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	e model is di
cult to establish because the principle of the locomotive adhesion process is complex. 	is paper presents a
data-driven adhesion status fault diagnosis method based on deep learning theory. 	e adhesion coe
cient and creep speed of a
locomotive constitute the characteristic vector.	e sparse autoencoder unsupervised learning network studies the input vector, and
the single-layer network is superimposed to form a deep neural network. Finally, a small amount of labeled data is used to �ne-tune
training the entire deep neural network, and the locomotive adhesion state fault diagnosismodel is established. Experimental results
show that the proposed method can achieve a 99.3% locomotive adhesion state diagnosis accuracy and satisfy actual engineering
monitoring requirements.

1. Introduction

Precise diagnosis of the wheel-rail adhesion state is an
important prerequisite for adhesion control. Currently, the
wheel-rail adhesion state of a locomotive is mostly diagnosed
based on the detection and analysis of relevant parameters
to determine the type of adhesion state and the degree of
adhesion [1]. For the diagnosis of adhesion states, a sampling
eigenvector should be generated based on the creeping speed
of the driving wheel and the wheel-rail cohesion coe
cient,
a sample feature should be extracted, and the feature should
be coded; then, various intelligent algorithms should be used
to classify the eigenvector [2]. Many studies on the use of
neural networks in the adhesion �eld have been reported.
For example, Castillo et al. [3] used a neural network to
estimate the adhesion state in an ABS system. Castillo [4]
trained an arti�cial neural network to calculate the best
creep operating point for each road on the basis of tra
c
information collected by a vehicle sensor. Li Ningzhou [5]
studied the adhesion feature of the air brake of a locomotive
and used the optimized recursive neural network to optimize
the parameters of the adhesive controller and improve the

utilization rate of locomotive adhesion, thereby obtaining a
good experimental result.

	ese methods are more convenient and intelligent than
the general mechanism analysis method. However, these
methods still belong to the supervised learning area [6].	us,
they require su
cient data for feature extraction.Meanwhile,
extracting the right features is o�en relatively complex and
di
cult. To obtain labels, experiments and rich professional
knowledge are required. With the arti�cial participation fac-
tors, the uncertainty of feature extraction and optimization is
greatly increased, thereby making the diagnosis of the right
adhesion state di
cult. Furthermore, a traditional neural
network essentially uses hidden-layer neurons for nonlinear
transformation [7]. It can learn potential features froma given
sample and �t out an approximation function [8]. Taking the
classical BP neural network as an example, obtaining high-
precision features becomes more di
cult while the layers are
few. If the number of layers is excessive, then the gradientmay
disappear, and the local optimal solution is another defect
that is di
cult to overcome [9].

Sample feature extraction is a key step in determining
the accuracy of fault diagnosis [10]. 	e change in adhesion
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Figure 1: Schematic of adhesion.

state is a complex process that is a�ected by multiple factors,
producing a complex nonlinear relation between factors
and outcomes. Fault prediction and analysis are particularly
challenging. 	e introduction of deep learning [11] has made
a breakthrough in research on high-precision feature extrac-
tion. As an unsupervised learning algorithm, deep neural
network not only has an excellent feature extraction ability
but can also overcome the common problem of obtaining
sample labels [12]. 	us, deep neural network has become a
popular research area in the �eld of fault diagnosis [13–15].
	is paper proposes a sparse autoencoder deep neural net-
work with dropout to diagnose the wheel-rail adhesion state
of a locomotive. 	is deep neural network can signi�cantly
reduce the adverse e�ect of over�tting, making the learned
features more conducive to classi�cation and identi�cation.

	e rest of this paper is organized as follows: Section 2
describes the adhesion principle and characteristics. Section 3
describes the principle and process of the deep neural
network algorithm. Section 4 discusses the comparative
experimental research and result analysis. Section 5 presents
the conclusions.

2. Description of Adhesion Status

Adhesion is the ultimate manifestation of locomotive driving
force in the wheel-rail relationship and the fundamental
motive force for locomotives [16]. 	e wheel pair rolls
forward when subjected to a tangential traction, and the
rolling pressure causes deformation between the wheel and
the rail. Simultaneously, the gravity of the car body imposed
on the rail keeps the contact surface between the wheel and
the rail relatively stable.	is phenomenon is called adhesion.
As shown in Figure 1, the contact point between thewheel and
the rail is elastically deformed under the action of the wheel
load (P). 	e wheel rolls forward under the action of the
driving torque (T), the original contact surface deformation
develops into a new elliptical deformation, and the tractive
e�ort at the wheel rim (F) is generated.

Adhesion coe
cient � is typically de�ned as the ratio of
traction to axle weight (see (1)), where W is the axle weight

(kg) and � is the gravitational acceleration (m/s2).

