, their solution
requires branch and bound algorithms, whereas the size of the
MI/LMI problems increases dramatically with the number of
spacecraft (Prasanth et al. 2002).

Potential function approaches have been employed in the
solution of trajectory generation and path planning problems

with collision avoidance constraints (McQuade et al. 2002�
Dunbar and Murray 2002� Saber et al. 2003). The poten-
tial function method is based on Lyapunov’s second method
and its principal advantage comes from its robustness and
flexibility. McQuade et al. (2002) use a potential function
to perform the deployment of a formation: when the poten-
tial function reaches a minimum the formation is correctly de-
ployed. Dunbar and Murray (2002) combine model predictive
control with potential functions techniques to solve a forma-
tion stabilization problem. However the resulting trajectories
are not guaranteed to be free of collisions, illustrating one of
the deficiencies such an approach might have.

Evolutionary algorithms have also been used in the context
of path planning for formation flying (Seereram et al. 2000�
Rathbun et al. 2002). Genetic algorithms are appealing be-
cause of their potential to find globally optimal solutions, how-
ever, due to their exhaustive nature and the high dimensional-
ity of the multiple spacecraft control problem, these techniques
suffer from an accelerated increase in computational complex-
ity as the number of spacecraft increases.

Recently, multi-agent hybrid system optimization tech-
niques have been proposed to solve multiple spacecraft for-
mation reconfiguration (Yang et al. 2002), complex air traffic
management (Tomlin et al. 1998), and motion planning prob-
lems (Lygeros et al. 1998). Multi-agent optimal control is
quite different from the traditional optimal control for a single
agent. In multi-agent hybrid systems conflicts which arise in
the form of potential collisions are resolved locally by inter-
agent coordination. This approach results in a decentralized
architecture in which safety issues are resolved locally and
central agencies, such as air traffic controllers, focus on global
issues like efficiency and optimal output. The design issues
associated with this approach are its complexity and the fact
that a systematic investigation of switching between nonlinear
control laws is still in its infancy.

Other approaches to trajectory generation problems include
LMIs and graph theory (Mesbahi and Hadaegh 2001), varia-
tional calculus (Kim et al. 2003), convex optimization (Tiller-
son et al. 2002), semidefinite programming (Frazzoli et al.
2001). Frazzoli et al. (2001) solve a conflict resolution prob-
lem in air traffic control, which is based on convex program-
ming and randomized searches, showing that a version of the
planar case can be cast as a nonconvex, quadratically con-
strained quadratic program for which efficient numerical re-
laxations based on semidefinite programming can be used.

The last decade saw an increased interest in randomized
path planners such as probabilistic roadmaps (PRM) and
rapidly exploring random trees (RRT) which originated in the
robotics community (Kavraki et al. 1996� Barraquand et al.
1997� Kavraki et al. 1998� Hsu et al. 1999� Hsu et al. 2000�
Frazzoli et al. 2002� Phillips et al. 2003� Cerven et al. 2003).
Most of the initial randomized planners dealt with static ob-
stacles and they focused on collision avoidance, the optimiza-
tion of some performance index being a secondary objective.
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Several researchers (Hsu et al. 1999� Hsu et al. 2000) in-
troduced kino-dynamic constraints and moving obstacles and
indicated that the randomized planners can also handle these
more complex problems. RRT-based approaches for path plan-
ning with time-varying constraints have been proposed for as-
teroid landing applications (Cerven et al. 2003). Phillips
et al. (2003) used a probabilistic search approach (guided
RRT) combined with gradient descent methods to solve a two-
body, rendezvous and docking problem with kino-dynamic
constraints for which classical PRM are not well equipped.
Frazzoli et al. (2002) illustrate the use of RRT in computing
trajectories in the case of moving obstacles� the example con-
sidered is that of a small autonomous helicopter flying through
mobile obstacles. The RRT-based approaches are computa-
tionally simpler and faster than initial randomized planners
but more research is needed to make them attractive for real-
time applications of large scale problems. Other path plan-
ning methods from the robotics community include the use of
Voronoi diagrams (Foskey et al. 2001� Garber and Lin 2002)
in hybrid motion planning.

Hu et al. (2002) consider a problem which is, to some ex-
tent, similar to the one analyzed in this article, namely the min-
imization of an energy-related performance index (the integral
of kinetic energy) subject to collision avoidance constraints for
air traffic control. The aircraft are modeled as point masses
moving in a gravity-free environment and the resulting prob-
lem is simplified by introducing way-points through which the
aircraft must pass. The aircraft follow simple trajectories (line
segments), which are proved to be optimal for the chosen per-
formance index. The collision avoidance problem is reduced
to a nonlinear optimization problem, which is further approxi-
mated by a finitely dimensional convex problem. The nonlin-
ear collision avoidance constraints on the way-points locations
are linearly approximated. Examples show that the approach
works well for up to eight aircraft but there is no guarantee that
the resulting trajectories are free of collisions.

Singh and Hadaegh (2001) tackle a problem which is very
similar to the one in this article: energy optimal, collision-free,
trajectory generation for deep space formation flying space-
craft. The energy is defined as the integral of the accelerations
norm squared and the spacecraft are modeled as point masses
in a gravity-free environment. The approach parameterizes the
trajectories using polynomials of a variable degree in time. A
parameter optimization problem in terms of the coefficients of
the polynomials is then formulated and a heuristic numerical
algorithm is proposed for the solution. Examples show that
the method works well for up to five spacecraft, however, the
heuristic nature of the algorithm and the fact that it requires
numerical approximations for gradients calculation leads to in-
creased computational time and numerical stability problems
for large scale problems.

This article presents a method for the generation of energy
sub-optimal, collision-free trajectories for formations flying in
deep space (gravity-free environment). In a previous note (Sul-

tan et al. 2006) some of the algorithms presented herein have
been reported in a preliminary form. The present article is
an enlarged, integrated perspective on a class of algorithms of
which several instantiations (including those presented in Sul-
tan et al. 2006) are analyzed. The idea used in our method
is to simplify the problem by introducing a set of way-points
through which the spacecraft trajectories pass and by assum-
ing that these trajectories are piecewise cubic polynomials of
class C1 in time. Under the assumption that spacecraft dy-
namics are modeled using double integrators, for a given set
of way-points, these trajectories are energy optimal for each
individual spacecraft. This is the first major advantage of the
solution, because it guarantees that the chosen parameteriza-
tion is appropriate for the energy optimal problem posed. Fur-
thermore, the resulting constrained optimization problem is
shown to have a quasi-quadratic structure in the way-points
locations and velocities. Gradient based numerical algorithms
which exploit this mathematical structure are developed and
used to select the way-points parameters such that collisions
are avoided and energy is further minimized. A second ma-
jor advantage of the solution presented in this article, is that
the collision avoidance constraints are approximated such that
closed form solutions are generated. Another major advantage
with respect to other numerical algorithms like the one pre-
sented by Singh and Hadaegh (2001) is that the gradients are
analytically computed, making the application of these algo-
rithms very efficient in terms of computational time. Further-
more, inversion of large matrices is not required by our algo-
rithms. Combination of closed form solutions and analytically
computed gradients results in very fast numerical algorithms.
Examples show that these algorithms are also very robust and
efficient even for large scale formations (e. g. 20 spacecraft).

2. Statement of the Problem

The spacecraft are modeled as points of constant mass in a
gravity-free environment, acted upon only by internally gener-
ated forces (e.g. by thrusters) used to control their motion. We
assume that the maneuver time is the same for all spacecraft
(i.e. synchronous maneuver)� let this be T. Let N be the num-
ber of spacecraft, and rl , vl , al , l = 1,. . . , N, denote the position,
velocity, and acceleration vectors of spacecraft l with respect
to an inertial reference frame. Then the equations of motion
and the terminal conditions are:

�rl�t� � �l�t�	 ��l�t� � al�t�	 rl�0� � rl0 	

rl�T � � rlT 	 �l�0� � �l0	 �l�T � � �lT 	

l � 1	 


	 N 	 (1)

where rl0 , �l0 , rlT , �lT , are the initial and final conditions and t
is the time.
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We remark that a double integrator has been used to rep-
resent each spacecraft dynamics, ignoring the orbital forces.
This simplification has been adopted in view of the following
observation. Consider a deep space Earth-trailing formation
flying mission and assume that the spacecraft are only a few
kilometers apart and that the masses of the spacecraft are of
the order of a few hundred kilograms. When the linearized
Hill’s equations are used to describe their motion, it can be
shown that the differential orbital force between two spacecraft
is of the order of 10�23 N (Kim et al. 2003). Because the re-
configuration scenarios that we are interested in occur on rela-
tively short time scales, ignoring the orbital forces in this work
is well justified. We also remark that the double integrator has
become an accepted, standard modeling approximation in pre-
liminary deep space formation flying spacecraft path planning
research (see Scharf et al. 2002). The deep space formation
flying spacecraft is the best suited application for the model-
ing assumptions used herein� other areas in which the same as-
sumptions are used heavily (aircraft traffic control, robot path
planning) are more questionable since these systems operate in
relatively strong gravitational environments (e. g. the Earth).
This is one of the reasons we focus on deep space formation
flying spacecraft missions: even though the methods presented
in this article can be extended to air traffic control, Earth or
underwater robots path planning, etc., they are best justified in
situations where the modeling assumptions are closest to re-
ality, like formations of spacecraft flying in deep space. The
constant mass approximation is also appropriate for deep space
flying spacecraft because the maneuvers analyzed here occur
on relatively short time scales and the propulsion systems used
for these maneuvers are very efficient, hence the mass of the
spacecraft does not change much during the maneuver.

