
Deep Spatial Gradient and Temporal Depth Learning for Face Anti-spoofing

Zezheng Wang1 Zitong Yu2 Chenxu Zhao3,∗ Xiangyu Zhu4 Yunxiao Qin5 Qiusheng Zhou6

Feng Zhou1 Zhen Lei4

1AIBEE 2CMVS, University of Oulu 3Academy of Sciences, Mininglamp Technology
4CBSR&NLPR, CASIA 5Northwestern Polytechnical University 6JD Digits

{zezhengwang, fzhou}@aibee.com zitong.yu@oulu.fi zhaochenxu@mininglamp.com

{xiangyu.zhu, zlei}@nlpr.ia.ac.cn qyxqyx@mail.nwpu.edu.cn zhouqiusheng3@jd.com

Abstract

Face anti-spoofing is critical to the security of face

recognition systems. Depth supervised learning has been

proven as one of the most effective methods for face anti-

spoofing. Despite the great success, most previous works

still formulate the problem as a single-frame multi-task

one by simply augmenting the loss with depth, while ne-

glecting the detailed fine-grained information and the in-

terplay between facial depths and moving patterns. In con-

trast, we design a new approach to detect presentation at-

tacks from multiple frames based on two insights: 1) de-

tailed discriminative clues (e.g., spatial gradient magni-

tude) between living and spoofing face may be discarded

through stacked vanilla convolutions, and 2) the dynam-

ics of 3D moving faces provide important clues in detect-

ing the spoofing faces. The proposed method is able to

capture discriminative details via Residual Spatial Gra-

dient Block (RSGB) and encode spatio-temporal informa-

tion from Spatio-Temporal Propagation Module (STPM) ef-

ficiently. Moreover, a novel Contrastive Depth Loss is pre-

sented for more accurate depth supervision. To assess the

efficacy of our method, we also collect a Double-modal

Anti-spoofing Dataset (DMAD) which provides actual depth

for each sample. The experiments demonstrate that the

proposed approach achieves state-of-the-art results on five

benchmark datasets including OULU-NPU, SiW, CASIA-

MFSD, Replay-Attack, and the new DMAD. Codes will

be available at https://github.com/clks-wzz/

FAS-SGTD.

1. Introduction

Face recognition technology has become the most in-

dispensable component in many interactive AI systems for

∗ denotes the corresponding author.

Living Spoofing
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Figure 1. Spatial gradient magnitude difference between living (a)

and spoofing (b) face. Notice that the large difference in gradient

maps despite their similarities in the original RGB images.

their convenience and human-level accuracy. However,

most of existing face recognition systems are easily to be

spoofed through presentation attacks (PAs) ranging from

printing a face on paper (print attack) to replaying a face

on a digital device (replay attack) or bringing a 3D-mask

(3D-mask attack). Therefore, not only the research commu-

nity but also the industry has recognized face anti-spoofing

[18, 19, 4, 33, 39, 11, 23, 55, 1, 29, 12, 49, 45, 54, 21] as a

critical role in securing the face recognition system.

In the past few years, both traditional methods [14,

42, 9] and CNN-based methods [35, 38, 20, 24, 46] have

shown effectiveness in discriminating between the living

and spoofing face. They often formalize face anti-spoofing

as a binary classification between spoofing and living im-

ages. However, these approaches are challenging to explore

the nature of spoofing patterns, such as the loss of skin de-

tails, color distortion, moiré pattern, and spoofing artifacts.

In order to overcome this issue, many auxiliary depth

supervised face anti-spoofing methods have been devel-

oped. Intuitively, the images of living faces contain face-

like depth, whereas the images of spoofing faces in print and

by replaying carriers only have planar depth. Thus, Atoum

et al. [2] and Liu et al. [34] propose single-frame depth su-

pervised CNN architectures, and improve the presentation

attack detection (PAD) accuracy.

By surveying the past face anti-spoofing methods, we
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Figure 2. Temporal depth difference between live and spoof (print

attack here) scenes. The change in camera viewpoint can result in

facial motion among different keypoints. In the living scene (a),

the angle α between nose and right ear is getting smaller, while the

angle β1 between left ear and nose is getting larger. However, in

the spoofing scene (b), the observation could be different α′ < β′

2,

and β′

1 > γ′.

notice there are two problems that have not yet been fully

solved: 1) Traditional methods usually design local descrip-

tors for solving PAD while modern deep learning methods

can learn to extract relatively high-level semantic features

instead. Despite their effectiveness, we argue that low-level

fine-grained patterns can also play a vital role in distin-

guishing living and spoofing faces, e.g. the spatial gradi-

ent magnitude shown in Fig. 1. So how to aggregate local

fine-grained information into convolutional networks is still

unexplored for face anti-spoofing task. 2) Recent depth su-

pervised face anti-spoofing methods [2, 34] estimate facial

depth based on a single frame and leverage depth as dense

pixel-wise supervision in a direct manner. We argue that the

virtual discrimination of depth between living and spoofing

faces can be explored more adequately by multiple frames.