� = �
� ⋅ � (1)
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Figure 2: Re�ned adhesion characteristic curve.

In the process of normal movement, the train body
speed (V�) is always less than the wheel speed (V�) due to
the wheel-rail microsliding generated by the deformation.
	is phenomenon is called creep, and the speed di�erence
between them is de�ned as creep speed V�.

V� = V� − V� (2)

Creep is a slight wheel-spin phenomenon produced by
the locomotive drive system. 	e adhesion coe
cient of the
rail contact surface rises constantly with the creep speed
within a certain range [17], and the locomotive has a great
available traction. Once the range is exceeded, the wheel-rail
adhesion coe
cient drops sharply with the increase in the
creep speed.

Figure 2 shows the adhesion characteristic curve of the
locomotive.	e adhesion peak point is taken as the boundary
in which the le� side is called the creep region and the right
side is called the slid region [4]. However, when the adhesion
state is divided into two categories, abnormal adhesion can
be identi�ed, but the predicted foundation of potential creep
failure cannot be provided. To this end, this paper further
re�nes the adhesion features: normal (N0), fault symptom
(N1), small fault (F1), and large fault (F2).

	e adhesion state is divided into four categories. When
a minor fault is encountered, fault tolerant control methods
[18] can be adopted to prevent serious system performance
deterioration [1].

3. Deep Neural Network

Unsupervised learning can be used to automatically learn
potential features from the samples without labels [19, 20].
	is method has a signi�cant advantage when addressing
complex problems, such as adhesion state recognition. 	e
sparse autoencoder is an unsupervised algorithm, and this
deep neural network can e�ectively extract the characteristics
that re�ect the adhesion state [21, 22].

3.1. Sparse Autoencoder. From the structural point of view,
the autoencoder is an axisymmetric single hidden-layer



Journal of Control Science and Engineering 3

neural network [23]. 	e autoencoder encodes the input
sensor data by using the hidden layer, approximates the
minimum error, and obtains the best-feature hidden-layer
expression [24]. 	e concept of the autoencoder comes
from the unsupervised computational simulation of human
perceptual learning [25], which itself has some functional
�aws. For example, the autoencoder does not learn any
practical feature through copying and inputtingmemory into
implicit layers, although it can reconstruct input data with
high precision. 	e sparse autoencoder inherits the idea of
the autoencoder and introduces the sparse penalty term,
adding constraints to feature learning for a concise expression
of the input data [26, 27].

For the adhesion state identi�cation of locomotive, k
sets of monitoring data {�1, �2, �3, . . . , �n} exist, which are
reconstructed into a N × M data set {�(1), �(2), �(3),
. . . , �(�)}, �(	) ∈ ��. 	ese data are used as input matrix
X. 	e input data encoded by the automatic encoder are
used to construct a mapping relationship. In this paper, the
activation function of the autoencoder is sigmoid, which
is designed to obtain a better representation of input data:
ℎ(,�, �) = �(� + �). A sparse penalty term is added
to the sparse autoencoder cost function to limit the average
activation value of the hidden-layer neuron. Normally, when
the output value of a neuron is 1, it is active, and the neuron is
inactive when its output value is 0. 	e purpose of enforcing
sparsity is to limit the undesired activation. ��(�) is set as
the jth activation value. In the process of feature learning,
the activation value of the hidden-layer neuron is usually
expressed as � = �	���	�(� + �), where W is the weight
matrix and b is the deviation matrix. 	e mean activation
value of the jth neuron in the hidden layer is de�ned as

�� = 1
�
�
∑
�=1

[�� (� (	))] . (3)

	e hidden layer is kept at a lower value to ensure that the
average activation value of the sparse parameter is de�ned as
�, and the penalty term is used to prevent �� from deviating
from parameter �. 	e Kullback–Leibler (KL) divergence
[28] is used in this study as the basis of punishment. 	e
mathematical expression of KL divergence is as follows:

�� (� ‖ ��) = � ln �
�� + (1 − �) ln 1 − �

1 − �� . (4)

When �� does not deviate from parameter �, the KL
divergence value is 0; otherwise, the KL divergence value will
gradually increase with the deviation.	e cost function of the
neural network is set as C (W, b). 	en, the cost function of
adding the sparse penalty term is

!�	
��� = ! (�, �) + "
2∑
�=1

�� (� ‖ ��) (5)

where #2 is the number of neurons in the implicit layer and "
is the weight of the sparse penalty term.	e training essence
of a neural network is to �nd the appropriate weight and
threshold parameter (W, b). A�er the sparse penalty term is
de�ned, the sparse expression can be obtained byminimizing
the sparse cost function.
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Figure 3: Schematic of the network structure.