The collision avoidance constraints are specified in terms
of the forbidden spheres associated with the spacecraft: any
two forbidden spheres do not intersect:

�rl�t�� rm�t��2 	 �Rl � Rm�
2	 l � 1	 


	 N � 1	

m � l � 1	 


	 N	 t 
 [0	 T ]	 (2)

where Rl is the radius of the forbidden sphere associated with
spacecraft l.

We remark that the diameter of the collision avoidance re-
gion (forbidden sphere) is a reflection of how far the actual
spacecraft is away from being a point mass. Making the point
mass approximation is especially useful when there is no in-
terest in the orientation of the spacecraft. If orientation is im-
portant during the maneuver, 6 DOF models, which include
attitude dynamics, have to be employed.

In addition limitations on the absolute value of the acceler-
ations components need to be observed:��alk �t�

�� � Alk 	 l � 1	 


	 N � k � x	 y	 z	

t 
 [0	 T ]	 (3)

where alk �t� is the acceleration component of spacecraft l on
axis k and Alk is the corresponding limit. The objective is to
find al(t), t 
 [0, T], l = 1,. . . , N, such that the � energy con-
sumed,

J� �
N�

l�1

�l

T�
0

aT
l �t�al�t�dt	 (4)

is minimized, collisions are avoided, and saturation limits on
the accelerations are observed. The weights �l � 0, which

add up to 1,
N�

l�1
�l � 1, are introduced to allow for the prior-

itization of the spacecraft within a formation� for example if
all weights are equal all spacecraft energy consumptions are
equally important, however if the weight associated with one
spacecraft is dominant, that spacecraft’s energy consumption
is more important and drastically penalized. Optimization of
the total energy of the formation is an objective for many mis-
sions (Kim et al. 2003� Singh and Hadaegh 2001� Hu et al.
2002). In addition, such an objective is justified because since
in general the energy is directly related to the fuel consump-
tion, minimization of energy consumption leads to less fuel
being consumed.

3. Solution Approach

In the following we present an important result, which is the
basis of our approach of energy optimal path planning prob-
lems.

Lemma: Energy Optimal Trajectories for Given Way-
points. Consider the case of one spacecraft (N = 1, �1 = 1).
Let {(t j , w j , v j ), j = 1,. . . , M + 2} be a sequence of way-points
specifying time, position, and spacecraft velocity, with t j �
t j�1. Let r(t) denote C1 trajectories going through these way-
points. Then the unique trajectory that minimizes the energy
of the spacecraft given by (4) is given by:

r�t� � 1

6
c j �t

3 � t3
j ��

1

2
d j �t

2 � t2
j �

� �
1

2
c j t

2
j � d j t j � � j ��t � t j ��  j 	

t j � t � t j�1 (5)

for j = 1,. . . , M + 1, where

c j � �12� j�1 �  j �� 6�� j�1 � � j ��t j�1 � t j �

�t j�1 � t j �3
(6)

d j � � j�1 � � j

t j�1 � t j
� t j�1 � t j

�t j�1 � t j �3
�6� j�1 �  j �

� 3�� j�1 � � j ��t j�1 � t j ��
 (7)
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Proof: see Appendix A.
Hence the energy optimal trajectory is a C1 piecewise cu-

bic polynomial in time, a rational function in the way-points
times, and a linear function in the way-points locations and
velocities. These facts will lead to tremendous simplification
of the problem and will be exploited in the development of
efficient numerical algorithms.

We remark that if the only way-points are the end (ini-
tial and final) points of the trajectory and the initial and final
conditions are such that the corresponding velocities are zero
(“rest to rest” maneuvers) the energy optimal trajectory is a
straight line segment cubic parameterized by time:

r�t� � r0�1� 3�
t

T
�2 � 2�

t

T
�3�� rT �3�

t

T
�2 � 2�

t

T
�3� (8)

where r0 and rT are the initial and final position vectors of the
spacecraft, respectively.

We also note that the above result is valid only for the stan-
dard double integrator dynamics model. Hence if different
models are used for the spacecraft dynamics, the C1 piece-
wise cubic polynomial in time is no longer the energy optimal
trajectory.

3.1. A Quasi-quadratic Optimization Problem

In order to simplify the problem we introduce the dimension-
less time � � t�T , � 
 [0	 1]. The equations of motion and
the terminal conditions become:

r l ��� � T �l���	 � l��� � T al���	 rl�0� � rl0	

�l�0� � �l0 	 rl�1� � rlT 	 �l�1� � �lT 	 (9)

where l = 1,. . . , N, and  denotes differentiation with respect to
� . The � energy becomes:

J� � T
N�

l�1

�l

1�
0

aT
l ���al���d�
 (10)

We shall treat the reconfiguration duration T as a parameter
to be used a posteriori to enforce (3). We ignore (3) for the
time being and later choose T so that (3) are satisfied. In order
to do so we shall exploit the following relationship:

al��� � 1

T 2
r l ���
 (11)

Consider now a formation of N spacecraft and assume that
for each spacecraft, l, Ml + 2 way-points are introduced. Our
method requires that each spacecraft follows a trajectory de-
scribed by (5). Hence the resulting trajectories are energy op-
timal for each individual spacecraft.

Let � l j
and l j denote the dimensionless time and location

of the jth way-point of the lth spacecraft. The spacecraft ve-
locity at this point is �l j � ul j �T , where ul j � �rl����� l j

�.
Let � be such that � l j

� � � � l j�1
.

Then using (5), the position vector of the lth spacecraft, rl ,
can be expressed in terms of � as follows:

rl��� � Zl j Ul j 	 (12)

where
Zl j � [M1 M2 M3 M4]	 (13)

and

M1�
�� l j�1

�� l j
�3�2��3��3

l j
��3�� l j�1

�� l j
���2��2

l j
��6� l j

� l j�1
�� l j

���
�� l j�1

�� l j
�3

�I3	 (14)

M2�
�3��3

l j
��2� l j�1

�� l j
���2��2

l j
���2� l j�1� l j

��2
l j�1

��� l j
���

�� l j�1
�� l j

�2

�I3	 (15)

M3�
�2��3��3

l j
��3�� l j�1

�� l j
���2��2

l j
��6� l j

� l j�1
���� l j

�

�� l j�1
�� l j

�3
I3	 (16)

M4�
�3��3

l j
��� l j�1

�2� l j
���2��2

l j
��� l j

�2� l j�1
�� l j

����� l j
�

�� l j�1
�� l j

�2
I3	 (17)

Ul j � [T
l j

uT
l j

T
l j�1

uT
l j�1

]T 
 (18)

Consider now two spacecraft, l and m. Let � be the current
dimensionless time such that � l j

� � � � l j�1
and �mk

�
� � �mk�1

. Then, using (12), the distance square between
spacecraft l and m, d2

lm , can be expressed as

d2
lm��� � �rl���� rm����2 � U T Zlm���U	 (19)

where

Zlm��� � �Zl � Zm�
T �Zl � Zm�	 (20)

Zl � [0 


 0 Zl j 0 


 0]	

Zm � [0 


 0 Zmk 0 


 0]	 (21)

U �
�
T

11
uT

11



 T

1M1�2

uT
1M1�2




 T
l j

uT
l j



 T

mk

uT
mk




 T
NMN�2

uT
NMN�2

�T

 (22)

Hence d2
lm is a time-varying quadratic form in the way-

points locations and velocities, a piecewise polynomial of de-
gree 6 in � , and a rational function in � l j

and � l j�1
.
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Using (4) and (12) J� can be expressed as a quadratic form
in U:

J� �
N�

l�1

�l Jl � 1

T 3
U T BU	

B � diag��1 B1 


 �N BN �	 (23)

where Bl is associated with the energy of the l-th spacecraft,
Jl :

Jl �
Ml�1�
j�1

U T
l j

Bl j Ul j � U T
l BlUl	 (24)

Bl j � 4

T 3
�� l j�1

� � l j
��CT C

� 3��2
l j�1

� � l j�1
� l j
� �2

l j
�DT D

� 3

2
�� l j�1

� � l j
��DT C � CT D��	 (25)

C �
��3�� l j�1

� � l j
�

�� l j�1
� � l j

�3
I3

�2� l j�1
� � l j

�� l j�1
� � l j

�2
I3

3�� l j�1
� � l j

�

�� l j�1
� � l j

�3
I3

�� l j�1
� 2� l j

�� l j�1
� � l j

�2
I3

�
	 (26)

D �
�

2

�� l j�1
� � l j

�3
I3

1

�� l j�1
� � l j

�2
I3

�2

�� l j�1
� � l j

�3
I3

1

�� l j�1
� � l j

�2
I3

�
	 (27)

Ul �
�
T

l1
uT

l1



 T

lMl�2
uT

lMl�2

�T

 (28)

Assume now that the end points parameters, l1 	 ul1 	
lMl�2	 ulMl�2 , and the way-points times, � l j

	 l � 1	 


	
N 	 j � 1	 


	 Ml � 2	 are given. We introduce the vector of
optimization variables, given by the intermediate way-points
parameters,

x �
�
T

12
uT

12



 T

NMN�1
uT

NMN�1

�T
	 (29)

such that J� and d2
lm are expressed as

J� � xT Qx � bT x � c	 (30)

d2
lm��� � xT Qlm���x � bT

lm���x � clm���	 (31)

with Q � 0, b, c, Qlm( � ), blm( � ), clm( �) easy to compute
from B, Zlm( �) and the given parameters. Note: the proof that
Q � 0 is given in Appendix B.