A vivid and exaggerated example with assumed micro mo-

tion is illustrated in Fig. 2.

To address the problems, we present a novel depth super-

vised spatio-temporal network with Residual Spatial Gradi-

ent Block (RSGB) and Spatio-Temporal Propagation Mod-

ule (STPM). Inspired by ResNet [22] , our RSGB aggre-

gates learnable convolutional features with spatial gradi-

ent magnitude via shortcut connection. As a result, both

local fine-grained patterns and traditional convolution fea-

tures can be captured via stacked RSGB. To better utilize

the information from multiple frames, STPM is designed

for propagating short-term and long-term spatio-temporal

features into depth reconstruction. To supervise the models

with facial depth more effectively, we propose a Contrastive

Depth Loss (CDL) to learn the topography of facial points.

We believe that the accuracy of facial depth directly af-

fects the establishment of the relationship between tempo-

ral motion and facial depth. So we collect a double-modal

anti-spoofing dataset named Double-modal Anti-spoofing

Dataset (DMAD) which provides actual depth map for each

sample. Extensive experiments are conducted to show that

actual depth is more appropriate for monocular PAD than

the generated depth. Note that this paper mainly focuses on

the planar attack, which is the most common in practice.

We summarize the main contributions below.

• We propose a novel depth supervised architecture to

capture discriminative details via Residual Spatial Gra-

dient Block (RSGB) and encode spatio-temporal in-

formation from Spatio-Temporal Propagation Module

(STPM) efficiently from monocular frame sequences.

• We develop a Contrastive Depth Loss to learn the to-

pography of facial points for depth supervised PAD.

• We collect a double-modal dataset to verify that the ac-

tual depth is more appropriate for monocular PAD than

the generated depth. This indicates an insight that col-

lecting corresponding depth image to the RGB image

brings benefit to the progress of the monocular PAD.

• We demonstrate the state-of-the-art performance by

our method on widely used face anti-spoofing bench-

marks.

2. Related Work

Roughly speaking, previous face anti-spoofing works

generally fall into three categories: binary supervised, depth

supervised, and temporal-based methods.

Binary supervised Methods Since face anti-spoofing is

essentially a binary classification problem, most of pre-

vious anti-spoofing methods train a classifier under bi-

nary supervision, e.g., spoofing face as 0 and living face

as 1. The early works usually rely on hand-crafted fea-

tures, such as LBP [14, 15, 37], SIFT [42], SURF [9],

HoG [28, 52], DoG [43, 48], and traditional classifiers, such

as SVM and Random Forests. Because of the sensitiveness

of manually-engineered features, traditional methods often

generalize poorly across varied conditions such as camera

devices, lighting conditions and presentation attack instru-

ments (PAIs). Recently, CNN has emerged as a powerful

tool in face anti-spoofing tasks with the help of hardware

advancement and data abundance. For instance, in early

works like [30, 41], pre-trained VGG-face model is fine-

tuned to extract features in a binary-classification setting.

However, most of them consider face anti-spoofing as a bi-

nary classification problem with cross-entropy loss, which

easily learns the arbitrary patterns such as screen bezel.

Depth supervised Methods Compared with the binary

setting, depth supervised methods aim to learn more faith-

ful patterns. In [2], the depth map of a face is utilized

as a supervisory signal for the first time. They propose a

two-stream CNN-based approach for face anti-spoofing, by

extracting both the patch features and holistic depth maps

from the face images. It shows that depth estimation is ben-

eficial for modeling face anti-spoofing to obtain promising

results, especially on higher-resolution images. In another

work [34], the authors propose a face anti-spoofing method

by augmenting spatial facial depth as an auxiliary supervi-
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Figure 3. Illustration of the overall framework. The inputs are consecutive frames with a fixed interval. Each frame is processed by cascaded

RSGB with a shared backbone which generates a corresponding coarse depth map. The number in RSGB cubes denotes the output channel

number of RSGB. STPM is plugged between frames for estimating the temporal depth, which is used for refining the corresponding coarse

depth map. The framework works well by learning with the overall loss functions.

sion along with temporal rPPG signals. More recently, [26]

attempts to learn spoof noise and depth for generalized face

anti-spoofing. However, these methods take stacked vanilla

convolutional networks as the backbone and fail to capture

the rich detailed patterns for depth estimation.