3.2. So�max Regression. 	e sparse autoencoder can form
the deep network structure through the multilayer stack,
which can be used for feature learning and clustering of
the adhesion data collected by the sensor. However, this
autoencoder has no ability to classify. 	erefore, this paper
presents a deep neural network architecture that combines
the stacked sparse self-encoder and so�max regression. 	e
schematic of the network structure is shown in Figure 3.

So�max regression is an extension of the logistic regres-
sion model on multiple classi�cations [29]. 	e category tag
of the logistic regression can only take two values, whereas
the so�max tag can take on multiple values [30]. Let us

suppose m training samples of adhesion state {(�(1), $(1)),
(�(2), $(2)), ⋅ ⋅ ⋅ , (�(�), $(�))}, $(�) ∈ {1, 2, . . . , n}. 	e hypoth-
esis function is used to estimate the probability value %($ =
& | �) for each category &. 	e so�max output is de�ned as
follows:

ℎ� (�(�)) =
[[[[[[[
[

% ($(�) = 1 | �(�); /)
% ($(�) = 2 | �(�); /)

...
% ($(�) = 0 | �(�); /)

]]]]]]]
]

= 1
∑��=1 8��� �(�)

[[[[[[[[
[

8��1 �(�)

8��2 �(�)
...

8��� �(�)

]]]]]]]]
]

(6)

where /1/2, . . . /� ∈ R
�+1 is the model parameter.

1/∑��=1 8��� �(�) normalizes the probability distribution such

that the sum of all probabilities is 1.

3.3. Over	tting and L2 Regularization. L2 regularization is
a way of e�ectively reducing the neural network over�tting
[31]. In this study, this method is used to avoid overlearning
on features caused by synergies. 	e basic principles of L2
regularization are as follows:

!��	
��� = !�	
��� + : ‖<‖2 (7)
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Table 1: Description of adhesion state of locomotive wheel rail.

Di�erent types of States State representation

Normal Running with a low adhesion

Fault symptom Near the peak adhesion coe
cient

Small fault Across the peak adhesion point

Large fault Serious slip running unsafe already

where C�	
��� is the cost function of the neural network, :
is coe
cient, and ‖<‖2 is the penalty term. 	e greater the
coe
cient, the deeper the weight attenuation.

3.4. Framework of the Algorithm. 	e feature learning ability
of the single sparse autoencoder is limited. To construct a
model with improved feature extraction capacity, we stacked
the sparse autoencoders into a deep structure (SAE). In this
process, the output of the upper layer of the encoder is taken
as the input of the next layer to achieve amultilearning sample
feature. 	e �owchart of the deep neural network algorithm
is shown in Figure 4 and subsequently described.

(1)
e Creep Speed (V�) and Adhesion Coe�cient �Monitored
by the Sensor Are Used to Train the Sparse Autoencoder

(1) 	e parameters, such as the network learning rate
and the dropout parameter, are set; weights � and
thresholds � are initialized.

(2) 	e number of iterations is set, and the mean acti-
vation value �� and the sparse cost function are
calculated according to (3)–(5); the network param-
eters are updated based on the backpropagation (BP)
algorithm.

(2) 
e Deep Neural Network Is Fine-Tuned with a Small
Number of Labeled Samples

(1) With the abovementioned step, the parameters of
threshold � and weight � learned from the network
are saved.

(2) 	e L2 regularization and learning rates are set, and
the mean square error is calculated.

(3) 	e BP algorithm is used to update the weights of the
network and �ne-tune the entire network.

(3) 
e Performance of the Identi	cation Model Is Tested

(1) 	e sample size is usually 30% of the total number of
samples.

(2) According to the L2 coe
cient, the weight of neural
network is attenuated while performing the front-
propagation algorithm.

(3) 	e output of DNN is compared with the sample
labels, and comparative statistics are made.

4. Experimental Research and Analysis

For performance comparison with this dropout-based deep
neural network, a BP neural network and an optimized BP

Table 2: State type.

Di�erent types of states State encoding

Normal (N0) 000

Fault symptom (N1) 001

Small fault (F1) 010

Large fault (F2) 100

neural network based on a genetic algorithm (GA-BP) are
used as state recognition models. Taking the creep speed
(v�) and the adhesion coe
cient (�) of the locomotive as
characteristic signals, the adhesion features include normal
operation zone, wheel-spin warning zone, slight wheel-spin
zone, and serious wheel-spin. Detailed information is shown
in Table 1. 	e test sample added a Gaussian noise with
a mean of 0 and a variance of 0.02 for an improved �t
construction.

	e changes in the state of adhesion directly a�ect the
running safety of a locomotive. 	ese changes are re�ected
in the sensor monitoring data. In this section, the adhesion
state of the locomotive is identi�ed and diagnosed according
to the inherent characteristics of the sample data of deep
neural network based on the sparse autoencoder. In general,
the original data samples of sensors are divided into training
and test sets according to a 7:3 ratio. A total of 700 training
samples and 300 test samples are used in this experiment.