In this framework the � energy optimal problem with col-
lision avoidance constraints becomes:

min
x
�xT Qx � bT x � c� subject to

x T Qlm���x � bT
lm���x � clm��� 	 �Rl � Rm�

2	 (32)

where l � 1	 


	 N � 1	 m � l � 1	 


	 N 	 � 
 [0	 1]

Hence a quadratic performance index minimum is sought

subject to time-varying quadratic inequality constraints. More-
over the time dependency of the constraints is simple, being
given by piecewise polynomials of degree 6. This mathemati-
cal structure of the problem facilitates the development of very
efficient numerical algorithms, as shown next.

We remark that the inputs to the algorithms are the given
end points of the trajectories and the intermediate way-points
times, the outputs being the intermediate way-points loca-
tions and velocities. If the way-points times are introduced in
the vector of optimization variables, then the previously men-
tioned nice structure of the problem (e.g. quadratic perfor-
mance index minimization subject to time-varying quadratic
inequality constraints) is destroyed and other algorithms have
to be developed.

We also remark that the unconstrained problem solution is
very simple:

x � �1

2
Q�1b
 (33)

This solution provides the best possible result in terms of the
� energy achievable and will be used as a starting point for our
algorithms.

3.2. Numerical Solution

In the following we propose a sequential algorithm to solve
(32). There are several motivations behind such an approach,
the most important being that the collision avoidance con-
straints are critical. In fact, some path planning algorithms are
only interested in generating collision-free trajectories, mini-
mization of a performance index like energy or fuel consump-
tion not even being explicitly considered (e.g. Faiz et al.
2001). In our sequential approach we first solve the collision
avoidance problem and then minimize J� while making sure
that the collision avoidance constraints are satisfied.

Another important motivation is our intention to develop
fast, numerically efficient algorithms for large scale applica-
tions. In such a pursuit the mathematical structure of the prob-
lem has to be kept relatively simple and exploited in order to
eliminate the need for computationally complex algorithms.
The classical approach to nonlinear optimization under in-
equality constraints leads to complicated first-order necessary
conditions (i.e. Kuhn–Tucker conditions) whose solutions are
computationally intensive, involving complex numerical algo-
rithms (see Luenberger 1984). If we consider the use of clas-
sical nonlinear programming approaches, these are plagued by
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various issues which manifest themselves especially for large
scale problems: feasible directions methods result in algorith-
mic maps which are not closed being affected by jamming,
penalty and barrier functions methods result in ill-conditioned
numerical problems, which require the inversion of large ma-
trices, etc.

In order to avoid these problems we present ingenious nu-
merical solutions which use concepts from classical nonlin-
ear programming (active sets, gradients) but avoid compli-
cated computations by exploiting the structure of the problem.
Closed form solutions and analytically computable gradients
are used, resulting in very fast numerical algorithms which
have proven to work well in all our experiments.

3.2.1. Collision Avoidance Problem Solution

The collision avoidance problem is to find x such that

d2
lm��� 	 �Rl � Rm�

2	 l � 1	 


	 N � 1	

m � l � 1	 


	 N	 � 
 [0	 1]
 (34)

For this problem’s solution we use a methodology inspired
by the active set method. The idea underlying active set meth-
ods is to partition inequality constraints into two groups: those
that are to be treated as active and those that are to be treated
as inactive. The constraints treated as inactive are essentially
ignored, decreasing the number of computations, which is es-
pecially useful for large scale problems (see Luenberger 1984
for details on active set methods). Experience with active set
methods has shown that they are very efficient for large scale
problems (see Luenberger 1984).

Our methodology proceeds as follows: at the current itera-
tion step, for a known value of x, for each pair of spacecraft, (l,
m), we calculate the global minimum of d2

lm��� with respect
to � , 0 � � �1. Since d2

lm��� is a piecewise polynomial of
degree 6 in � , this reduces to the simple task of polynomi-
als minimization, for which fast algorithms are available. Let
d2

lm� denote those global minima which violate the constraints
(d2

lm� � �Rl � Rm�
2) and � lm� be the corresponding dimen-

sionless times.
A natural choice of the active constraints is given by the

violating constraints. Hence we build a penalty function, P(x),
based only on these constraints:

P�x� �
�
l	m

��Rl � Rm�
2 � d2

lm��

�
�
l	m

��Rl � Rm�
2 � xT Qlm�� lm��x

� bT
lm�� lm��x � clm�� lm��� � 0 (35)

where only the violating pairs (l, m), appear in the sum.

The penalty function proposed here deserves some discus-
sion. We stress that this particular choice of penalty function
is extremely advantageous because, as shown next, it facili-
tates closed form approximate solutions. If classical penalty
functions are used (see Luenberger 1984), the simple mathe-
matical structure of the problem is destroyed and closed form
solutions are not possible. Moreover, as is well known, the use
of classical penalty functions for nonlinear optimization prob-
lems solution is plagued by many disadvantages. For example
the solution is generally approached from outside the feasi-
ble region, hence the intermediate values of the constraints are
not satisfied. In addition the numerical structure of the prob-
lem becomes increasingly ill-conditioned as the solution is ap-
proached, which leads to slower convergence. Computations
require inversions of matrices because, in general, gradient or
Newton based methods are used for solution, which for large
scale problems are time consuming (see Luenberger 1984 for
more details). In contrast, our approach does not involve in-
versions of matrices and uses simple computations. If conver-
gence is obtained it guarantees collision-free trajectories which
are generally obtained very rapidly even for large scale appli-
cations.

Our goal is to drive the penalty function to zero at the next
iteration step. For this we use a line search approach and as-
sume that a change in x is made along a direction g �� 0:

x� � x � �g
 (36)

Then P(x�) can be expressed as a quadratic function in �
(this is where the particular choice of the penalty function is
extremely advantageous):

P�x�� � P � �2gT Hg � �gT�P	 (37)

where P = P(x), H � 0 is half of the Hessian of P(x), and �P
is the gradient of P(x).

Since our goal is to drive the penalty function to zero, next
we solve P(x�) = 0 for �, yielding

� � �gT�P � ��	�gT�P�2 � 4gT HgP

2gT Hg
	

i f gT Hg �� 0	 (38)

� � � P

gT�P
	

i f gT Hg � 0	 (39)

and select � with minimum absolute value. Note: if gT�P �
gT Hg � 0 (for example if g � 0) then we slightly perturb x
such that (37) has at least a solution for �.

At the next step we update the penalty function based on the
current violating constraints and iterate until convergence is
obtained (constraints are not violated), the number of iterations
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allowed is exceeded, or the norm of x variation between two
consecutive steps is smaller than the allowed tolerance.

We remark that this procedure implicitly assumes that the
time dependency of the constraints is negligible for small vari-
ations of x. This is one of the reasons for choosing the solution
of minimum absolute value for � of P(x�)=0. By doing so, we
expect the number of iterations to be small.

As can be ascertained, unlike classical penalty function
based approaches, this one has the advantage of being ex-
tremely simple in computational complexity (few constraints
are taken into account and the required computations are very
simple). Experience showed that the resulting algorithms have
very fast convergence.

This methodology results in a class of algorithms that can
be developed based on the selection of the direction g. In the
following we show two options based on gradients, which re-
sult in efficient algorithms. However, other choices for g can
be devised, resulting in algorithms having high performance.

The DIG Algorithm
The first idea is to choose g � �P , the gradient of P(x), be-
cause it provides the fastest variation in P(x). The resulting
algorithm is coined DIG (from DIstance and Gradient) and it
is described next.

DIG Algorithm Description

1. Initialization: Set

x � �1

2
Q�1b (40)

which is the solution of the unconstrained � energy op-
timal problem.

2. Trajectories assessment: For all (l, m) pairs compute
the global minima of d2

lm���, � 
 [0	 1], which vio-
late the constraints and the corresponding � , let them
be called d2

lm� and � lm�, respectively. If none of the con-
straints are violated, exit.

3. Calculation of the direction of movement, g: compute
the gradient of the penalty function:

g � �P � �
�
l	m

�2Qlm�� lm��x � blm�� lm��� (41)

where only the violating pairs appear in the sum.
If g = 0 then slightly perturb x randomly and go back to
step 2, else calculate H and P:

H � �
�
l	m

Qlm�� lm��	

P �
�
l	m

��Rl � Rm�
2 � d2

lm��
 (42)

4. Prediction: Predict the next value of x:

x� � x � �g (43)

where

� � ��g�2 �
	
�g�4 � 4gT HgP

2gT Hg
	

i f gT Hg �� 0	 (44)

� � � P

�g�2 	 i f gT Hg � 0
 (45)

Note: � � 0 given in (44) and (45) is the solution of
minimum absolute value of P(x�) = 0.

5. Return: If ��g� � �x , where �x is the minimum
allowed variation of x, or the number of iterations is
greater than the maximum allowed, exit, else set

x � x� (46)

and return to step 2.

The process terminates when all spacecraft are separated
(successful termination, through step 2), the variation in x is
too small, or the number of iterations allowed is exceeded.

The DJ Algorithm
We remark that in the choice of g for DIG we do not take into
account the objective of minimizing J�. In the following we
propose a different choice for g, which takes into account this
objective.

A good direction, g, in which x should change is one which
would decrease as fast as possible the penalty function and
would not increase J� too much. Since J� is quadratic in x, we
have

J��x�� � J��x�� �2gT Qg � �gT� J� (47)

where � J� � 2Qx � b is the gradient of J� evaluated at x.
Ideally, for fastest variation in P(x) we would like g � �P .