Temporal-based Methods Temporal information plays

a vital role in face anti-spoofing tasks. Most of the prior

works focus on the movement of key parts of the face. For

example in [40, 41], the eye-blinking fact is used to predict

spoofing. However, these methods are vulnerable to replay

attacks since they heavily rely on some heuristic assump-

tions about the nature of these attacks. More general ap-

proaches like 3D convolution [20] or LSTM [50, 53] have

recently been used to distinguish the live from spoof im-

ages. In addition, optical flow magnitude map and Shearlet

feature have been taken as inputs in [16] to the CNN due to

the obvious difference in flow patterns between living and

spoofing faces. Based on the different color changes be-

tween the living and spoofing face videos, rPPG [31, 34, 32]

features are also explored for PAD. To the best of our

knowledge, no depth supervised temporal-based methods

has ever been proposed for face anti-spoofing task.

3. The Proposed Approach

In this section, we first present our advanced depth-

supervised spatio-temporal network structure, including

Residual Spatial Gradient Block (RSGB) and Spatio-

Temporal Propagation Module (STPM). Then our proposed

novel Contrastive Depth Loss (CDL) and the overall loss

would be demonstrated.

3.1. Network Structure

Designed in an end-to-end depth supervised fashion, our

proposed framework takes Nf -frame face images as in-

put and predicts the corresponding depth map directly. As

3x3 Conv

Depthwise Spatial
Gradient Magnitude Normalization

Normalization
      ReLU

Figure 4. Residual spatial gradient block.

shown in Fig. 3, the backbone is composed of cascaded

RSGB followed by pooling layers, intending to extract fine-

grained spatial features in low-level, mid-level and high-

level, respectively. Then these multi-level features are con-

catenated to predict coarse depth map for each frame.

In order to capture rich dynamic information, STPM

is plugged between frames. Short-term Spatio-Temporal

Block (STSTB) picks up spatio-temporal features from ad-

jacent frames while ConvGRU propagates these short-term

features in a multi-frame long-term view. Finally, the tem-

poral depth maps estimated from STPM are used to refine

the coarse depth from the backbone.

3.1.1 Residual Spatial Gradient Block

Fine-grained spatial details are vital for distinguishing
the bona fide and attack presentations. As illustrated in
Fig. 1, the gradient magnitude response between the living
(Fig. 1(a)) and spoofing (Fig. 1(b)) face is quite different,
which gives the insight to design a residual spatial gradi-
ent block (RSGB) for capturing such discriminative clues.
In this paper, we take the well-known Sobel [27] operation
to compute gradient magnitude. In a nutshell, the horizon-
tal and vertical gradients can be derived from the following

5044



convolutions respectively:

Fhor(x)=





−1 0 +1
−2 0 +2
−1 0 +1



⊙x, Fver(x)=





−1 −2 −1
0 0 0
+1 +2 +1



⊙x,

(1)

where ⊙ denotes the depthwise convolution operation, and

x represents the input feature maps. As shown in Fig. 4,

our RSGB adopts the advanced shortcut connection struc-

ture to aggregate the learnable convolutional features with

gradient magnitude information, which intends to enhance

representation ability of fine-grained spatial details. It can

be formulated as

y = φ(N (F (x, {Wi}) +N (Fhor(x
′

)2 + Fver(x
′

)2))),
(2)

where x represents the input features maps while x
′

denotes

the feature maps altered through 1x1 convolution, which in-

tends to keep the consistent channel numbers for subsequent

residual addition. y denotes the output feature maps. N
and φ denote the normalization and Relu layer, respectively.

The function F (x, {Wi}) represents the residual gradient

magnitude mapping to be learned. Note that the proposed

RSGB is able to plug in both image and feature levels, ex-

tracting rich spatial context for depth regression task.

3.1.2 Spatio-Temporal Propagation Module

Virtual discrimination of depth between living and spoof-

ing faces can be explored adequately by multiple frames.

Therefore, we design STPM to extract multi-frame spatio-

temporal features for depth estimation, via Short-term

Spatio-Temporal Block (STSTB) and ConvGRU.

