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Abstract

Human sketches are unique in being able to capture

both the spatial topology of a visual object, as well as

its subtle appearance details. Fine-grained sketch-based

image retrieval (FG-SBIR) importantly leverages on such

fine-grained characteristics of sketches to conduct instance-

level retrieval of photos. Nevertheless, human sketches are

often highly abstract and iconic, resulting in severe mis-

alignments with candidate photos which in turn make sub-

tle visual detail matching difficult. Existing FG-SBIR ap-

proaches focus only on coarse holistic matching via deep

cross-domain representation learning, yet ignore explicitly

accounting for fine-grained details and their spatial con-

text. In this paper, a novel deep FG-SBIR model is pro-

posed which differs significantly from the existing models in

that: (1) It is spatially aware, achieved by introducing an

attention module that is sensitive to the spatial position of

visual details; (2) It combines coarse and fine semantic in-

formation via a shortcut connection fusion block; and (3) It

models feature correlation and is robust to misalignments

between the extracted features across the two domains by

introducing a novel higher-order learnable energy func-

tion (HOLEF) based loss. Extensive experiments show that

the proposed deep spatial-semantic attention model signifi-

cantly outperforms the state-of-the-art.

1. Introduction

With the proliferation of touch-screen devices, a num-

ber of sketch-based computer vision problems have at-

tracted increasing attention, including sketch recognition

[47, 36, 3, 32], sketch-based image retrieval [46, 24, 10],

sketch-based 3D model retrieval [39], and forensic sketch

analysis [14, 28]. Among them, using a sketch to retrieve a

specific object instance, or fine-grained sketch-based image

retrieval (FG-SBIR) [15, 46, 31] is of particular interest due

to its potential in commercial applications such as searching

online product catalogues for shoes, furniture, and hand-
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Figure 1. FG-SBIR is challenging due to the misalignment of the

domains (left) and subtle local appearance differences between a

true match photo and a visually similar incorrect match (right).

bags by finger-sketching on a smart-phone screen.

FG-SBIR is a very challenging problem and remains un-

solved. First, there is a large domain gap between sketch

and photo – a sketch captures mainly object shape/contour

information and contains no information on colour and very

little on texture. Second, FG-SBIR is typically based on

free-hand sketches which are drawn based on mental rec-

ollection of reference images shown moments before the

drawing stage, making free-hand sketches distinctly more

abstract than line tracings (human edgemaps). As a result,

a sketch and its matched photo could have large discrep-

ancies in shape and spatial misalignment both globally and

locally. Finally, as an object instance recognition problem,

given a query sketch, there are often many visually sim-

ilar candidate photos in the gallery; the correct match and

wrong matches may only differ subtly in some localised ob-

ject parts. Some of these challenges are illustrated in Fig. 1.

Existing FG-SBIR models focus primarily on closing

the semantic gap between the two domains whilst only

partially addressing or completely ignoring the latter two

challenges. Specifically, state-of-the-art FG-SBIR models

[46, 31] adopt a multi-branch deep convolutional neural net-

works (CNNs). Each domain has a corresponding branch

which consists of multiple convolutional/pooling layers fol-

lowed by fully connected (FC) layers. The final FC layer

is used as input to pairwise verification or triplet ranking

losses to align the domains. However, recent efforts [6, 22]

on visualising what each layer of a CNN actually learns
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show that higher-layers of the network capture more ab-

stract semantic concepts but not fine-grained detail, moti-

vating fine-grained recognition methods to work with con-

volutional feature maps instead [17]. After many pooling

and FC layers, the spatial fine-grained details is gone and

cannot be recovered. Thus existing deep FG-SBIR mod-

els are unable to tell apart visually similar photos based on

subtle differences.