Obviously, if �PT� J� 	 0 we can choose g � �P and � �
0 given by the solution of minimum absolute value of P(x�) =
0 for �:

� � ��g�2 �
	
�g�4 � 4gT HgP

2gT Hg
	

i f gT Hg �� 0	 (48)

� � � P

�g�2 	 i f gT Hg � 0
 (49)

For �PT� J� � 0 such a choice (g � �P and � � 0)
would lead to an increase in J� given both by the linear and
quadratic terms in � in (47). One idea is to choose g � �Pand
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Fig. 1. Direction of movement, g, in the DJ algorithm.

the other solution for � of the quadratic equation, P(x�) = 0,
namely:

� � ��g�2 �
	
�g�4 � 4gT HgP

2gT Hg
	

i f gT Hg �� 0	 (50)

� � � P

�g�2 	 i f gT Hg � 0
 (51)

However this is not the minimum absolute value solution
and such a choice might actually result in a large increase in
J� due to its quadratic component in � (see (47)). Hence we
choose g such that gT� J� � 0. Such a direction is the projec-
tion of �P onto the plane perpendicular to � J�, as shown in
Figure 1:

g � �P � �PT� J�
� J T

� � J�
� J�
 (52)

This choice fails when �P and � J� are collinear (oppo-
site), a case which we shall analyze later.

Note: it is easy to show that gT�P � 0 � g � 0, hence
(37) always has at least one solution (since we consider g �� 0).

Next, we choose � as the solution of minimum absolute
value of P(x�)=0, yielding:

� � �g�P �	�gT�P�2 � 4gT HgP

2gT Hg
	

i f gT Hg �� 0	 (53)

� � � P

gT�P
	 i f gT Hg � 0
 (54)

When �Pand � J� are collinear, since our main goal is to
get P(x�) = 0 we choose g ��P .As before � is the solution of
minimum absolute value of P(x�) = 0, given by (48) and (49).

Following is a description of the algorithm, which we shall
coin DJ, an acronym of Distance and J the symbol for the �
energy, J�.

DJ Algorithm Description
The first two steps are the same as in the DIG algorithm. The
calculation of the direction of movement is replaced by the
following sequence:

3. Penalty function gradient calculation, �P :

�P � �
�
l	m

�2Qlm�� lm��x � blm��� lm��� (55)

where only the violating pairs appear in the sum. If
�P � 0, then perturb x randomly (small perturbations)
and return to step 2.

4. Penalty function Hessian and � energy gradient cal-
culation: compute half of the Hessian of the penalty
function, H, the gradient of J� , and the penalty function
value, P:

H � �
�
l	m

Qlm�� lm��	 � J� � 2Qx � b	

P �
�
l	m

��Rl � Rm�
2 � d2

lm�� (56)

where (l, m) is any pair which violates the collision
avoidance constraints.

5. Direction of movement calculation: If �PT� J� 	 0
or ��PT �� J� � �1 the direction is

g � �P (57)

and � is

� � ��g�2 �
	
�g�4 � 4gT HgP

2gT Hg
	

i f gT Hg �� 0	 (58)

� � � P

�g�2 	 i f gT Hg � 0
 (59)
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Else (if �PT� J� � 0 and ��PT �� J� �� �1) the direc-
tion is

g � �P � �PT� J�
� J T

� � J�
� J� (60)

and � is given by

� � �gT�P �	�gT�P�2 � 4gT HgP

2gT Hg
	

i f gT Hg �� 0	 (61)

� � � P

gT�P
	 i f gT Hg � 0
 (62)

Note: in the above ��P and �� J� represent the unit vec-
tors along �Pand � J�, respectively.

6. Prediction: Predict the next value of the unknowns:

x� � x � �g (63)

7. Return: If ��g� � �x , where �x is the minimum
allowed variation in x, or the number of iterations is
greater than the maximum allowed, exit, else set

x� � x (64)

and return to step 2.

The process terminates when all spacecraft are separated
(successful termination, through step 2), the variation in x is
too small, or the number of allowed iterations is exceeded.

3.2.2. Minimization of J�

After the spacecraft have been separated through successful
application of the separation algorithm (DIG or DJ) we can
further minimize J� taking care that the collision avoidance
constraints are satisfied. Because J� is quadratic in x, a gradi-
ent based procedure, in which the next value of x is determined
by

x� � x � sn	 n � �


� J�



2

2� J T
� Q� J�

� J�	 (65)

is indicated for this purpose. An important issue in this process
is the determination of the step size, s, based on the colli-
sion avoidance constraints. The procedure described next has
proven very efficient in our applications.

Consider an arbitrary pair of spacecraft, l and m, and deter-
mine the corresponding minimum distance between them, let
it be called dmin. Let � c be the corresponding dimensionless
time. Let x� � x � sn and approximate the corresponding
minimum distance square by:

d2
� � xT

� �Qx� � �bT x� � �c (66)

where �Q � Qlm�� c�	 �b � blm�� c�	 �c � clm�� c� (this is
where the approximation takes place). Next we set d2� equal to
�Rl � Rm�

2 to obtain

s2nT �Qn � snT�d2
lm � d2

min � �Rl � Rm�
2 � 0 (67)

yielding

s1 � �nT�d2
lm �

�
�

2nT �Qn
	 s2 � �nT�d2

lm �
�
�

2nT �Qn
	

i f nT �Qn �� 0 (68)

s1 � �Rm � Rl�
2 � d2

min

nT�d2
lm

	

i f nT �Qn � 0 and nT�d2
lm �� 0 (69)

where

� � �nT�d2
lm�

2 � 4�d2
min � �Rl � Rm�

2�nT �Qn	

and �d2
lm � 2 �Qx � �b
 (70)

The decision process is as follows: if 0 � s2 � 1 set slm �
s2 else if 0 � s1 � 1 set slm � s1. In any other case (including
when there are no solutions of (67)) set slm � 1. This process
is performed for all spacecraft pairs. Finally s is selected as
s � min

l	m
slm . The collision avoidance constraints are tested

at s and if they are violated we set s = s/2 and iterate until
no constraints are violated. Note: in the rare situation in which
the minimum distance is attained for multiple, different, values
of � c, the same calculations are performed for each � c and
corresponding slm values are computed. The important thing is
that minimization of slm is performed for the selection of s and
that the collision avoidance constraints are tested to validate
the selection of s.

The resulting algorithm, coined JG, is described below:

JG Algorithm

1. Direction of movement (n) calculation:

n � �


� J�



2

2� J T
� Q� J�

� J�	 � J� � 2Qx � b
 (71)

2. Calculation of the tentative step size, s: For each pair
of spacecraft, (l, m), compute the minimum distance,
dmin, the corresponding minimum dimensionless time,
� c, and the step size, slm :
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s1 � �nT�d2
lm �

�
�

2nT �Qn
	

s2 � �nT�d2
lm �

�
�

2nT �Qn
	

i f nT �Qn �� 0 (72)

s1 � �Rm � Rl�
2 � d2

min

nT�d2
lm

	

i f nT �Qn � 0 and nT�d2
lm �� 0 (73)

where

� � �nT�d2
lm�

2

� 4�d2
min � �Rl � Rm�

2�nT �Qn	

and �d2
lm � 2 �Qx � �b
 (74)

If 0 � s2 � 1, set slm � s2, else if 0 � s1 � 1set
slm � s1. In any other cases set slm � 1. Finally s is
selected as s � min

l	m
slm .

3. Tentative step:

xt � x � sn
 (75)

4. Return: If �xt � x� � �x , where �x is the minimum
allowed variation in x, or the number of iterations is
greater than the maximum allowed, exit, else compute
the distances between spacecraft at xt and determine if
the collision avoidance constraints are violated or not. If
the collision avoidance constraints are satisfied set x =
xt and go back to step 1. If there is at least one violation
set s = s/2 and go back to step 3.

We remark that all algorithms presented herein (DIG, DJ,
JG) exploit the fact that their objective functions (P and J�
respectively) are quadratic in x, making the application of gra-
dient based algorithms extremely efficient. Also they do not
involve complex computations since, for example, the gradi-
ents are computed analytically and are not numerically approx-
imated. Hence the computation time per iteration is very small
even for large scale formations.

Once a solution has been obtained we turn our attention
to the satisfaction of (3). An estimate of a maximum of��aki ���

�� 	 i � x	 y	 z is easy to obtain since the accelerations
are piecewise linear functions of time. Accelerations vary as
1/T 2, hence it is trivial to choose T such that none of the ac-
celeration components exceeds Aki .

4. Examples

4.1. Swapping Circle

The first example involves 16 spacecraft equidistantly placed
on a circle of 10 m radius. We consider a rest-to-rest re-
configuration maneuver, coined swapping circle, in which
each spacecraft must swap its place with the one opposite to
it with respect to the center of the circle. Such an example is
inspired by the Darwin mission in which several spacecraft (in
the current proposed design six but the number might increase
in subsequent designs) will be placed on the circumference of
a circle. Our intention is also to generate a complex collision
avoidance problem in order to test our algorithms� if the un-
constrained energy optimal trajectories are used, the spacecraft
collide at the center of the circle, all of the 120 collision avoid-
ance constraints being simultaneously violated.

The number of intermediate way-points per spacecraft is
chosen using the following heuristic method. Because the en-
ergy optimal unconstrained trajectories reach the critical point,
the center of the circle, at the same time, � c � 0
5, we in-
troduce one intermediate way-point per spacecraft, Ml = 1,
with � l2 � 0
5	 l � 1	 


	 16
 We remark that, for most of
the missions currently under consideration, the introduction of
one way-point per spacecraft may be sufficient.