STSTB. As illustrated in Fig. 3, STSTB extracts the

generalized short-term spatio-temporal information by fus-

ing five kinds of features: the current compressed features

Fl(t), the current spatial gradient features FS
l (t), the future

spatial gradient features FS
l (t + △t), the temporal gradi-

ent features FT
l (t), and the STSTB features from the pre-

vious level STSTBl−1(t). The fused features can pro-

vide weighted spatial and temporal information in a learn-

able/adaptive way. In this paper, the spatial and tempo-

ral gradients are implemented with Sobel-based depthwise

convolution (similar to Eq. 1) and element-wise subtraction

of temporal features, respectively. Note that the 1x1 convo-

lutions intend to compress the channel number with more

efficiency.

Different from the related OFF [47] work, we consider

both spatial gradient of the current compressed features

FS
l (t) and future spatial gradient features FS

l (t+△t) while

OFF only considers FS
l (t). Moreover, current compressed

feature Fl(t) itself also plays an important role in recover-

ing the fine depth map, which is concatenated in STSTB

as well. The detailed comparison between STSTB and OFF

will be studied in Sec. 5.3, which shows the advancement of

STSTB especially for depth-supervised face anti-spoofing

task.

ConvGRU. As short-term information between two

consecutive frames from STSTB has limited representation

ability, it is natural to use the recurrent neural network to

capture long-range spatio-temporal context. However, the

classical LSTM and GRU [13] neglect the spatial informa-

tion in hidden units. In consideration of the spatial neighbor

relationship in the hidden layers, ConvGRU is conducted

for propagating the long-range spatio-temporal information.

ConvGRU can be described as below:

Rt = σ(Kr ⊗ [Ht−1, Xt]), Ut = σ(Ku ⊗ [Ht−1, Xt]),

Ĥt = tanh(K
ĥ
⊗ [Rt ∗Ht−1, Xt]),

Ht = (1− Ut) ∗Ht−1 + Ut ∗ Ĥt, (3)

where Xt, Ht, Ut and Rt are the matrix of input, output,

update gate and reset gate, Kr,Ku,Kĥ
are the kernels in

the convolution layer, ⊗ is convolution operation, ∗ denotes

element wise product, and σ denotes the sigmoid activation

function.

3.1.3 Depth Map Refinement

Forwarding the RSGB based backbone and STPM for a

given Nf -frame input, we could obtain the correspond-

ing coarse depth maps Dt
single and temporal depth maps

Dt
multi, respectively, where t ∈ [1, Nf − 1] denotes the

t-th frame. Then Dt
multi is utilized to refine Dt

single in a

weighted summation manner:

Dt
refined = (1− α) · Dt

single + α · Dt
multi, α ∈ [0, 1], (4)

where α is the trade-off weight between Dt
single and Dt

multi.

The higher value of α indicates the more importance about

the multi-frame spatio-temporal features. Finally, Nf − 1

refined depth maps {Dt
refined}

Nf−1

t=1
are obtained.

3.2. Loss Function

Besides designing the network architecture, we also need

an appropriate loss function to guide the network training.

One major step-forward of the current study is that we de-

sign a novel Contrastive Detph Loss, which is able to com-

bine with classical loss, further boosting performance.

3.2.1 Contrastive Detph Loss

In the classical depth-based face anti-spoofing, Euclidean

Distance Loss (EDL) is usually used for pixel-wise super-

vision, which is formulated:

LEDL =||DP − DG||22, (5)
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Figure 5. Contrastive Depth Loss. The purple, yellow, and white

pieces indicate 1, -1, and 0, respectively. There are totally eight

contrastive convolution kernels in CDL.

where DP and DG are the predicted depth and groundtruth

depth, respectively. EDL applies supervision on the pre-

dicted depth based on pixel one by one, ignoring the depth

difference among adjacent pixels. Intuitively, EDL merely

assists the network to learn the absolute distance between

the objects to the camera. However, the distance relation-

ship of different objects is also important to be supervised

for the depth learning. Therefore, as shown in Fig. 5, we

propose the Contrastive Depth Loss (CDL) to offer extra

strong supervision, which improves the generality of the

depth-based face anti-spoofing model:

LCDL =
∑

i

||KCDL

i ⊙ DP − K
CDL

i ⊙ DG||
2

2, (6)

where KCDL
i is the ith contrastive convolution kernel, i ∈

[0, 7]. The details of the kernels can be found in Fig. 5.

3.2.2 Overall Loss

In view of the potentially unclear depth map, we hereby

consider a binary loss when looking for the difference be-

tween living and spoofing depth map. Note that the depth

supervision is decisive, whereas the binary supervision

takes an assistant role to discriminate the different kinds of

depth maps.