4.1. Simulation of the BP Neural Network. We need to set
parameters before the experiment. 	e number of hidden-
layer nodes is set according to the empirical formula > =
2� + 1, where � is the input dimension and l is the number
of hidden-layer nodes. In this study, the creep speed (V�) and
the adhesion coe
cient (�) are used as inputs, so that > should
be 5, and the adhesion state is expressed in binary form, as
shown in Table 2.	is BP neural network should be a 2 × 5 ×
3 structure (Figure 5). W is the weight and " is the bias of the
BP neural network. 	e mean square error curve is shown in
Figure 6.

To demonstrate the advantages of the proposed algo-
rithm, a genetic algorithm- (GA-) optimized BP neural net-
work is used as a contrast experiment.	e crossover operator
uses a single point crossover, the crossover probability is 0.7,
and themutation probability is 0.01.	e evolutionary process
of the GA is shown in Figure 7, and the error descent curve of
the BP neural network that is optimized by the GA is shown
in Figure 8.

4.2. Simulation of Sparse Autoencoder Deep Neural Network.
	e visualization of the target classi�cation is shown in
Figure 9 to provide a clear analysis of the classi�cation ability
of the proposed algorithm. 	e plane between the yellow
and blue modules is the desired classi�cation plane. In this
experiment, 1,000 sets of monitoring data are selected as
experimental samples, and the 7:3 ratio is used to divide the
samples into training and test samples. 	e actual results are
shown in Figure 10, which shows that the actual classi�cation
plane is basically consistent with the expected one.
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Figure 4: Flowchart of deep neural network algorithm.
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Figure 5: Schematic of the structure of the BP neural network.

Figure 9 shows the visualization of the classi�cation
target of adhesion status. In general, it is necessary to
divide the adhesion status into four di�erent statuses. 	ree
classi�cation planes are needed to achieve this (yellow and
blue junction in the �gure). 	e requirement of training

neural network to accurately classify the adhesion state of
locomotives is to make the test dataset also present a clear
classi�cation plane. 	e actual state division result is shown
in Figure 10. 	e classifying plane of the adhesion state is
clear.
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From the error histogram in Figure 11, the error dis-
tribution of the deep neural network in this chapter is
basically in linewith the normal distribution,whichmeets the
needs of practical application.	e accuracy of adhesion state
recognition is shown in Figures 12 and 13.	e horizontal axis
represents the desired target category, the vertical axis rep-
resents the experimentally predicted adhesion state category,
and the gray block shows the exact percentage of prediction
and expectation.

Figure 12 shows that the accuracy of the deep neural
network adhesion state recognition is 96.1%. 	e over�tting
of the neural network generally appears as the trained neural
network does not accurately identify the test samples. 	e
adhesion state is a continuously changing process; in order to
ensure the safety of driving, the identi�cation of the adhesion
state must be as accurate as possible. Since the recognition
accuracy rate does not reach the ideal state and there are
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signi�cantly more training samples than test samples, there
is ample reason to speculate that the deep neural network
used in this section has been over�tted. To improve this
phenomenon, the L2 regularization method was used to
attenuate the weights of the deep neural network. Figure 13
shows the results of the deep neural network adhesion state
recognition a�er L2 regularization.	e accuracy rate reaches

99.6%. 	e accuracy rate of the neural network for the
adhesion state test set is improved, and the proposed L2
regularization can improve the over�tting phenomenon that
may occur in the adhesion state recognition based on deep
neural network.

	e experimental results show that the SAE-based loco-
motive adhesion diagnosis can meet the requirements of
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Table 3: Test accuracy of the four methods.

Method
Type of adhesion state

N0 N1 F1 F2

BP 83.33 57.14 77.78 95.45

GA-BP 84.23 55.49 88.62 97.66

DNN 96.2 100 100 99.3

high-accuracy recognition under a reasonable error distribu-
tion. Table 3 presents the comparison of the three algorithms
in this paper with the traditional BP neural network and GA-
optimized neural network performance.

5. Conclusions

In this paper, an adhesion state fault diagnose method
based on SAE is proposed. 	e e�ectiveness of the proposed
method is validated by computer simulation.	e conclusions
are elaborated as follows:

(1) 	e adhesion state is divided into four categories,
which provide a strong basis for wheel skid warning.

(2)	esparse automatic encoder can extract data features
e�ectively, make classi�cation easier, and extract more robust
data features.

(3)Comparedwith the traditional BP neural network, the
deep neural network of the sparse autoencoders can ensure
e�ective fault diagnosis of the locomotive adhesion con-
dition.
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