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Abstract— Attention deficit/Hyperactivity disorder
(ADHD) is a complex, universal and heterogeneous
neurodevelopmental disease. The traditional diagnosis
of ADHD relies on the long-term analysis of complex
information such as clinical data (electroencephalogram,
etc.), patients’ behavior and psychological tests by
professional doctors. In recent years, functional magnetic
resonance imaging (fMRI) has been developing rapidly
and is widely employed in the study of brain cognition
due to its non-invasive and non-radiation characteristics.
We propose an algorithm based on convolutional denoising
autoencoder (CDAE) and adaptive boosting decision trees
(AdaDT) to improve the results of ADHD classification.
Firstly, combining the advantages of convolutional neural
networks (CNNs) and the denoising autoencoder (DAE),
we developed a convolutional denoising autoencoder
to extract the spatial features of fMRI data and obtain
spatial features sorted by time. Then, AdaDT was exploited
to classify the features extracted by CDAE. Finally,
we validate the algorithm on the ADHD-200 test dataset.
The experimental results show that our method offers
improved classification compared with state-of-the-art
methods in terms of the average accuracy of each
individual site and all sites, meanwhile, our algorithm
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can maintain a certain balance between specificity and
sensitivity.

Index Terms— Adaptive boosting decision tree, ADHD,
convolutional denoising autoencoder, fMRI classification.

I. INTRODUCTION

ATTENTION deficit/Hyperactivity disorder (ADHD) is

a neurodevelopmental condition characterized by core

symptoms such as inattention, hyperactivity, and impulsivity

[1]. ADHD is one of the most debilitating childhood illnesses.

Approximately 65% of cases will last to adulthood [2] and

seriously affect the study and work of patients, causing a

heavy burden to families and society. Mental health experts

often use the Diagnostic and Statistical Manual of mental

disorders (DSM) developed by the American Psychiatric Asso-

ciation to help diagnose ADHD [3] in clinical practice. At

present, ADHD is only diagnosed after clinical review by

an experienced child psychiatrist, in addition to discussions

with the child’s parents and teachers. However, diagnoses

are often inconsistent since the diagnostic process is greatly

affected by subjective assessment. Therefore, it is essential to

find a consensus method to diagnose ADHD according to the

existing medical means [4].

Functional magnetic resonance imaging (fMRI) is a widely

used noninvasive tool to measure brain activity and high-

light the slow fluctuation of blood oxygen level dependence

(BOLD) between brain regions during task states or resting

states [5]. With the development of machine learning, scholars

have paid more attention to the prediction of neurodevelop-

mental diseases with fMRI data like Alzheimer’s disease [6]

(AD), Autism spectrum disorders [7] (ASD), ADHD [8], etc.

To promote research in disease imaging of ADHD, the

ADHD-200 consortium held the ADHD-200 global compe-

tition in 2011 supported by the International Neuroimag-

ing Data-sharing Initiative (INDI). The competition aimed

to develop imaging classification methods of patients with

ADHD. The ADHD-200 dataset consists of rs-fMRI and

structural magnetic resonance imaging (sMRI) images of

approximately 800 subjects, which are collectively provided by

eight scientific research institutions, such as Kennedy Krieger

Institute (KKI), New York University Medical Center (NYU),

Oregon Health and Science University (OHSU), Neuroimage
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Sample (NeuroImage) and Peking University (Peking), etc. The

competition aimed to determine the prediction accuracy of

each team for typically-developing (TD) and ADHD patients

(including the prediction accuracy of ADHD subcategories),

and J-statistics (including sensitivity and specificity). ADHD-

200 also trained an image-based classifier to distinguish three

types: mixed type (ADHD-I), inattentive type (ADHD-II) and

TD [9]. The highest accuracy achieved using the imaging data

was 60.51% in 2011.

Many researchers have exploited the data from this com-

petition to carry out various studies on ADHD. For instance,

Dai et al. used the cortical thickness (CT), gray matter proba-

bility (GMP) extracted from sMRI and ReHo, and functional

connectivity (FC) extracted from fMRI as features to improve

the classification accuracy of ADHD [10]. The authors not

only compared the impact of each feature on classification

but also fused the features through multi-kernel learning, with

the classification accuracy reaching 61.5%. The same year,

Sidhu et al. used the fast Fourier transform and kernel principal

component based on phenotypic and imaging which yielded

accuracies of 76.0% on two class diagnosis [11]. In addition,

Zou et al. [12], proposed a 3D-convolutional neural network

(CNN) deep learning classification method based on fMRI and

sMRI. Firstly, ReHo, fractional amplitude of low-frequency

oscillation (fALFF), and voxel mirrored homotropy connec-

tivity (VMHC) were extracted manually from fMRI. Then,

gray matter (GM), white matter (WM), and cerebrospinal fluid

(CSF) were extracted from sMRI. Finally, a 3D-CNN classifier

was employed to evaluate the performance of each feature and

the classification performance of a multi-feature combination

given. The study showed that the combination of fALFF

and GM yields the best result and the accuracy of ADHD

classification is 69.2%. Complementing this, Riaz et al. [13]