Lbinary = −BG ∗ log(fcs(Davg)), (7)

Loverall = β · Lbinary + (1− β) · (LEDL + LCDL), (8)

where BG is the binary groundtruth label, Davg is the

pool averaged map of {Dt
refined}

Nf−1

t=1
, and fcs denotes

two fully connected layers and one softmax layer after the

element-wise averaged depth maps, which outputs the logits

of two classes, β is the hyper-parameter to trade-off binary

loss and depth loss in the final overall loss Loverall.

4. Double-modal Anti-spoofing Dataset

In this work, we collect a real double-modal dataset

(RGB and Depth). There are three kinds of display ma-

terials in replay attack: AMOLED screen, OLED screen,

IPS/TFT screen. Meanwhile, three kinds of paper materials

in print attacks are adopted: high-quality A4 paper, coated

Figure 6. Some examples of DMAD. The actual depth is more

precise than the generated depth.

Table 1. The details of our collected DMAD. This protocol of split-

ting subsets aims to evaluate the generalization of methods under

unseen presentation materials.
Subset Subject Session Modal Types Presentation Material # of live/attack vid.

Train
1˜100 1˜3 RGB, Depth A4 Paper, AMOLED 900

101˜200 1˜3 RGB, Depth Coated Paper, OLED 900

Test 201˜300 1˜3 RGB, Depth Poster Paper, IPS/TFT 900

paper, and poster paper. The capture camera is RealSense

SR300, which can offer corresponding RGB and Depth im-

ages. There are 300 subjects, each of which is recorded in

three sessions and contains one real category and two attack

categories (print and replay). Totally, we obtain 2700 sam-

ples (4˜12 seconds videos) in less than two months with two

human workers. Tab. 1 demonstrates the details of DMAD,

and Fig. 6 shows some corresponding examples.

5. Experiments

5.1. Databases and Metrics

5.1.1 Databases

Five databases - OULU-NPU [10, 5], SiW [34], CASIA-

MFSD [56], Replay-Attack [12], DMAD are used in our

experiment. OULU-NPU [10] is a high-resolution database,

consisting of 4950 real access and spoofing videos and con-

taining four protocols to validate the generalization of mod-

els. SiW [34] contains more live subjects and three proto-

cols are used for testing. CASIA-MFSD [56] and Replay-

Attack [12] both contain low-resolution videos.

5.1.2 Performance Metrics

In OULU-NPU and SiW dataset, we follow the original pro-

tocols and metrics for a fair comparison. OULU-NPU, SiW

and DMAD utilize 1) Attack Presentation Classification Er-

ror Rate APCER, which evaluates the highest error among

all PAIs (e.g. print or display), 2) Bona Fide Presentation

Classification Error Rate BPCER, which evaluates the er-

ror of real access data, and 3) ACER [25], which evaluates

the mean of APCER and BPCER:

ACER =
APCER+BPCER

2
. (9)
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HTER is adopted in the cross-database testing between

CASIA-MFSD and Replay-Attack, evaluating the mean of

False Rejection Rate (FRR) and False Acceptance Rate

(FAR):

HTER =
FRR+ FAR

2
. (10)

5.2. Implementation Details

5.2.1 Depth Generation

Dense face alignment method PRNet [17] is adopted to esti-

mate the 3D shape of the living face and generate the facial

depth map DG ∈ R
32×32. A typical sample can be found

in the third row of Fig. 6. To distinguish living faces from

spoofing faces, at the training stage, we normalize living

depth map in a range of [0, 1], while setting spoofing depth

map to 0, which is similar to [34].

5.2.2 Training Strategy

The proposed method is trained with a two-stage strategy:

Stage 1: We train the backbone with cascaded RSGB by the

depth loss LEDL and LCDL, in order to learn a fundamen-

tal representation to predict coarse depth maps. Stage 2: We

fix the parameters of the backbone, and train the STPM part

by the overall loss Loverall for refining depth maps. Our

networks are fed by Nf frames, which are sampled by an

interval of three frames. This sampling interval makes sam-

pled frames maintain enough temporal information in the

limited GPU memory.