In this paper, we introduce spatial-semantic attention

modelling in deep FG-SBIR. The architecture of the pro-

posed model is shown in Fig. 2. Although it is still essen-

tially a multi-branch CNN, there are a number of crucial

differences to existing models. First, we introduce attention

modelling in each branch of the CNN so that computation

for representation learning is focused on specific discrim-

inative local regions rather than being spread evenly over

the whole image. Due to the large misalignment between

the sketch and photo domains, directly taking the attended

feature map as input to the subsequent layers of the network

is too sensitive to misalignment. We thus introduce a short-

cut connection architecture [37, 8] to link the input directly

to the output of the attention module so that an imprecise at-

tention mask would not derail the deep feature computation

completely, resulting in robust attention modelling. Sec-

ond, we keep both coarse and fine semantic details through

another shortcut block to connect the attended feature map

with the final FC layer before feeding it to the loss.

Including fine-grained information in the CNN feature

output enables discrimination based on subtle details, but

has two risks: misalignment in the feature channels be-

tween the two branches, and greater feature noise due to

each fine-grained feature having less supporting cues. Ex-

isting pairwise verification or triplet ranking losses [46, 31]

are sensitive to misalignment. Specifically, these losses typ-

ically use Euclidean distance based energy function which

relies on element-wise distance computation. They thus

implicitly assume that the compared feature vectors are

perfectly element-wise aligned, an assumption that is vio-

lated in practice. To overcome these problems, we propose

a novel higher-order learnable energy function (HOLEF)

based loss. Using this energy function, when comparing

a sketch and photo, the outer subtraction between the two

feature vectors are computed, exhaustively measuring the

element-wise feature difference across the two domains.

This allows increased sensitivity without loosing robust-

ness, by accounting for common misalignments, via learn-

ing to exploit any systematic co-occurrences of feature ac-

tivations in both branches, and using correlated activations

to provide robustness to noise.

2. Related Work

Fine-grained SBIR Most existing SBIR works [23, 24,

9, 1, 2, 38, 11, 18, 13, 39, 10, 48] focus on category-
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Figure 2. Architecture of the proposed model.

level sketch-to-photo retrieval. The problem of fine-grained

SBIR was first proposed in [15], which employed a de-

formable part-based model (DPM) representation and graph

matching. More recently, the FG-SBIR problem is tackled

by deep learning [46, 31] which aims to learn both feature

representation and cross-domain matching function jointly.

Both models in [46, 31] evaluated two-branch CNNs with

pairwise verification loss and three-branch CNNs with

triplet ranking loss and concluded that the latter is better.

They differ in whether the network is Siamese or heteroge-

neous. The model in [46] is Siamese as it takes as input

extracted edge maps for the photo branch, whilst the model

in [31] is heterogeneous without the edge extraction oper-

ation. Our network is also a three-branch CNN. But with

the introduced attention modelling, multi-scale coarse-fine

semantic fusion, and HOLEF loss, our model is much more

effective as validated by our experiments (see Sec. 4).

Attention Modelling Visual attention models have been

studied extensively in a wide range of vision problems in-

cluding image caption generation [44, 20], VQA [5, 26],

image classification [25, 34, 42] and particularly fine-

grained image recognition [34, 42]. Various types of atten-

tion models exist. Soft attention is the most commonly used

one because it is differentiable thus can be learned end-to-

end with the rest of the network. Most soft-attention mod-

els learn an attention mask which assigns different weights

to different regions of an image. Alternatively, the spatial

transformer network [12] generates an affine transformation

matrix which locates the discriminative region. Different

from soft attention, hard attention models only indicate one

region at each time. A hard attention model is not differen-

tiable so it is typically learned using reinforcement learning.

Interestingly, there is no prior SBIR (both category-level

and instance-level) work that models attention, perhaps be-

cause conventional attention models deployed in a cross-

domain match problem assume pixel-level alignment; they



thus become ineffective when this assumption is invalid as

in the case of SBIR. Our attention model is specifically de-

signed for FG-SBIR in that it is robust against spatial mis-

alignment through the shortcut connection architecture.

Shortcuts and Layer Fusion in Deep Learning The

shortcut architecture used in both the attention module and

the coarse-fine fusion block in our model serve to fuse mul-

tiple layers at different depths. Fusing different CNN lay-

ers in the model output has been exploited in many prob-

lems such as edge detection (e.g., [30, 43]), pose estima-

tion (e.g., [27]) and scene classification (e.g., [7, 45, 19].