created an end-to-end network for ADHD classification, which

consists of a feature extraction layer, similar network, and

classification network. The network first extracted 90 features

from 90 brain regions of fMRI after preprocessing and the

similarity between features was calculated. The classification

accuracy of this algorithm in the ADHD dataset of Peking,

NeuroImage, and NYU reached 62.7%, 67.9%, and 73.1%,

respectively. In addition, Kuang et al. [14] proposed an ADHD

classification algorithm based on fast Fourier transform and

deep belief network. The classification accuracy of this algo-

rithm in the ADHD dataset of NYU, Peking, and KKI reached

37.41%, 54.00%,and 71.82%, respectively., Mao et al. [15]

obtained good results using spatial information of each frame

from fMRI images extracted by 3DCNN and the temporal

information of fMRI time-series images extracted by feature

pooling and long short-term memory (LSTM) models. Finally,

the proposed 4D-CNN extracting the spatial and time informa-

tion of fMRI at the same time achieved the highest accuracy

of 71.3% in the application to ADHD classification.

Recently, the popularity of deep learning methods has

resulted in their extensive application to various phenomena

including as image denoising [16], image fusion [17], image

recognition [18] and image classification [19]. As one of the

most commonly used deep learning methods, CNNs can obtain

the features of the input data through automatic learning,

especially for high-dimensional data. However, as a supervised

learning method, CNN needs a lot of labeled data in the

training stage, which is not only time-consuming and labor-

intensive but also prone to over-fitting. Therefore, an unsuper-

vised deep learning method is selected to perform the process

of extracting features.

The autoencoder is a practical unsupervised learning model

in deep learning and consists of an encoder and decoder.

The former is employed to encode the original representation

into the hidden layer representation while the latter is used

to decode the hidden layer representation into the original

representation. The training target minimizes the reconstruc-

tion error function via backpropagation. Generally speaking,

the dimension of the hidden layer is lower than the original

feature [20].

Since the autoencoder is just a concept, the encoder and

decoder can be composed of a variety of deep learning

models, such as a fully connected layer, convolution layer, and

LSTM. CNN has advantages in image processing due to the

ability to extract the spatial information hidden in the image.

It is instinctively assumed that CNNs can work better than

other autoencoders when constructing an encoder and decoder

network, hence why the convolutional autoencoder (CAE) is

generated [21].

To solve the problem of ADHD classification based on fMRI

images, the convolution denoising autoencoder is proposed as

the feature extractor in the feature extraction stage. CAE has

the structure of CNN and autoencoder as well as the corre-

sponding advantages. As a simple and efficient neural network,

CAE can effectively extract useful feature information from

the data for classification without massive labels [22], [23].

We adopt the convolutional denoising autoencoder (CDAE)

for mining spatial features to fully extract 3D spatial informa-

tion of fMRI data. The 3D convolutional denoising autoen-

coder was applied to train each frame of fMRI image in

the feature extraction stage, after that the pre-trained encoder

was used to extract the spatial features of fMRI. Considering

the small amount of fMRI image data in the ADHD-200

dataset, we utilized the fMRI spatial features extracted in time

order to perform dimension reduction processing again based

on principal component analysis (PCA) to avoid over-fitting

caused by “small sample and high-dimension”. The data after

dimension reduction was processed as the features of ADHD

classification. We employed AdaDT as a classifier and the

experimental results show that this algorithm can effectively

classify the ADHD in the test set. The overall flow of the

proposed method is shown in Fig. 1.

The main contributions of this article are as follows:

(1) In this article, CDAE was employed to automatically

extract the features of fMRI data, which can fully extract the

3D spatial information of fMRI data and avoid the unreliability

and instability brought by hand-crafted features.

(2) The spatial features of fMRI extracted in time were

reduced by PCA, which effectively avoids the over-fitting

phenomenon caused by small samples of high-dimensional

data.