5.2.3 Testing Strategy

For the final classification score, we feed the sequen-

tial frames into the network and obtain depth maps

{Dt
refined}

Nf−1

t=1
and the living logits b̂ in fcs(Davg). The

final living score can be obtained by:

score = β · b̂+(1−β) ·
∑Nf−1

t=1
||Dt

refined ∗ Mt||1
Nf − 1

, (11)

where β is the same as that in equation 8, Mt is the mask of

face at frame t , which can be generated by the dense face

landmarks in PRNet [17], and the second module denotes

that we compute the mean of depth values in the facial areas

as one part of the score.

5.2.4 Hyper-parameter Setting

Our proposed method is implemented in Tensorflow, with

a learning rate of 1e-4 for single-frame part and 1e-2 for

multi-frame part. The batch size of single-frame part is 48,

and that of multi-frame part is 2 with Nf being 5 in our
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Figure 7. Ablation study of α in Eq. 4 on OULU-NPU Protocol

3. The red line denotes the mean ACER(%) value while the or-

ange/blue area denotes the range of standard deviation.

Table 2. The results of ablation study on OULU-NPU Protocol 3.
Module LCDL RSGB STSTB OFF ConvGRU Lbinary ACER(%)

Model 1 6.25±3.20

Model 2
√

5.07±1.83

Model 3
√ √

3.19±0.90

Model 4
√ √ √

2.99±0.72

Model 5
√ √ √ √

2.85±0.49

Model 6
√ √ √ √ √

3.20±1.00

Model 7
√ √ √ √ √

2.71±0.63

experiment. Adadelta optimizer is used in our training pro-

cedure, with ρ as 0.95 and ǫ as 1e-8. We set α = 0.6 and

β = 0.8 by our experimental experience.

5.3. Experimental Comparison

5.3.1 Ablation Study

Seven architectures are implemented to demonstrate the ef-

ficacy of vital parts (i.e., RSGB, STPM and loss functions)

in the proposed method. As shown in Tab. 2, Model 1 can be

treated as a raw baseline, consisting of a backbone network

with stacked vanilla convolutions. Model 2 is supervised

with extra contrastive depth loss. Based on Model 2, vanilla

convolutions are replaced by RSGB in Model 3. Moreover,

Model 4 and Model 5 are designed for validating the ef-

fectiveness of STSTB and ConvGRU. In Model 6, STSTB

is replaced by normal OFF [47]. Model 7 is our complete

architecture with all modules and losses.

Efficacy of the Modules and Loss Functions. It can

be seen from Tab. 2 that Model 2 outperforms Model 1,

which means our proposed CDL helps to estimate more

accurate depth maps. With the progressive lower ACER

of Model 3, Model 4 and Model 5, it is clear that RSGB,

STSTB and ConvGRU contribute to extract effective dis-

criminative features respectively. Finally, in comparison

between Model 5 and Model 7, binary supervision indeed

assists to distinguish live vs. spoof.

STSTB vs. OFF. As illustrated in Tab. 2, Model 7

with STSTB surpasses Model 6 with OFF for a large mar-

gin, which implies that the current and future gradient in-

formation is valuable for spatio-temporal face anti-spoofing

task. Model 6 even achieves inferior result compared with

Model 3, indicating that it is challenging to design an effec-

tive temporal module for depth regression task.
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Table 3. The results of intra-database testing on four protocols of

OULU-NPU. For a fair comparison, here the results STASN [53]

trained without extra private dataset are reported.
Prot. Method APCER(%) BPCER(%) ACER(%)