The motivation is typically multi-scale (coarse to fine) fu-

sion rather than attended-unattended feature map fusion, as

in our first shortcut block. Various shortcut connection ar-

chitectures have been successfully deployed in a number of

widely used CNNs including GoogLeNet [37] and ResNet

[8]. Our shortcut connection architecture is similar to that of

the residual block in ResNet [8]. However, instead of mak-

ing the network deeper, we use it in the attention module to

make the attention module output robust against imprecise

attention mask caused by cross-domain feature misalign-

ment, as well as in the final CNN output layer to preserve

both coarse and fine-grained information in the learned rep-

resentation.

Higher-order Energy Function Loss functions for ver-

ification or ranking typically use an energy function, that

measures the (dis)similarity between two feature vectors.

For example, triplet loss is widely used in many deep ver-

ification [33, 29] or ranking [40, 46, 36, 31] networks. It

is adopted here to enforce the ranking between a query

sketch and a pair of positive and negative photos. In the

vast majority of cases [40, 46, 36, 31] Euclidean distance-

based, or other first-order energy functions are used in the

loss formulation. They are first order in the sense that only

element-wise comparisons are made, making it sensitive to

feature misalignment and meaning that no cross-feature cor-

relation can be exploited in the similarity. The proposed

HOLEF loss is a triplet loss with a 2nd-order energy func-

tion based on a weighted outer subtraction between a pair of

input vectors. Compared to first-order alternatives, our en-

ergy function is more robust against misalignment between

sketch and photo channels, and can accommodate better the

more detailed but noisier fine-grained feature map represen-

tation. Mahalanobis distance [41, 35] is another example of

a higher-order energy function in that it does O(N2) com-

parisons for N channels. However it is based on element-

wise difference followed by bilinear product so the effect

is to learn which dimension pairs are important to match,

rather than compensate for misalignment and noise between

the input vectors.

The Contributions of this work are as follows: (1) A novel

deep FG-SBIR model is proposed. The model learns dis-

criminative feature representation that is spatially attended

and includes both coarse and fine details. (2) A new higher-

order learnable energy function (HOELF) based loss is used

to make the model robust against feature misalignment and

noise between the sketch and photo domains. (3) A new

FG-SBIR dataset is introduced which has the biggest num-

ber of sketch-photo pairs for a single object category. Ex-

tensive experiments are carried out on three benchmarks.

The results show that the proposed model significantly out-

performs the state-of-the-art and both proposed novel com-

ponents contribute to the superior performance.

3. Methodology

3.1. Overview

The architecture of the proposed model is illustrated in

Fig. 2. It is a Siamese network with three CNN branches,

corresponding to a query sketch, a positive photo and a neg-

ative photo respectively. The positive-negative relation can

be defined by the matching relationship, e.g., if the true

match photo is the positive, any false match can be used

as the negative. Alternatively, if the sketches and photos

are annotated explicitly by similarity, relative similarity or-

dering can be used as supervision information. The CNNs

extract deep features from the three input images and feed

them to a triplet ranking loss to enforce the ranking order

(positive should be closer to the query than the negative

using the extracted feature). With the learned model, for

a given query sketch s and a set of M candidate photos

{pj}
M

j=1
∈ P , we need to compute the similarity between

s and pj and use it to rank the set of gallery photos in the

hope that the true match for the query sketch is ranked at the

top. The similarity measure is computed by the high order

distance function (detailed later), based on the domain in-

variant representations Fθ(·) produced by the three Siamese

CNN branches.

Similar to [46], the CNN base net is the Sketch-a-Net

[47] which was originally designed for sketch recognition.

We follow the same data preprocessing step to extract edge

maps from each photo image to narrow the domain gap. The

model is also pretrained on sketch recognition and category

level SBIR data following exactly the same procedure as in

[46]. The key differences are (1) an added attention mod-

ule, (2) coarse-fine fusion, and (3) HOELF loss, which will

described in details in the following sections.