(3) The adaptive boosting decision tree (AdaDT) can turn

the weak classifier set of the trained decision tree into a strong
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Fig. 1. The flow diagram of this article.

classifier and effectively avoid the under-learning phenomenon

caused by insufficient learning data to classify ADHD.

The remainder of this article is arranged as follows: the sec-

ond section introduces the theoretical background of the pro-

posed CDAE-AdaDT algorithm in detail; the third section is

the experimental setup, including data processing and training

details of the CDAE-AdaDT algorithm model; the fourth

section describes and discusses the experimental results; the

last section summarizes the algorithm and experimental results

of this article.

II. METHODS

In recent years, extracting features of unlabeled samples

through autoencoder has achieved encouraging results with

the rapid development of unsupervised learning [24], [25].

Therefore, 3D convolutional denoising autoencoder was used

to extract the features of fMRI in this article. The following

describes the feature extraction algorithm used in our method.

A. Feature Extraction

As a kind of artificial neural network, deep neural networks

(DNN) have attracted attention due to its improved perfor-

mance. As a special structure of DNN, CNN [26], [27] has

the advantages of local connectivity and parameter sharing.

It can extract spatial information from the original data without

other complex preprocessing. The CNN structure used in this

article includes three basic layers: convolution layer, pooling

layer and global average pooling layer. The common structure

of CNN is shown in Fig. 2.

Traditional CNN employs a 2D convolution kernel in a 2D

image. While fMRI data is a three-dimensional structure in

space, a 3D convolution kernel is used in this article to make

better use of the spatial structure characteristics of the fMRI

image. In the convolution layer, a series of 3D convolution

kernels are convoluted with the receiving domain of the input

image or the feature map of the previous layer in the sliding

window to learn the features of the data [28]. Let the output

of neurons v
xyz
i j in (x, y, z) of the j -th feature map of the i -th

Fig. 2. Schematic diagram of CNN.

layer be defined as

v
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where n is the index of the i -1 feature map, bi j denotes the

bias, and Pi , Qi and Ri are the length, width, and height of

the convolution kernel respectively, w
pqr
i jn is the value of the

convolution kernel connected to the n-th feature map, and f

is the nonlinear activation function.

The convolution layer is connected with the pooling layer.

Generally speaking, there are two kinds of pooling: max pool-

ing and average pooling. The pooling operation down-samples

the feature map to reduce the network parameters which can

lessen the amount of computation while the characteristic of

space invariance [29] can preserve the spatial relationships.

In this article, we choose the max pooling operation and the

last network we use is the global average pooling (GAP) [30].

Unlike the traditional fully connected layer, GAP is used to

combine the feature map in a non-linear way, which can not

only reduce the number of network parameters and improve

the training speed but also effectively prevent the occurrence

of over-fitting.

Whereas the great success CNNs have achieved in various

fields, especially in image classification [31], [32], it cannot be

ignored that the classification algorithm based on CNN needs

a lot of manually marking data since it is a type of supervised

learning [33], [34]. Nevertheless, manually marking workload

is time-consuming in ADHD classification, which brings great

difficulty to the application of CNNs. Consequently, the classi-

fication algorithm based on unsupervised learning has attracted

attention in recent years in view of the advantages of requiring

no labels.

Autoencoder (AE) is an unsupervised algorithm that can

learn from data automatically. The purpose of the AE is to

select encoder and decoder functions so that the image can

be encoded with the least information and be reconstructed

on the other side [35]. As an unsupervised learning method,

AE can reconstruct the output data into the input data without

labels while preserving the dimensions of the original data

[36]. Fig. 3 is a schematic diagram of the autoencoder.

It can be seen from Fig. 3 that there are two parts in the

autoencoder: encoder and decoder. In the structure of the

autoencoder, each layer is fully connected with the next layer
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Fig. 3. Schematic diagram of the autoencoder.

Fig. 4. Schematic diagram of denoising autoencoder.

with an activation function. However, each training of the

autoencoder is a comparison of the original data itself, which

will increase the similarity between input and output, but not

sensitive to other images of the same kind. This is especially

obvious in fMRI images that have nuances between different

frames.

Vincent et al. [22], [23] proposed a denoising autoencoder

aiming to solve the aforementioned problems. Random noise

is added to the images to make each input vary slightly

before applying them to the network. Finally, the output of

the autoencoder is compared with the clean image before

adding noise to optimize the network. In this way, the network

will have better generalization ability when processing data,

with little difference between different frames [37]. Fig. 4 is

a schematic diagram of a denoising autoencoder.