For this example the collision avoidance spheres have the
same radius, Rl =1 m, the energy weights are equal, �l �
1�16	 l � 1	 


	 16 and the duration of the maneuver is T =
20 s. Application of our methodology, in which DIG is fol-
lowed by JG, yielded a solution in 39 iterations. The result-
ing trajectories are shown in Figure 2 and the time histories of
the distances in Figure 3, indicating that the minimum allowed
distance between any two spacecraft (2 m) is not violated. The
acceleration time histories are given in Figure 4.

The ratio between the final value of the � energy and the
value of the � energy along the energy optimal unconstrained
trajectories, which we shall call the energy index, is 2.108, in-
dicating that 108% more energy is required to avoid collisions.
If DJ and JG are used, 126 iterations are required for conver-
gence and the energy index is 2.003, indicating a slightly better
solution. The number of iterations required for convergence is
higher than when DIG and JG are used. This is expected be-
cause of the way DJ operates: it does not always follow the
gradient of the penalty function in an attempt to keep the en-
ergy low at each iteration. Due to the simplicity of the compu-
tations involved, convergence is still achieved very rapidly.

The method used to evaluate our algorithms with respect to
the� energy performance index deserves some discussion. We
have chosen to compare this parameter with the � energy of
the energy optimal unconstrained trajectories for several rea-
sons. The � energy of the energy optimal unconstrained tra-
jectories is the global minimum of the � energy in the absence
of constraints, hence the best possible result. It is also the
value of the performance index of the starting point in our al-
gorithms. By comparing the final value of the performance
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Fig. 2. Trajectories of the swapping circle maneuver generated by the DIG-JG algorithms.

Fig. 3. Distance time histories for the swapping circle maneuver.
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Fig. 4. Accelerations time histories for the swapping circle
maneuver.

index with its initial value we ascertain how far away from the
initial point the algorithms have departed. A very large energy
index indicates that the solution obtained is poor in terms of the
� energy performance index. Even though our solution strat-
egy was constructed such that we stay close to the � energy
global minimum (obtained when the constraints are discarded)
in the hope that nearly optimal solutions are found, there is no
guarantee of that, especially for the complicated problems we
consider.

4.2. The Starting Point Influence

A natural question arises regarding the choice of the starting
point for our algorithms: would it be better to select a dif-
ferent one? In order to address this question we tested the
algorithms for cases in which the initial guess was different
from the one corresponding to the � energy global minimum�
x � � 1

2 Q�1b
�
. In most of our numerical experiments we

obtained solutions which were worse than the ones obtained
when the � energy global minimum was used as a starting
point. For example, Figure 5 shows the distribution of the re-
sults obtained for the swapping circle maneuver, characterized
by the same parameters as in 4.1. (i.e. circle radius 10 m, T
= 20 s, Rl = 1 m, Ml = 1, � l2 � 0
5	 �l � 1�16	 l �
1	 


	 16
) when the DIG-JG algorithms were used for 100
cases in which the starting point was randomly generated. The
initial values for the intermediate way-points locations and ve-
locities were randomly generated within +/–30% of the values
corresponding to the � energy global minimum (note: in gen-
eral, larger perturbations resulted in worse results). In Figure
5 the dashed lines correspond to the � energy and number of

Fig. 5. Starting point influence for the swapping circle maneu-
ver and the DIG-JG algorithms.

iterations for the solution obtained when the starting point was
the one corresponding to the � energy global minimum. We
remark that in all cases the trajectories thus generated obey the
collision avoidance constraints and, except for one case, all
have final values of � energy larger than the � energy of the
solution obtained when the starting point corresponded to the
� energy global minimum. The only case which resulted in
slightly better energy consumption, yielded an energy index of
2.09, obtained after 47 iterations (recall that the solution cor-
responding to the � energy global minimum starting point had
an energy index of 2.108 obtained after 39 iterations). Similar
results were obtained for the DJ-JG combination, increasing
the level of confidence in the choice of the starting point as the
� energy global minimum.

4.3. Comparison with Other Feasible Solutions

Another question one might ask is the following: since the pro-
posed procedure is sub-optimal, how much confidence do we
have that the solutions thus generated are good ones in terms
of the � energy consumed? In order to address this question
we use the following comparison scenario: consider the set
of piecewise cubic C1 polynomials (in time) trajectories sat-
isfying the given end points constraints (i.e. initial and final
spacecraft locations and velocities). We want to see how the
solutions obtained using the proposed methodology compare
to other feasible solutions (i.e. which obey the collision avoid-
ance constraints) within this set. In order to generate piecewise
cubic C1 polynomials trajectories that obey the collision avoid-
ance constraints, we proceed as follows. First, we randomly
select the intermediate way-points times, their locations, and
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Fig. 6. Performance of other piecewise cubic C1 polynomials
feasible trajectories for the swapping circle maneuver.

velocities. Then we test the resulting piecewise cubic C1 poly-
nomials trajectories passing through these way-points (given
by (5)) against the collision avoidance constraints (given by
(2)). If the collision avoidance constraints are not violated then
we have found a feasible solution. However, if the resulting
trajectories do not satisfy the collision avoidance constraints,
we first run the DIG (or DJ) algorithm with larger than the
nominal collision avoidance radii in order to generate feasi-
ble solutions. The � energies of the feasible solutions thus
generated are further improved by running JG on them, using
the nominal collision avoidance radii. Note: obtaining feasi-
ble solutions for the complicated problems we consider (many
spacecraft, large number of collision avoidance constraints) is
very difficult if we just randomly generate way-points para-
meters. This is why we have to de-conflict the conflicting tra-
jectories using, for example, DIG and DJ with larger collision
avoidance radii.

Figure 6 shows the results obtained on the swapping circle
maneuver, defined by the same parameters as before. In or-
der to generate feasible trajectories we used the DIG algorithm
with the “larger radii” all equal to 1.2Rl = 1.2 m. One interme-
diate way-point per spacecraft was introduced, whose time was
randomly generated within +/–20% of the value corresponding
to the nominal one (fixed at 0.5). Likewise, the intermediate
way-points velocities and locations were randomly generated
within +/–20% of the values corresponding to the trajectories
of the � energy global minimum (unconstrained maneuver) of
the swapping circle maneuver. In Figure 6 we plot the energy
index and the number of JG iterations for 100 test cases. It
can easily be ascertained that the energy index (defined with
respect to the � energy global minimum of the swapping circle
maneuver analyzed in 4.1.) is, in all cases, much higher than

Fig. 7. Performance of neighboring feasible solutions for the
swapping circle maneuver.

the one obtained when DIG-JG or DJ-JG algorithms were ap-
plied (recall that these energy indices were 2.1 for the DIG-JG
and 2 for the DJ-JG cases). These results indicate that the pro-
cedure might even find near-optimal solutions, at least within
the class of C1 piecewise polynomials.

4.4. Exploring the Neighborhood of the Solution

Next we consider another set of experiments as follows: we
randomly perturb the solution obtained using DIG-JG or DJ-
JG. However we keep the values of the way-points times un-
changed. Then we use the intermediate way-points thus gener-
ated in an optimization scheme as follows: if the correspond-
ing piecewise cubic C1 polynomials trajectories obey the col-
lision avoidance constraints, we run JG on them in order to
decrease the � energy consumed and then compute the cor-
responding energy index. If the random perturbation of the
solution results in conflicting trajectories we disregard them.
The motivation for such a comparison scenario is to investi-
gate the neighborhood of the solution for feasible trajectories
with lower� energy consumption within the class of piecewise
cubic C1 polynomials.

Figure 7 shows the results obtained for the swapping cir-
cle maneuver (defined by the same parameters as in 4.1.). We
considered the solution obtained using the DIG-JG combina-
tion and three levels of perturbation: large (30%), medium
(15%), and small (5%), where the percentages correspond to
the absolute value of the maximum possible deviation from
the nominal values (i.e. 30% means that the intermediate
way-points locations and velocities were randomly perturbed
within +/–30% of their values corresponding to the solution).
In each case we ran 100 test cases. All the small perturbations
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Fig. 8. Trajectories for the swapping cube maneuver obtained using the DIG-JG algorithms.

resulted in trajectories which obeyed the collision avoidance
constraints and whose further improvement using JG led to in-
cremental decrease in the � energy (circles in Figure 7). The
large size perturbations resulted mostly in conflicting trajec-
tories, and application of JG on the few feasible trajectories
did not improve the energy index by much (stars in Figure
7). In all cases the energy index is higher than the ones for
the solutions obtained using DIG-JG (energy index = 2.1) or
DJ-JG (energy index = 2). These numerical experiments fur-
ther increase confidence in the fact that the procedure proposed
herein might even find nearly optimal solutions, at least within
the class of piecewise cubic C1 polynomials trajectories.

4.5. Swapping Cube

The next example is of a three-dimensional reconfiguration
maneuver, coined the swapping cube. In this scenario eight
spacecraft placed at the corners of a cube of 10 m side length
must swap places simultaneously. The maneuver is rest-to-
rest, with T = 11 s, Rl = 1 m, and �l � 1�8	 l � 1	 


	 8

The unconstrained energy optimal trajectories are lines cu-
bic parameterized by time. If these are used all 28 colli-
sion avoidance constraints are violated simultaneously. We se-
lected intermediate way-points heuristically, with Ml = 1, and
� l2 � 0
5	 l � 1	 


	 8


Application of the DIG-JG algorithms yielded a collision-
free solution very rapidly, in only 19 iterations. The energy
index is 1.306, showing that 30.6% more energy is required
to avoid collisions. If the DJ-JG algorithms are applied, a so-
lution is obtained after 22 iterations and the energy index is
2.05. Hence 105% more energy and three more iterations are
required to avoid collisions. This example shows that there are
cases in which the DJ-JG algorithms yield worse results than
DIG-JG.