3.2. Attention Modelling

A soft attention paradigm is adopted. Given a feature

map computed at any convolutional layer of a CNN, a soft

attention module will take it as input and generate an atten-

tion mask. This mask then used to re-weight the input fea-

ture map to get an attended feature map which is fed into the

next layer of the network. In our model, the attention mod-

ule is added to the output of the fifth convolutional+pooling



layer of the CNN in each branch (see Fig. 2).

We denote the input feature map as f ∈ R
H×W×C

where H and W are the filter map size and C is the number

of feature channels. For the feature vector fi,j ∈ R
C of the

feature map at the spatial location (i, j), we can calculate

its corresponding attention score si,j by

si,j = Fatt(fi,j ;W a),

αi,j = softmax(si,j),
(1)

where Fatt(·) is the mapping function learned by the at-

tention module and Wa are the weights/parameters of the

attention module. The final attention mask α = [αi,j ] is a

probability map obtained by normalising the score matrix

s = [si,j ] using softmax. In our model, the attention mod-

ule is a network consisting of two convolutional layers with

kernel size 1. However, it can be replaced with any net-

work. The attended feature map fatt = [fatt
i,j ] is computed

by element-wise product of the attention mask and the input

feature map

fatt
i,j = αi,j ⊙ fi,j . (2)

Taking a conventional attention modelling approach, the

attended feature map will be fed into the subsequent layer,

which is FC6. However, due to the severe spatial misalign-

ment of the query photo and either the positive or the nega-

tive photo, the attention mask could be somewhat imprecise

and the resultant attended feature map fatt could be (a) cor-

rupted by noise, and (b) loose any useful information in the

original feature map f . To overcome this problem, we in-

troduce a shortcut connection architecture to link the input

of the attention network directly to its output and combine

them with an element-wise sum. The final attended feature

map with shortcut connection is thus computed as

fatt
s = f +α⊙ f , (3)

where ‘+’ is element-wise sum and ‘⊙’ is element-wise

product. In this way, both the original feature map and the

attended but imprecise feature map are combined and used

as input to the next layer of the network.

3.3. Coarse­fine Fusion

Although the final attended feature map fatt
s is spatially

aware and attentive to fine-grained details, these tend to

be lost going through multiple subsequent fully connected

layers, defeating the purpose of introducing attention mod-

elling. To keep both the coarse and fine-grained informa-

tion, a shortcut connection architecture is again employed

here. Specifically, we fuse the attended feature map fatt
s

with the output of the final FC layer (FC7) fFC7 to form

the final feature representation ffinal before it is fed into

the loss layer (Fig. 2). A simple concatenation operation

is used to fuse the two features. Before the fusion, we do

global average pooling (GAP) on the attended feature map

to reduce the dimension.

3.4. HOLEF Loss

Triplet Loss with a First-order Energy Function For a

given triplet t = (s, p+, p−) consisting of a query sketch s,

a positive photo p+ and a negative photo p−, a conventional

triplet ranking loss can be written as:

Lθ

(

s, p+, p−
)

= max(0,∆+D
(

Fθ (s) , Fθ

(

p+
))

−D
(

Fθ (s) , Fθ

(

p−
))

),
(4)

where θ are the parameters of the CNN with attention net-

work, Fθ(·) denotes the output of the corresponding net-

work branch, i.e., ffinal, ∆ is the required margin of rank-

ing for the hinge loss, and D(·, ·) denotes a distance be-

tween the two input representations, typically Euclidean

distance. Considering D(·, ·) as a pairwise energy function,

it is a first-order one due to the use of Euclidean distance

which does element-wise subtraction of the feature. It does

not consider the pairs of non-corresponding elements, thus

implying alignment between the input feature representa-

tions, and not exploiting cross-channel correlation. It is thus

particularly suboptimal, once we include the fine-grained

attended feature map fatt
s in the feature representation.