The denoising autoencoder can not only extract the low-

dimensional representative features from the original data but

also recover the clean image from the noisy data, which can

effectively prevent the over-fitting problem while retaining

robustness [38]. The excellent performance of CNN directly

promotes the generation of CDAE. Strictly speaking, CDAE

is a special case of traditional denoising autoencoder, which

uses the convolution layer and pooling layer instead of a fully

connected layer. CDAE combines the merits of CNN and

denoising autoencoder and can not only acquire the robust

spatial characteristics of input data through learning but also

effectively prevent overfitting.

Firstly, data with random noise is used as input into the

neural network. The reconstructed data should be as close as

possible to the original data instead of the noisy data, that

is, the clean input is recovered from the corrupted data. Let

x =
�

x1, . . . x p

�

represent the raw data, where xi denotes the

voxel of the fMRI and p ∈ [0, 60 × 72 × 60]. Let the data

with random noise be x̃ =
�

x̃1, . . . x̃ p

�

, where xi is the voxel

added random noise and p ∈ [0, 60 × 72 × 60]. The noisy

data is sent to the encoder network of CDAE to obtain the

hidden layer data, and the hidden layer data can be obtained

as

h = g (x̃) = g (W ∗ x̃ + b) (2)

where W is the weight matrix, b denotes the bias vector,

∗ represents the convolution operation and g represents the

nonlinear activation function. The decoder can be regarded

as the “mirror” of the encoder to some extent. The decoder

recovers the same amount as the original data by using the

max unpooling layer which adopts nearest-neighbor interpola-

tion after each deconvolution layer. Accordingly, the decoder

restores y from the hidden layer h, that is

yi = g (h) = g
	

W T ∗ h + bT



(3)

where W T and bT are the transposition of W and b respec-

tively. Thus, there is a certain relationship between the weights

of the autoencoder, which will reduce the parameters by half

and effectively decrease the complexity of the network [39].

The denoising autoencoder optimizes the network by minimiz-

ing the reconstruction error of y and x . Compared with the

autoencoder, the denoising autoencoder can not only reliably

capture the main change factors from the noise dataset without

assuming linearity but is also robust and can effectively prevent

over-fitting [40].

In this article, CDAE is employed for feature extraction

and only the encoder part of the trained CDAE model is

adopted for feature extraction of fMRI sequences. To improve

the performance of extracted feature classification, we add a

global average pooling layer after the encoder of the CDAE to

convert the obtained fMRI features into one-dimension feature

vectors:

Oc =
1

K

�

x,y,z

hx,y,z (4)

where K is the number of activation values and c ∈

{1, 2, . . . , n} denotes the frames of the fMRI. We then form the

initial feature vectors by connecting the data of one-dimension

feature vectors end-to-end according to the time dimension.

O = (O1, O2, . . . , On) (5)

The classifier is prone to over-fitting due to the small amount

of fMRI data and the correlation between the feature vectors

extracted by CDAE. Therefore, PCA is used to decorrelate the

initial feature vectors of fMRI to solve the problem.

B. Classifier

There are many kinds of classifiers, such as linear dis-

criminant, naive Bayesian classification, k-nearest neighbor,

support vector machine, random forest, decision tree, etc. [41],

[42], and [43]. In this article, we adopted AdaDT for ADHD

classification. The decision tree is a tree structure, in which

each internal node represents a judgment on each attribute

while each branch represents an output of judgment, and
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finally each leaf node represents a classification result [44].

It is a very common and supervised learning classification

method. Supervised learning means that the classification

results are known and a decision tree is obtained by learning

these samples. In this way, the decision tree can classify the

new data correctly.

The classifier used in this article is the classification and

regression trees (CART) algorithm. CART is a binary tree,

where the data is cut into two parts each time by using a

binary segmentation method and sent into the left and right

subtree [45] respectively. Each non-leaf node has two children,

so there are more leaf nodes in CART than non-leaf nodes.

In CART classification, the Gini index, namely Gini impurity,

is used to select the optimal data segmentation feature, which

is similar to the meaning of information entropy. Each iteration

in CART will reduce the Gini impurity. The smaller the

Gini impurity is, the higher the purity is, and the better the

classification is. The definition of Gini impurity (G) is shown

as

G (S) = 1 −

k
�

i=1

(pi )
2 (6)

where S represents all samples, pi represents the probability

of the i -th category, and k represents the total number of

categories.