The trajectories obtained when the DIG-JG algorithms are
used for solution are shown in Figure 8, and the time histories
of the distances and accelerations in Figure 9 and Figure 10
respectively, indicating that the collision avoidance constraints
are satisfied.

4.6. Non-rest-to-rest Swapping Cube Maneuver

The next example shows how the methodology developed per-
forms on a maneuver which is not rest-to-rest. We consider the
same formation of eight spacecraft, as in the swapping cube
maneuver. In the initial configuration the spacecraft are placed
at the corners of the same cube, of side length 10 m, which was
used in the swapping cube maneuver, but their velocity vectors
are non-zero as follows: for the four spacecraft placed in the
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Fig. 9: Distances Time Histories for the Swapping Cube Maneuver

Fig. 10. Accelerations time histories for the swapping cube maneuver.
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Fig. 11. Trajectories for the non-rest-to-rest swapping cube
maneuver obtained using DIG-JG.

face of a cube (e.g. the xz face), the velocity vectors are all
of the same magnitude, equal to 1 m/s and tangent to the cir-
cle circumscribed to that face of the cube (i.e. the spacecraft
describe the same circle, at the same speed, and in the same di-
rection). The other four spacecraft velocity vectors are parallel
and equal to their counterparts (i.e. they are obtained through a
virtual translation of the four spacecraft placed in the xz plane
along the y axis). In a practical application this configuration
corresponds to an “observational mode” in which the velocity
of the mass center of the formation is zero. Let the origin of the
inertial reference frame coincide with one spacecraft’s (which
we label as spacecraft number 1) initial position and the iner-
tial reference frame be such that the initial cube formed by the
spacecraft is in the first quadrant. Then the initial positions of
the spacecraft are:

r1�0� � [0 0 0]T 	 r2�0� � [10 0 0]T 	

r3�0� � [10 0 10]T 	 r4�0� � [0 0 10]T 	

r5�0� � [0 10 0]T 	 r6�0� � [10 10 0]T 	

r7�0� � [10 10 10]T 	 r8�0� � [0 10 10]T 
 (76)

The maneuver involves swapping the spacecraft positions
with respect to the center of the cube� the following pairs of
spacecraft have to change places: 1–7, 2–8, 3–5, 4–6. In ad-
dition it is desired that in the final configuration all spacecraft
have equal velocity vectors, parallel to the y axis and of 2 m/s
magnitude. This configuration corresponds to a “translational”
mode in which the center of mass velocity is non-zero and the
“spacecraft cube” translates along the y axis. The final posi-
tions of the spacecraft are:

Fig. 12. Velocities time histories for the non-rest-to-rest swap-
ping cube maneuver.

r1�T � � [10 10 10]T 	 r2�T � � [0 10 10]T 	

r3�T � � [0 10 0]T 	 r4�T � � [10 10 0]T 	

r5�T � � [10 0 10]T 	 r6�T � � [0 0 10]T 	

r7�T � � [0 0 0]T 	 r8�T � � [10 0 0]T 
 (77)

The following parameters were considered:

T � 20s	 Rl � 2 m	 � l2 � 0
5	

�l � 1�8	 l � 1	 


	 8


Application of the DIG-JG combination resulted in very
fast convergence, obtained after only 19 iterations. The solu-
tion is depicted in Figures 11, 12, 13 and 14 (trajectories, ve-
locities, accelerations, distances time histories, respectively).
The � energy required to avoid collisions is 16% greater than
the � energy of the unconstrained trajectories. This shows that
our methodology performs very well on maneuvers which are
not rest-to-rest.

4.7. A TPF Maneuver

In the following we compare the performance of our method-
ology with the performance of the one used by Singh and
Hadaegh (2001) on a TPF maneuver that involves a forma-
tion of five spacecraft, four of which are coplanar. The ma-
neuver consists in changing the orientation of the plane of the
four coplanar spacecraft while the center of mass of the for-
mation remains unchanged. The maneuver is rest-to-rest with
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Fig. 13. Accelerations time histories for the non-rest-to-rest
swapping cube maneuver.

Rl � 10 m	 l � 1	 


	 5. We consider that the inertial ref-
erence frame’s origin coincides with the center of mass of the
formation. Then the initial and final inertial coordinates of the
spacecraft (adapted from Singh and Hadaegh 2001) are:

r1�0� � [4
45 � 33
97 21
16]T 	

r2�0� � [4
45 � 11
78 6
37]T 	

r3�0� � [4
45 10
41 � 8
42]T 	

r4�0� � [4
45 32
60 � 23
21]T 	

r5�0� � [�17
80 2
74 4
11]T

r1�T � � [�23
12 � 23
34 � 23
27]T 	

r2�T � � [�10
28 � 6
10 � 7
50]T

r3�T � � [2
57 11
13 8
28]T 	

r4�T � � [15
42 28
37 24
05]T 	

r5�T � � [15
42 � 10
06 � 1
57]T 
 (78)

The following limits on the accelerations have to be ob-
served (from Singh and Hadaegh 2001):

Alx � 0
005	 Aly � 0
004	

Alz � 0
003	 l � 1	 


	 4	

A5x � 0
004	 A5y � 0
003	 A5z � 0
005
 (79)

Fig. 14. Distances time histories for the non-rest-to-rest swap-
ping cube maneuver.

If the unconstrained energy optimal trajectories are used
(line segments, cubic parameterized by time) the collision
avoidance constraints are violated, with the maximum vio-
lation occurring at half time during the maneuver. For the
application of our methodology we choose Ml � 1	 � l2 �
0
5	 �l � 1�5	 l � 1	 


	 5.

Application of the DIG-JG combination resulted in very
fast convergence, obtained after only eight iterations. The so-
lution is depicted in Figures 15–17 (trajectories, accelerations,
distances time histories, respectively). The maneuver time, ob-
tained a posteriori to satisfy the limits on the accelerations, is
T=316 s, like that obtained in Singh and Hadaegh (2001), how-
ever, only 52% more energy with respect to the energy of the
unconstrained trajectories is required to avoid collisions. For
comparison, Singh and Hadaegh’s algorithm, in which the tra-
jectories are parameterized using polynomials of degree 4 in
time, yielded a solution which requires 80% more energy to
avoid collisions, indicating that our methodology provides a
better solution.

4.8. Monte Carlo Simulations for the Sphere Scenario

In order to evaluate the performance and robustness properties
of the algorithms, we tested them using Monte Carlo simula-
tions for the following scenario. A formation of 20 spacecraft
is considered, whose initial and final positions are distributed
on the surface of a sphere of radius 10 m. Both the initial and
final positions are resting conditions and are randomly gener-
ated. The formation has to be synchronously reconfigured in
a prescribed time, T = 10 s. One way-point per spacecraft is
introduced, placed at half time during the maneuver. It is also
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Fig. 15. Trajectories for the TPF maneuver obtained using
DIG-JG.

Fig. 16. Accelerations time histories for the TPF maneuver.

assumed that �l = 0.05 and that the forbidden sphere radius is
the same for all spacecraft, Rl = R, l = 1, . . . , 20.

The DIG and DJ algorithms followed by JG have been
applied to the resulting reconfiguration problems. In order
to evaluate the performance of these algorithms we used the
following measures: the energy index, defined here as the
ratio between the � energy of the solution provided by the
algorithms and the � energy of the � energy optimal re-
configuration problem solution in the absence of constraints,
and the number of iterations required for convergence.

Fig. 17. Distances time histories for the TPF maneuver.

Figures 18 and 19 show the results obtained for 100 cases
and three different values of the forbidden sphere radius, R =
1, 2, 4 m. The number of iterations required varied with the
forbidden sphere radius, however convergence was always ob-
tained relatively quickly. The energy indices also indicate that
in general good solutions were obtained, in which the � en-
ergy spent to avoid collisions is not dramatically greater than
that consumed along the hypothetical � energy optimal trajec-
tories obtained in the absence of constraints. Figures 18 and
19 also indicate that the algorithms are very robust (i.e. there
are no big variations in the performance indices).

In general the DIG-JG combination converges faster than
the DJ-JG combination, but better energy indices are obtained
in the later case. However, as clearly indicated by the swap-
ping cube example, this is not always the case: there are sit-
uations when the DJ-JG combination might be worse both in
terms of energy expenditure and in terms of the number of it-
erations required for convergence.

5. Conclusions

The path planning methodology proposed herein can be ap-
plied directly to problems in which modeling the dynamics
of the vehicles as double integrators is accurate enough and
in which the only constraints are control saturation and col-
lision avoidance ones, represented as forbidden spheres. The
model used to develop the methodology in this article requires
two important assumptions: first that the vehicle can be ap-
proximated as a point of constant mass, and second, that no
other forces (e.g. gravity) act on the vehicle except for the
control forces generated by the onboard thrusters. There are
many problems in which the double integrator model has been
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Fig. 18. Evaluation of the DIG-JG algorithms through Monte Carlo simulations.

Fig. 19. Evaluation of the DJ-JG algorithms through Monte Carlo simulations.
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used, including, but not limited to, air traffic control and mo-
bile robots path planning. It is best suited for formations flying
in deep space, where the gravitational influences can be ne-
glected and the point mass approximation is largely accepted.