Triplet Loss with a Higher-order Energy Function To

compare two misaligned and noisy feature inputs, we can

exploit higher order structural difference. To this end, we

propose to compute a 2nd order feature difference using

outer subtraction. Given two input feature vectors of k di-

mensions, the outer subtraction (⊖) of the two is a k × k

matrix. For example, when k = 3, we have:

Fθ(s)⊖Fθ(p) =





Fθ
1(s)

Fθ
2(s)

Fθ
3(s)



⊖





Fθ
1(p)

Fθ
2(p)

Fθ
3(p)





=





Fθ
1(s)− Fθ

1(p) Fθ
1(s)− Fθ

2(p) Fθ
1(s)− Fθ

3(p)
Fθ

2(s)− Fθ
1(p) Fθ

2(s)− Fθ
2(p) Fθ

2(s)− Fθ
3(p)

Fθ
3(s)− Fθ

1(p) Fθ
3(s)− Fθ

2(p) Fθ
3(s)− Fθ

3(p)





(5)

With outer subtraction, the difference between the elements

at any position of the two input vectors are exhaustively

computed, thus having the potential to deal with any form

of feature misalignment.

With this outer-subtraction operator, we can design a

2nd order distance/energy-function based on the sum of the

square of each element of the matrix. However, only a sub-

set of these comparisons are expected to be useful, so we

introduce a weighting factor to each element, resulting in

the following energy function:

DH(Fθ(s), Fθ(p)) =
∑

(Fθ(s)⊖Fθ(p))
◦2

⊙W , (6)

where ‘◦2’ is the element-wise square, and W is a k × k

weight matrix. W is a learnable weighting layer matrix.



We can now replace the standard Euclidean loss in triplet

ranking with our new energy function. Combined with ap-

propriate regularisers, this leads to our high-order learnable

energy function (HOELF) loss:

Lθ

(

s, p+, p−
)

= max(0,∆+DH

(

Fθ (s) , Fθ

(

p+
))

−DH

(

Fθ (s) , Fθ

(

p−
))

) + λ‖W − I‖1

+ λ‖W − I‖F ,

(7)

where I ∈ R
k×k is the identity matrix and ||.||F denotes

the matrix Frobenious norm. Two regularisers are intro-

duced in our loss. These elastic-net [50] style regularisers

are designed to the keep W in the vicinity of I , but prevent

W − I from being extremely sparse, i.e. W becoming di-

agonal and the HOLEF loss degenerating into a first-order

loss. The weight λ for the two regularisers are set to 0.0005
in this work.

Ranking Score In the testing stage, given an query

sketch s, the ranking score between the query sketch and

each candidate photo pi from a gallery set is computed as

Rs(Fθ(s), Fθ(pi)) = −DH(Fθ(s), Fθ(pi)). (8)

The rank scores are then used to rank the gallery set. The

photo with the highest ranking score is the predicted match.

Alternative Higher-order Energy Function We are not

aware any outer subtraction based higher-order energy func-

tion used as a loss for deep model training. However, outer

product based ones are not uncommon. They have been

used mainly for multi-view fusion, for example, fusing the

text and image embeddings in visual question answering

[21] and zero-shot recognition [4]. Outer product based

distance is also used for formulating higher-order losses in

Mahalanobis metric learning [41, 35]. Given two vectors x

and y, a Mahalanobis distance is defined as:

DM (x,y) = (x− y)TM(x− y)

= xTMx+ yTMy − 2xTMy
(9)

where M is a learnable matrix. Compare Mahalanobis dis-

tance to the proposed distance in Eq. 6, it is clear that al-

though both are 2nd order, there is a vital difference: In

Mahalanobis distance, one first computes the element-wise

subtraction x−y and then the 2nd order bilinear product of

the difference vectors. In other words, elements of different

positions in the two vectors are not directly compared. It is

thus not suitable for dealing with fine-grained feature mis-

alignment and using correlation to compensate for noise in

the sketch and photo feature vectors.

Figure 3. Examples of newly collected Handbag dataset.