1

CPqD [6] 2.9 10.8 6.9

GRADIANT [6] 1.3 12.5 6.9

STASN [53] 1.2 2.5 1.9

Auxiliary [34] 1.6 1.6 1.6

FaceDs [26] 1.2 1.7 1.5

OURs 2.0 0.0 1.0

2

MixedFASNet [6] 9.7 2.5 6.1

FaceDs [26] 4.2 4.4 4.3

Auxiliary [34] 2.7 2.7 2.7

GRADIANT [6] 3.1 1.9 2.5

STASN [53] 4.2 0.3 2.2

OURs 2.5 1.3 1.9

3

MixedFASNet [6] 5.3±6.7 7.8±5.5 6.5±4.6

GRADIANT [6] 2.6±3.9 5.0±5.3 3.8±2.4

FaceDs [26] 4.0±1.8 3.8±1.2 3.6±1.6

Auxiliary [34] 2.7±1.3 3.1±1.7 2.9±1.5

STASN [53] 4.7±3.9 0.9±1.2 2.8±1.6

OURs 3.2±2.0 2.2±1.4 2.7±0.6

4

Massy HNU [6] 35.8±35.3 8.3±4.1 22.1±17.6

GRADIANT [6] 5.0±4.5 15.0±7.1 10.0±5.0

Auxiliary [34] 9.3±5.6 10.4±6.0 9.5±6.0

STASN [53] 6.7±10.6 8.3±8.4 7.5±4.7

FaceDs [26] 1.2±6.3 6.1±5.1 5.6±5.7

OURs 6.7±7.5 3.3±4.1 5.0±2.2

Importance of Spatio-temporal Information for

Depth Refinement. It can be seen from Eq. 4 that the

depth map refinement is conducted in a weighted summa-

tion manner and hyperparameter α controls the contribu-

tion of the temporal depth maps predicted by STPM. As

shown in Fig. 7, with appropriate valuel of α, the model can

be benefited from spatio-temporal information and achieves

better performance than that using only spatial information

(α = 0.0). And the best performance can be obtained when

α = 0.6.

Influence of Sampling Interval in Spatio-temporal

Architecture. We conduct experiments on one sub-

protocol of Protocol 3 with various sampling intervals (△t).

When △t euqals to 1, 3, 5, and 7 frame(s), the ACER is

3.347%, 2.927%, 4.223%, and 2.934%, respectively. The

ACER is the lowest when △t = 3, which is used as the

default setting for the following intra- and cross-database

testing.

5.3.2 Intra-database Testing

We compare the performance of intra-database testing on

OULU-NPU, SiW and DMAD datasets. There are four

protocols in OULU-NPU for evaluating the generalization

of the developed face presentation attack detection (PAD)

methods. Protocol 1 and Protocol 2 are designed to eval-

uate the generalization of PAD methods under previously

unseen illumination scene and under unseen attack medium

(e.g., unseen printers or displays), respectively. Protocol 3

utilizes a Leave One Camera Out (LOCO) protocol, in or-

Table 4. The results of intra-database testing on three protocols of

SiW [34].
Prot. Method APCER(%) BPCER(%) ACER(%)

1

Auxiliary [34] 3.58 3.58 3.58

STASN [53] – – 1.00

OURs 0.64 0.17 0.40

2

Auxiliary [34] 0.57±0.69 0.57±0.69 0.57±0.69

STASN [53] – – 0.28±0.05

OURs 0.00±0.00 0.04±0.08 0.02±0.04

3

STASN [53] – – 12.10±1.50

Auxiliary [34] 8.31±3.81 8.31±3.80 8.31±3.81

OURs 2.63±3.72 2.92±3.42 2.78±3.57

Table 5. The results of intra-database testing on DMAD.
Method Depth Map APCER(%) BPCER(%) ACER(%)

Model 7
Generated 9.17 3.48 6.33

Actual 6.36 2.75 4.55

der to study the effect of the input camera variation. Pro-

tocol 4 considers all the above factors and integrates all the

constraints from protocols 1 to 3, so protocol 4 is the most

challenging.

Results on OULU-NPU. As shown in Tab. 3, our pro-

posed method ranks first on all 4 protocols, which indicates

the proposed method performs well at the generalization of

the external environment, attack mediums and input camera

variation. It’s worth noting that our model has the lowest

mean and std of ACER in protocol 3 and 4, indicating its

good accuracy and stablity.

Results on SiW. Tab. 4 compares the performance

of our method with two state-of-the-art methods Auxil-

iary [34] and STASN [53] on SiW dataset. According to

the purposes of three protocols on SiW and the results in

Tab. 4, we can see that our method performs great advan-

tages on the generalization of (a) variations of face pose

and expression, (b) variations of different spoof mediums,

(c) cross presentation attack instruments.

Results on DMAD. The results of intra-database test-

ing on DMAD are shown in Tab. 5. In this experiment, we

still set spoofing depth map to zero when training the actual

depth model. Tab. 5 shows that the ACER(%) of multi-

frame model (Model 7) supervised by actual depth obtains

1.78 lower than that supervised by generated depth. This

demonstrates the actual depth map brings benefit to the im-

provement of monocular face anti-spoofing.

5.3.3 Cross-database Testing

We utilize four datasets (CASIA-MFSD, Replay-Attack,

SiW and OULU-NPU) to perform cross-database testing for

measuring the generalization potential of the models.

Results on CASIA-MFSD and Replay-Attack. In

this experiment, there are two cross-database testing pro-

tocols. One is training on the CASIA-MFSD and testing

on Replay-Attack, which we name protocol CR; the other

is training on the Replay-Attack and testing on CASIA-
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Table 6. The results of cross-database testing between CASIA-

MFSD and Replay-Attack. The evaluation metric is HTER(%).