The path planning solution proposed in this article is an
energy sub-optimal, possibly nearly optimal, collision avoid-
ance methodology characterized by several important features.
First, the spacecraft trajectories are parameterized using C1

piecewise cubic polynomials, which are energy optimal for
each individual spacecraft for a given sequence of way-points.
This is a major advantage because it guarantees that the chosen
parameterization is appropriate for the energy optimal prob-
lem posed while also facilitating the development of efficient
numerical algorithms. Second, the resulting constrained op-
timization problem is cast as a quasi-quadratic optimization
problem in the way-points locations and velocities. This struc-
ture results in the development of gradient based algorithms
which are used to select the way-points parameters in order
to avoid collisions and further minimize the energy. Third,
the collision avoidance constraints are approximated such that
closed form solutions for the collision avoidance problem are
obtained. Fourth, the gradients used in the algorithms are com-
puted analytically, making the application of these algorithms
very efficient in terms of computational time. Fifth, inver-
sion of large matrices, which can be computationally expen-
sive, is not required. Due to these characteristics the resulting
methodology yields fast algorithms, which generate solutions
after relatively few iterations, even when applied to large scale,
complicated, collision avoidance problems, as illustrated by
the examples presented. Moreover, Monte Carlo simulations
on examples involving up to 20 spacecraft indicate that the
methodology and the algorithms are very robust and reliable.

Several comments are in order regarding the limitations and
possible extensions through further research of the methodol-
ogy described in this article. The most stringent limitations are
related to the assumption that vehicle dynamics can be approx-
imated using double integrators. One important aspect future
research has to consider is that, if the model of a vehicle’s
dynamics is more complex, the energy optimal trajectory for
a given sequence of way-points is no longer given by the C1

piecewise cubic polynomial described in this article.
Most importantly, the methodology proposed herein can-

not be applied to more sophisticated path planning problems
which include angular constraints like, for example, com-
munication or observational constraints. Examples include
changing the orientation of the spacecraft and of the onboard
antennas such that communication with other spacecraft is
maintained or pointing an on board instrument (e.g. tele-
scope) such that observation of a certain object is performed.
These requirements lead to constraints on the orientation of the
spacecraft, which cannot be captured by the point mass mod-
els used in this article. For solution of these problems future
research must exploit the combination of complex, nonlinear,
dynamic models (at least rigid body models) with the introduc-

tion of way-points and the development of easily computable
(ideally analytically computable) gradients. This is a difficult
problem because the dimension of the state space increases
dramatically.

Other limitations relate to the constant mass approximation.
This assumption can be used for short term maneuvers and
when the fuel consumption rate of the propulsion system is
negligible. When the constant mass approximation cannot be
applied, the mass variation must be included in the dynamical
model, hence, even in the simplest case of the point mass ap-
proximation, this will lead to an increase on the state space di-
mension. In this situation future research should investigate if
extension of methodologies similar to the one described herein
is possible.

Another limitation which is easier to handle is when grav-
itational forces cannot be neglected (e.g. for vehicles flying
in the proximity of a planet). However, if the vehicles can be
approximated as points of constant mass, the dynamics of the
spacecraft will not increase the dimension of the state space.
Future research should lead to a similar methodology based
on the introduction of way-points and the use of analytically
computable gradients.

Lastly this article analyzes only energy optimal trajectories.
Similar research should be carried out in the area of fuel opti-
mal problems. Even though directly related – in general lower
energy consumption leads to less fuel being consumed – opti-
mal energy and optimal fuel problems have different solutions.

Appendix A

Proof of the Lemma

Consider a generic interval, I j � [t j 	 t j�1]. Let us find the
acceleration a(t) which minimizes the energy defined as:

J �
t j�1�
t j

a�t�T a�t�dt	 (80)

subject to the dynamics equations and the given boundary con-
ditions:

�r�t� � ��t�	 ���t� � a�t�	

r�t j � �  j 	 r�t j�1� �  j�1	

��t j � � � j 	 ��t j�1� � � j�1
 (81)

This is a classical problem in the calculus of variations. The
state and control vectors are

y � [r�t�T ��t�T ]T 	 u � a�t�	 (82)

respectively and the Hamiltonian of the problem is:
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H � aT �t�a�t�� �T
� ��t�� �T

a a�t�

� uT u � �T
� y�4 : 6�� �T

a u

where � � [�T
� �T

a ]T 
 (83)

The necessary conditions for stationary values of J are

�H

�u
� 0 � 2a�t�� �a � 0

�H

�y
� ���� ��� � 0 and ��a � ���	 (84)

which yield a�t� � c j t � d j where c j and d j are constants.
Applying the given boundary conditions we obtain c j , d j and
r�t� given in the Lemma.

In order to prove that this is a minimizing solution we have
to show that the second variation of J is positive definite for
any nonzero variations of u. Indeed, the second variation is:

�2 J � 0
5

t j�1�
t j

[�xT �uT ]

�
Huu Hxu

Hux Huu

��
�x

�u

�
dt

�
t j�1�
t j

��uT �u�dt � 0

for any nonzero variation �u. (85)

The energy minimizing control is then obtained by applying
this linear acceleration on each time interval.

Appendix B

Proof of the Fact that Q � 0

It is sufficient to prove the fact for one spacecraft, since the
matrix Q for N spacecraft is a diagonal one in which the diag-
onal entries are Q matrices corresponding to each spacecraft.

In the following, for simplicity, we drop the index repre-
senting the spacecraft number (l, in the body of the article).
Then, using (11), the fact that M + 2 way points are intro-
duced, and (12), the energy of one spacecraft can be expressed
as:

J � T

1�
0

aT ���a���d� � 1

T 3

1�
0

r T ���r ���d�

� 1

T 3

M�1�
j�1

� j�1�
� j

r T ���r ���d�

� 1

T 3

M�1�
j�1

� j�1�
� j

U T
j Z j

T Z j U
T
j d� (86)

with obvious meaning for the notations involved. Here

U j � 
T

j uT
j T

j�1 uT
j�1

�T

and Z j � [M "
1 M 

2 M 
3 M 

4 ]	 (87)

with M 
1�4 easy to derive from (14)–(17).

If we introduce the vector of unknowns for one spacecraft:

x � T
2 uT

2 


 T
M�1 uT

M�1

�T
	 (88)

J is expressed as

J � xT Qx � bT x � c
 (89)

The contribution of the integral terms in (86) to the
quadratic term in x in the J formula, xT Qx , is easy to ascer-
tain: all the intermediate segments (that is from j = 2 to j =
M) fully contribute whereas the first (j = 1) and last (j = M +
1) segments contribute partially. In order to determine these
terms contributions we evaluate the corresponding integrals as
follows. The first segment leads to:

�2�
�1

U T
1 Z 1

T Z 1U T
1 d� � [I T x T

1 ]

�� �2�
0

Z 1
T Z 1 d�

�� [I T xT
1 ]T

� xT
1 S1x1 � qT

1 x1 � p1 (90)

where we used the following notation: I � [T
1 uT

1 ]T , x1 �
[T

2 uT
2 ]T and

S1 �
�2�

0

[M 
3

T M 
4

T ]T [M 
3 M 

4 ]d�

with M 
3 � �12� � 6�2

�3
2

I3	

M 
4 � 6� � 2�2

�2
2

I3
 (91)

It is evident that S1 	 0. We shall prove that S1 � 0. As-
sume that S1 is only semi-positive definite. Then there should
exist z � [zT

1 zT
2 ] �� 0 such that zT S1z � 0, which leads to

[M 
3 M 

4 ]z � 0

�
��12� � 6�2

�3
2

I3
6� � 2�2

�2
2

I3

�

� zT
1 zT

2

�T � 0 for � 
 [0	 �2]
 (92)

But this actually leads to z � 0 (for example let � � 0
5�2
to get z2 � 0 and � � �2

3 to get z1 � 0), in contradiction with
the assumption that z �� 0. This proves that S1 � 0.
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In a similar manner, the last segment integral leads to:

�M�2�
�M�1

U T
M�1 Z M�1

T Z M�1U T
M�1d�

� [x T
M�1 FT ]

��� 1�
�M�1

Z M�1
T Z M�1d�

���xT
M�1 FT

�T

� xT
M�1SM�1xM�1 � qT

M�1xM�1 � pM�1 (93)

where F � [T
M�2 uT

M�2]T , xM�1 � [T
M�1 uT

M�1]T and

SM�1 �
1�

�M�1

[M 
1

T M 
2

T ]T [M 
1 M 

2 ]d� (94)

with

M 
1 � 12� � 6�1� �M�1�

�1� �M�1�
3

I3	

M 
2 � 6� � 2��M�1 � 2�

�1� �M�1�
2

I3


Obviously, SM�1 	 0. Assume that SM�1 is only semi-
positive definite. Then there should exist z � [zT

1 zT
2 ] �� 0

such that zT SM�1z � 0, which leads to
M 

1 M 
2

�
z � 0

�
�

12� � 6�1� �M�1�

�1� �M�1�
3

I3
6� � 2��M�1 � 2�

�1� �M�1�
2

I3

�
� [zT

1 zT
2 ]T � 0 for � 
 [�M�1	 1]


But this actually leads to z � 0, in contradiction with the as-
sumption that z �� 0. This proves that SM�1 � 0.

Summarizing the above discussion we can write:

xT Qx � 1

T 3

M�
j�2

� j�1�
� j

r T ���r ���d�

� xT
1 S1x1 � xT

M�1SM�1xM�1

with S1 � 0 and SM�1 � 0
 (95)

It is evident that Q 	 0. If we assume that Q is only
positive semi-definite, there should exist x �� 0 such that
xT Qx � 0. Using (95) this leads to

0 � 1

T 3

M�
j�2

� j�1�
� j

r T ���r ���d�

� xT
1 S1x1 � xT

M�1SM�1xM�1 (96)

which holds only if on all segments j = 2 to M the acceleration
(r ���) is zero and x1 � xM�1 � 0. This leads to: u2 � 


 �
uM�1 � 0 and 2 � 


 � M�1 � 0 or x � 0 in contradiction
with the initial assumption. Hence Q � 0.