4. Experiments

4.1. Datasets and Settings

Datasets We focus on the task of retrieving visually

similar object instances from the same category – a set-

ting resembling a real-world application where a customer

searches for a specific product, e.g., shoe or handbag. Few

FG-SBIR datasets are available publicly, and even fewer

have more than 100 sketch-photo pairs from the same cate-

gory to make the evaluation meaningful. We experiment on

three datasets. QMUL-Shoe and QMUL-Chair from [46]

contain 419 shoe and 297 chair sketch-photo pairs, respec-

tively. The photos are real product photos collected from

online shopping websites and the sketches are free-hand

ones collected via crowdsourcing. We use 304 and 200 pairs

for training and the rest for testing following the same splits

as in [46]. There are 13,680 and 9,000 human triplet annota-

tions which are used to train the triplet model. Handbag is

a new dataset collected by us following similar protocol as

the other two (photos from online catalogues and sketches

crowd-sourced), resulting in 568 sketch-photo pairs. Hand-

bags were specifically chosen to make the sketch-photo re-

trieval task more challenging, since handbags exhibit more

complex visual patterns and have more deformable bodies

than shoes and chairs. Among them, 400 are used for train-

ing and the rest for testing. The difference between this

dataset and the other two is that we only have pairing infor-

mation but not human triplet annotation. We thus generate

the triplets using only true and false matches, rather than

exhaustive similarity ranking. Following [46], we first ex-

tract edge maps from photos using the method of [49] and

use them as input for the photo branch of our model. All

images are resized to the same size of 256×256. Examples

of the new Handbag dataset can be seen in Fig. 3.

Implementation Details Our model is implemented on

TensorFlow. Each branch is pretrained in stages using a

sketch recognition dataset and ImageNet photo-edgemap

pairs, similarly to the procedure described in [46], before

fine-tuning on each FG-SBIR dataset. The initial learn-

ing rate is 0.001 and the mini-batch size is 128. During

training, we randomly crop a 225 × 225 sub-image as in-

put and we do flipping with 0.5 probability. The atten-



QMUL-Shoe acc.@1 acc.@10

HOG-BoW + rankSVM 17.39% 67.83%

Dense-HOG + rankSVM 24.35% 65.22%

ISN Deep + rankSVM 20.00% 62.61%

Triplet SN [46]∗ 52.17 % 92.17 %

Our model 61.74% 94.78%

QMUL-Chair acc.@1 acc.@10

HOG-BoW + rankSVM 28.87% 67.01%

Dense-HOG + rankSVM 52.57% 93.81%

ISN Deep + rankSVM 47.42% 82.47%

Triplet SN [46]∗ 72.16 % 98.96 %

Our model 81.44% 95.88%

Our Handbag acc.@1 acc.@10

HOG-BoW + rankSVM 2.38% 10.71%

Dense-HOG + rankSVM 15.47% 40.48%

ISN Deep + rankSVM 9.52% 44.05%

Triplet SN [46]∗ 39.88% 82.14%

Our model 49.40% 82.74%

Table 1. Comparative results against baselines. ‘*’ The results of

Triplet SN [46] are the updated ones from their project webpage

which are higher than the published results due to parameter retun-

ing. The other baseline results are copied from [46] except those

on Handbag, which are based on our own implementation.

tion module consists of 2 convolutional layers, both with

kernel size 1 × 1. W in the HOLEF loss is learned as a

trainable layer. A detailed description of the network archi-

tecture can be found in the Supplementary Material. Both

our dataset and the trained model can be found at: http:

//sketchx.eecs.qmul.ac.uk/downloads/.

4.2. Comparative Results

Baselines Four baseline models are chosen for compar-

ison. Two are hand-crafted feature based models, namely

HOG-BoW+RankSVM and Dense-HOG+RankSVM.

HOG features are classic for sketch-recognition [16] and

SBIR [10] problem and it is the most commonly used hand-

crafted feature before the popularity of deep features. Dense

HOG is obtained by concatenating HOG features over a

dense grid. A RankSVM model is used with the features

to compute the final ranking score. Among the other two

baseline models, ISN Deep+RankSVM uses the deep fea-

tures extracted from Sketch-a-Net [47], which was trained

for sketch recognition. The prior state of the art model

Triplet SN was the first end-to-end deep model for SBIR

[46]. It has an identical base network architecture as ours

and differs in the lack of attention model and the use of

conventional first-order Euclidean triplet loss.1

Results We use the ratio of correctly predicting the true

1Further experimental results on the recently released Sketchy database

[31] can be found in Supplementary Materials.