Method
Train Test Train Test

CASIA-

MFSD

Replay-

Attack

Replay-

Attack

CASIA-

MFSD

Motion [15] 50.2 47.9

LBP-1 [15] 55.9 57.6

LBP-TOP [15] 49.7 60.6

Motion-Mag [3] 50.1 47.0

Spectral cubes [44] 34.4 50.0

CNN [51] 48.5 45.5

LBP-2 [7] 47.0 39.6

STASN [53] 31.5 30.9

Colour Texture [8] 30.3 37.7

FaceDs [26] 28.5 41.1

Auxiliary [34] 27.6 28.4

OURs 17.0 22.8

Table 7. The results of cross-database testing from SiW to OULU-

NPU dataset.
Prot. Method APCER(%) BPCER(%) ACER(%)

1
Auxiliary [34] – – 10.0

OURs 1.7 13.3 7.5

2
Auxiliary [34] – – 14.1

OURs 9.7 14.2 11.9

3
Auxiliary [34] – – 13.8±5.7

OURs 17.5±4.6 11.7±12.0 14.6±4.8

4
Auxiliary [34] – – 10.0±8.8

OURs 0.8±1.9 10.0±11.6 5.4±5.7

MFSD, which we name protocol RC. In Tab. 6, it is shown

that HTER(%) of our proposed method is 17.0 on protocol

CR and 22.8 on protocol RC, reducing 38.4% and 19.7%

respectively compared with the previous state of the art.

The improvement of performance on cross-database testing

demonstrates the good generalization of proposed method.

Results from SiW to OULU-NPU. Here, It is shown

that the cross-database testing results trained on SiW and

tested on OULU-NPU in Tab. 7. It can be seen that our

method outperforms Auxiliary [34] on three protocols (de-

crease 2.5%, 2.2% and 4.6% of ACER on protocol 1, pro-

tocol 2 and protocol 4, respectively). In protocol 3, ACER

of our method is 14.6±4.8% and slightly higher than that of

Auxiliary. Considering the rPPG used in Auxiliary method,

it may also be a good choice combined with proposed

method.

5.3.4 Visualization and Analysis

The predicted depth maps of hard samples in OULU-NPU

Protocol 3 are partly visualized in Fig. 8. It can be seen

that some samples are difficult for the single-frame PAD

to be detected. In contrary, our multi-frame methods with

STPM can estimate more precise depth maps than those of

single-frame method. The difference of depth images from

real and attack samples in third row is also more significant,

indicating the good discriminative information with the re-

sults of STPM.

Input

Single
Frame

Multi
Frame

Living Spoofing

Figure 8. The generated results of hard samples in OULU-NPU.

The predicted coarse depth maps from stacked RSGB backbone

and temporal depth maps from STPM are illustrated in the second

and third row, respectively.

Figure 9. Feature distribution visualization of the testing videos

on OULU-NPU Protocol 1 using t-SNE [36] . Left: fea-

tures w/o RSGB, Right: features w/ RSGB. Color indi-

cates red=live, green=printer1, blue=printer2, orange=display1,

black=display2.

Feature distribution of the testing videos on OULU-NPU

Protocol 1 is shown in Fig. 9. The right image (w/ RSGB)

presents more well-clustered behavior than the left image

(w/o RSGB), which demonstrates the excellent discrimina-

tion ability of our proposed RSGB for distinguishing the

living and spoofing faces.

6. Conclusions

In this paper, we propose a novel face anti-spoofing

method, which exploits fine-grained spatio-temporal infor-

mation for facial depth estimation. In our method, Residual

Spatial Gradient Block (RSGB) is utilized to detect more

discriminative details while Spatio-Temporal Propagation

Module (STPM) to encode spatio-temporal information. An

extra Contrastive Depth Loss (CDL) is designed to improve

the generality of depth-supervised PAD. We also investigate

the effectiveness of actual depth map in face anti-spoofing.

Extensive experiments demonstrate the superiority of our

method.
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On the effectiveness of local binary patterns in face anti-

spoofing. In Biometrics Special Interest Group, pages 1–7,

2012.

[13] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and

Yoshua Bengio. Empirical evaluation of gated recurrent

neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[14] Tiago de Freitas Pereira, André Anjos, José Mario De Mar-

tino, and Sébastien Marcel. Lbp- top based countermea-

sure against face spoofing attacks. In ACCV, pages 121–132,

2012.

[15] Tiago de Freitas Pereira, André Anjos, José Mario De Mar-
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