Acknowledgements

This work was supported by NASA JPL under Contract No.
NAS3-02180. Fred Hadaegh, Scott Ploen, and Daniel Scharf
served as the technical monitors and their valuable support is
gratefully acknowledged.

References

Barraquand, J., Kavraki, L. E., Latombe, J., Li. T., Motwani,
R., and Raghavan, P. (1997). A random sampling scheme
for path planning. International Journal of Robotics Re-
search, 16(6): 759–774.

Beard, R. and McLain, T. (2001). Fuel optimization for con-
strained rotation of spacecraft formations. AIAA Journal of
Guidance, Control, and Dynamics, 23(2): 339–346.

Beichman, C. A. (1998). The Terrestrial Planet Finder – the
search for life-bearing planets around other stars. Proceed-
ings of Astronomical Interferometry Meeting, Kona, HI. In
SPIE Proc. 3350, Bellingham, WA, pp. 719–723.

Bristow, J., Folta, D., and Hartman, K. (2000). A formation
flying technology vision. AIAA Space Conf erence, Long
Beach, CA, AIAA Paper No. 2000-5194.

Cerven, W. T., Bullo, F., and Coverstone, V. L. (2003). Vehicle
motion planning with time-varying constraints. AIAA Jour-
nal of Guidance, Control, and Dynamics, 27(3): 506–509.

Clements, J. (2002). Optimal simultaneous pairwise conflict
resolution maneuvers in air traffic management. AIAA
Journal of Guidance, Control, and Dynamics, 25(4): 815–
818.

Das, A. and Cobb, R. (1998). TechSat21-space missions us-
ing collaborating constellations of satellites. Proceedings
of the 12th AIAA/USU Annual Conference on Small Satel-
lites, Utah State University, Logan, UT. A99-10826 01-20
AIAA, Reston, VA.

Dunbar, W. and Murray, R. (2002). Model predictive control
of coordinated multi-vehicle formations. Proceedings of
the Conference on Decision and Control, Las Vegas, NV.

Faiz, N., Agrawal, S., and Murray, R. (2001). Trajectory plan-
ning of differentially flat systems with dynamics and in-
equalities. AIAA Journal of Guidance, Control, and Dy-
namics, 24(2): 219–227.



Sultan, Seereram, and Mehra / Deep Space Formation Flying Spacecraft Path Planning 429

Folta, D. and Quinn, D. (1997). Enhanced formation flying
for the Earth Observing-1 (EO-1) new millenium mission.
Proceedings of the Flight Mechanics Symposium, NASA
Goddard Space Flight Center, Greenbelt, MD, pp. 405–
406.

Foskey, M., Garber, M., Lin, M., and Manocha, D. (2001).
A Voronoi-based hybrid motion planner. Proceedings
IEEE/RSJ International Conf erence on Intelligent Robots
and Systems, Wailea, HI.

Frazzoli, E., Mao, Z., Oh, J., and Feron, E. (2001). Resolution
of conflicts involving many aircraft via semidefinite pro-
gramming. AIAA Journal of Guidance, Control, and Dy-
namics, 24(1): 79–86.

Frazzoli, E., Dahleh, M. A., and Feron, E. (2002). Real-
time motion planning for agile autonomous vehicles. AIAA
Journal of Guidance, Control, and Dynamics, 25(1): 116–
129.

Fridlund, C. V. M. (2000). Darwin – the infrared space inter-
ferometry mission. ESA Bulletin, 103: 20–63.

Garber, M. and Lin, M. (2002). Constraint based motion
planning using Voronoi diagrams. Proceedings of 5th
International Workshop on Algorithmic Foundations of Ro-
botics (WAFR), Nice, France.

Hsu, D., Latombe, J., and Motwani, R. (1999). Path planning
in expansive configuration spaces. International Journal of
Computational Geometry and Applications, 9(4-5): 495–
512.

Hsu, D., Kindel, R., Latombe, J., and Rock, S. (2000). Ran-
domized kinodynamic motion planning with moving obsta-
cles. International Journal of Robotics Research, 21(3):
233–255.

Hu, J., Prandini, M., and Sastry, S. (2002). Optimal coordi-
nated maneuvers for three-dimensional aircraft conflict res-
olution. AIAA Journal of Guidance, Control, and Dynam-
ics, 25(5): 888–900.

Inalhan, G., Tillerson, M., and How, J. (2002). Relative dy-
namics and control of spacecraft formations in eccentric
orbits. AIAA Journal of Guidance, Control, and Dynamics,
25(1): 48–59.

Kavraki, L.E., Svestka, P., Latombe, J. C., and Overmars,
M. H. (1996). Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation, 12(4): 566–580.

Kavraki, L., Kolountzakis, M., and Latombe, J. (1998). Analy-
sis of probabilistic roadmaps for path planning. IEEE
Transactions on Robotics and Automation, 14(1): 166–171.

Kim, Y., Mesbahi, M., and Hadaegh, F. (2003). Dual-
spacecraft formation flying in deep space: optimal
collision-free reconfiguration. AIAA Journal of Guidance,
Control, and Dynamics, 26(2): 375–379.

Labeyrie, A. (1978). Stellar interferometry methods. Annual
Revue of Astronomy and Astrophysics, 16: 77–102.

Li, H. and Williams, T. (2004). Uses of solar radiation pressure
for reconfiguration of Sun-Earth libration point formations.

AIAA Guidance, Navigation, and Control Conference and
Exhibition, Providence, RI, AIAA Paper No. 2004-4785.

Lygeros, J., Godbole, D., and Sastry, S. (1998). A verified hy-
brid controller for automated vehicles. IEEE Transactions
on Automatic Control, 43(4): 522–539.

Luenberger, D. G. (1984). Linear and Nonlinear Program-
ming. Addison-Wesley, Reading, MA.

Manno, V. and Page, D. E. (eds) (1969). Intercorrelated Satel-
lite Observations Related to Solar Events. Springer Ver-
lag/D. Reidel, New York/Dordrecht.

McQuade, F., Ward, R., and McInnes, C. (2002). The auto-
nomous configuration of satellite formations using generic
potential functions. Proceedings of the International Sym-
posium Formation Flying, Toulouse, France.

Mesbahi, M. and Hadaegh, F. (2001). Formation flying con-
trol of multiple spacecraft via graphs, matrix inequalities,
and switching. AIAA Journal of Guidance, Control, and
Dynamics, 24(2):369-377.

Phillips, J. M., Kavraki, L. E., and Bedrosian, N. (2003).
Spacecraft rendezvous and docking with real-time random-
ized optimization. Proceedings of AIAA Guidance, Naviga-
tion, and Control Conference, Austin, TX.

Prasanth, R., Boskovic, J., and Mehra, R. K. (2002). Mixed
Integer/LMI Programs for low-level path planning. Pro-
ceedings of the American Control Conference, Anchorage,
AL.

Rathbun, D., Kragelund, S., and Pongpunwattana, A., (2002).
An evolution based path planning algorithm for au-
tonomous motion of a UAV through uncertain environ-
ments. Proceedings of the Inernational. Symposium For-
mation Flying, Toulouse, France.

Richards, A. and How, J. (2002). Aircraft trajectory planning
with collision avoidance using mixed integer linear pro-
gramming. Proceedings of the American Control Confer-
ence, Anchorage, AK.

Richards, A., Schouwenaars, T., How, J., and Feron, E. (2002).
Spacecraft trajectory planning with avoidance constraints
using mixed integer linear programming. AIAA Journal of
Guidance, Control, and Dynamics, 25(4): 755–764.

Saber, R., Dunbar, W., and Murray, R. (2003). Cooperative
control of multi-vehicle systems using cost graphs and op-
timization. Proceedings of the Automatic Control Confer-
ence.

Scharf, D., Hadaegh, F., and Kang, B. (2002). A survey of
spacecraft formation flying guidance. Proceedings of the
Intl. Symposium Formation Flying, Toulouse, France.

Seereram, S., Li, E., Ravichandran, B., Mehra, R., K., Smith,
R., and Beard, R. (2000). Multispacecraft formation initial-
ization using genetic algorithms techniques. 23rd Annual
AAS Guidance and Control Conference, Breckenridge, CO.

Singh, G. and Hadaegh, F. (2001). Collision avoidance guid-
ance for formation flying applications. AIAA Guidance,
Navigation, and Control Conference and Exhibition, Mon-
treal, Canada.



430 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2007

Sultan, C., Seereram, S., and Mehra, R. K. (2006). Energy
sub-optimal collision-free path planning for spacecraft for-
mation flying. AIAA Journal of Guidance, Control, and
Dynamics, 29(1): 190–192.

Tillerson, M., Inalhan, G., and How, J. (2002). Coordination
and control of distributed spacecraft systems using convex
optimization techniques. International Journal of Robust
and Nonlinear Control, 12(2): 207–242.

Tomlin, C., Pappas, G., and Sastry, S. (1998). Conflict res-
olution for air traffic management: a study in multi-agent
hybrid systems. IEEE Transactions on Automatic Control,
43(4): 509–521.

Yang, G., Yang, Q., Kapila, V., Palmer, D., and Vaidyanathan,
R. (2002). Fuel optimal maneuvers for multiple spacecraft
formation reconfiguration using multi-agent optimization.
International Journal of Robust and Nonlinear Control, 12:
243–283.

Zhu, G., Grigoriadis, K. M., and Skelton, R.E. (1995). Covari-
ance control design for the Hubble Space Telescope. AIAA
Journal of Guidance, Control, and Dynamics, 18(2): 230–
236.