QMUL-Shoe acc.@1 acc.@10

Base 52.17% 92.17%

Base + CFF 58.26% 93.04%

Base + HOLEF 56.52% 88.70%

Full: Base + CFF + HOLEF 61.74% 94.78%

QMUL-Chair acc.@1 acc.@10

Base 72.16% 98.96%

Base + CFF 79.38% 95.88%

Base + HOLEF 74.23% 97.94%

Full: Base + CFF + HOLEF 81.44% 95.88%

Our Handbag acc.@1 acc.@10

Base 39.88% 82.14%

Base + CFF 48.21% 83.33%

Base + HOLEF 40.48% 83.93%

Full: Base + CFF + HOLEF 49.40% 82.74%

Table 2. Contributions of the different components.

match at top-1 and at top-10 (acc.@1 and acc.@10) as the

evaluation metrics. The performance of all compared mod-

els are reported in Table 1. The results suggest that (1) The

two end-to-end learned deep models are clearly superior to

the other baselines. (2) The proposed model significantly

outperforms all baseline models on all three datasets. The

improvement is particularly clear at top-1 – around 9% in-

crease in top-1 accuracy is obtained on all three datasets

against the second best model. For each query sketch, there

are typically a handful of visually very similar photos; the

lower-rank accuracy, especially at top-1, thus is a better in-

dication on how well the model is capable of distinguishing

fine-grained subtle differences between candidate photos.

Note that the drop of acc.@10 on Chair dataset can be ex-

plained by the introduction of the attention module. With

attention, our model is able to focus on discriminative local

parts. Yet, very occasionally the attention module locates

the wrong parts which happen to be shared by other objects

with globally very different appearance. This problem is

more acute for chair than shoe and handbag because part

sharing across different sub-categories is more common.

4.3. Ablation Study

Contributions of each Component We have introduced

two novel components in our model: the coarse-fine fu-

sion (CFF) to combine the attended convolutional feature

map with the final FC layer output and the HOLEF loss. In

order to evaluate the contributions of each component, we

compare our full model (Full: Base+CFF+HOLEF) with

three stripped-down versions: baseline model with coarse-

fine fusion (Base+CFF), baseline model with HOLEF loss

(Base+HOLEF) and baseline without either (Base) which

becomes the Triplet SN model [46]. Table 2 shows clearly

that each novel component improves the base model and

http://sketchx.eecs.qmul.ac.uk/downloads/
http://sketchx.eecs.qmul.ac.uk/downloads/


QMUL-Shoe with attention without attention

Base 54.78% 52.17%

Base + CFF 58.26% 57.39%

Base + HOLEF 57.39% 56.52%

Our model 61.74% 58.26%

QMUL-Chair with attention without attention

Base 74.23% 72.16%

Base + CFF 79.38% 75.25%

Base + HOLEF 75.26% 74.23%

Our model 81.44% 77.32%

Our Handbag with attention without attention

Base 41.07% 39.88%

Base + CFF 48.21% 47.02%

Base + HOLEF 40.48% 40.48%

Our model 49.40% 48.21%

Table 3. Effectiveness of the attention module (acc.@1).

QMUL-Shoe with shortcut without shortcut

Base + attention 54.78% 15.65%

Base + CFF 58.26% 26.96%

Our model 61.74% 27.83%

QMUL-Chair with shortcut without shortcut

Base + attention 74.23% 39.18%

Base + CFF 79.38% 48.45%

Our model 81.44% 49.48%

Our Handbag with shortcut without shortcut

Base + attention 41.07% 17.26%

Base + CFF 48.21% 24.40%

Our model 49.40% 23.81%

Table 4. Effect of shortcut connection in attention module

(acc.@1).

when both are combined we achieved the best performance

indicating that they are complementary to each other.

Contributions of the Attention Module Two experi-

ments are carried out. First, we evaluate how effective our

attention module is, not only to the final full model, but also

to the various stripped-down versions. Table 3 show that

almost invariantly each model variant benefits from having

an attention module to locate the most discriminative part

of the object to compare across the two domains. Second,

we evaluate the usefulness of the proposed shortcut connec-

tion architecture in the attention module which is designed

to deal with the potentially imprecise attention mask caused

by spatial misalignment between the compared sketch and

photo pair. Table 4 shows that having this shortcut connec-

tion architecture is vital: without the shortcut, i.e., having

a conventional soft attention module, the attended feature

map on its own is too noisy to be useful.

HOELF vs. other Alternative Triplet Losses To further

QMUL-Shoe acc.@1 acc.@10

Triplet loss with Euclidean 58.26% 93.04%

Triplet loss with Weighted Euclidean 58.26% 93.04%

Triplet loss with Mahalanobis 52.17% 89.57%

Our HOLEF 61.74% 94.78%

QMUL-Chair acc.@1 acc.@10

Triplet loss with Euclidean 79.38% 95.88%

Triplet loss with Weighted Euclidean 79.38% 95.88%

Triplet loss with Mahalanobis 78.35% 95.88%

Our HOLEF 81.44% 95.88%

Our Handbag acc.@1 acc.@10

Triplet loss with Euclidean 48.21% 83.33%

Triplet loss with Weighted Euclidean 48.81% 82.14%

Triplet loss with Mahalanobis 44.64% 79.76%

Our HOLEF 49.40% 82.74%

Table 5. Comparison on different losses.

shoes

chairs

handbags

Figure 4. Visualisation of attention masks of sample photo-sketch

pairs in all three categories.

validate the effectiveness of our HOLEF loss, we compare

with: (i) conventional triplet loss with Euclidean distance,

(ii) triplet loss with weighted Euclidean distance, and (iii)

triplet loss with Mahalanobis distance. The first two are

first order whilst the third is second order. The last two

have learnable weights while the first does not. All models

have the same base network and attention model as well as

CFF. They thus differ only in the loss used. The results are



Figure 5. Comparison of the retrieval results of our model and Triplet SN [46]. For each example, the top row is our retrieval result with

attention mask superimposed on the query sketch, and the bottom row is retrieval result of the same sketch using Triplet SN.

shown in Table 5. It can be seen that: (1) The proposed 2nd

order outer subtraction based HOLEF loss is the best. (2)

Even with learnable weights, both weighted Euclidean and

Mahalanobis distance in most cases cannot beat the conven-

tional triplet loss with Euclidean distance. (3) Even with a

2nd order energy function, the bilinear product of element-

wise subtraction used in Mahalonobis distance is ineffective

at dealing with the noise and feature misalignment of the

two domains.

4.4. Visualisation and Qualitative Results

Attention Processing In Fig. 4 we offer visualisations of

the attention maps learned using our model. It can be seen

that: (i) Across all three datasets, attention tends to be as-

sociated with salient parts of the object having complicated

and distinct visual pattern, e.g., shoelaces, wheels on chairs,

and bag buckles. (ii) Attention masks seem to align well

across sketch and photo domains, e.g., the cross pattern on

the back of the chair.

Qualitative Retrieval Results We further provide quali-

tative examples of our retrieval results in Fig. 5, compared

with those obtained using Triplet SN [46]. We observe

that our spatial-semantic attention model is better at disam-

biguating subtle visual details. For example, on the first

shoe example (left), attending to the shoelace region result-

ing in the correct shoe being retrieved as Rank 1. Similarly

on bags, attending to the stripe pattern resulted in the correct

bag being returned amongst bags whose overall shapes are

almost identical. For the sofa on the right, despite both mod-

els returning the correct top-1 match, our attended model

was able to filter out the sofa bed which was ranked 2nd by

Triplet SN.

5. Conclusion

We have proposed a novel deep spatial-semantic atten-

tion model for FG-SBIR. By introducing attention mod-

elling and shortcut connections, it is able to concentrate

on the subtle differences between local regions of a sketch

and photo images and compute deep features containing

both fine-grained and high-level semantics. However, fine-

grained noise and cross-domain feature channel misalign-

ment challenge energy functions for cross-domain match-

ing. We therefore introduced a novel HOLEF loss to make

the model robust against this. The effectiveness of the pro-

posed model has been validated by extensive experiments.
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