The decision tree is powerful but unstable. The decision

tree will change greatly when the training data varies [46].

Compared with the single decision tree algorithm, the inte-

grated tree algorithm has a higher prediction ability and can

overcome the problem that is difficult for a single decision tree.

The integration algorithm trains multiple learners to solve the

same problem and the commonly used combination methods

are bagging and boosting [47]. Boosting is used in this article.

Adaptive boosting (AdaBoost) is one of the most popular

reinforcement algorithms as a supervised learning method.

It combines weak classifiers with certain rules to build a strong

classifier [48], [49]. AdaBoost determines the weight of each

sample according to the classification in each training and the

accuracy obtained in the last overall classification, and then

the data with new weight is transferred to the next classifier

for training. Finally, the classifier obtained in each training is

fused and the classifier obtained by fusion is the final decision

classifier to achieve the target classification. Compared with

other machine learning algorithms, the AdaDT classifier will

not reduce the generalization ability of the classifier with the

increasing number of iterations and can avoid over-fitting at

the same time, which makes AdaDT more suitable for medical

images with fewer samples. Specifically, the implementation

steps of AdaDT are shown in algorithm 1.

III. EXPERIMENTAL SETUP

A. Data and Preprocessing

The data we used is from the ADHD-200 public dataset. The

dataset consists of eight international imaging sites, including

973 individuals’ rs-fMRI, sMRI and basic phenotypic infor-

mation (age, gender, dominant hand and intelligence quotient

(IQ)), which contains 362 children and adolescents diagnosed

Algorithm 1 AdaDT Algorithm

Input:
�

O1
PC A, y1

�

,
�

O2
PC A, y2

�

. . . ,
�

O N
PC A, yN

�

, where

O i
PC A ∈ OPC A OPC A is the training dataset, yi ∈ {0, 1} is

the label.

Step:

1. Initial the weight distribution of training data W1 (i) = 1
N

where i = 1, 2, . . . , N , denotes the total number of the

samples, t = 1, . . . , T is the number of iterations.

2. Training weak classifier ht = ξ (Wt ) based on sample

distribution Wt cyclically.

3. Calculating the weak classifier corresponding to the j -th

feature, the error εi is calculated as

εi =
1

N




n
�

i=1

Wt (i) I (hi (xi ) 6= yi )

�

where I (hi (xi ) 6= yi ) represents the indicating function which

is

I (hi (xi ) 6= yi ) =

�

0, hi (xi ) = yi

1, hi (xi ) 6= yi

4. Update and adjust the sample distribution

Wt+1 (i) =
Wt (i) e−εt yi ht (x)

Z t

where Z t is the normalization factor.

5. Repeat Step 2-4 until T ≥ t .

Output:Final classification results H (x) = sign(
T
�

t=1

εt ht (x)).

as ADHD, 585 TD and 26 unknown individuals [9]. We only

used five sites including Peking, KKI, NeuroImage, NYU

and OHSU. The other three sites were not used in this

experiment because Brown University (Brown) lacks the diag-

nostic information of each subject, the University of Pittsburgh

(Pittsburgh) and Washington University (WashU) only have

TD subjects in the training set and lack ADHD subjects.

In conclusion, we decided to exclude these three sites and

only use the data of the remaining five sites for testing since

the classification is related to the proportion of data.

In this article, the Data Processing Assistant for Resting

State fMRI (DPARSF) toolbox in [50], [51] was used to

process the raw fMRI data, with the processing flow as

follows: (1) To achieve data balance, the first four-time points

of training data and the first three-time points of test data were

removed to eliminate the influence of instability; (2) Slice-

timing correction; (3) Head correction; (4) Normalized into

the Montreal Neurological Institute (MNI) space, resampled

to 3-mm isotropic voxels; (5) Band-pass filtered; (6) Linear

detrended, remove the nuisance covariates including WM,

CSF, global signal and six head motion parameters; (7)

Smooth using a Gaussian filter with Full Width Half Height

(FWHM = 4 mm). Before the experiment, samples without
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Fig. 5. The model of CDAE-AdaDT.

TABLE I

SUMMARY OF THE TRAINING AND TEST DATA-SETS FROM FIVE SITES

WHICH ARE USED IN OUR WORK

the corresponding rs-fMRI data were checked and deleted.

To prevent the noise in the scanning process from interfering

with the fMRI data, the data of the subjects whose head

movement is more than 3mm or rotation is more than 3 degrees

were removed after preprocessing. At the same time, the data

of the subjects with artifacts and poor registration effects

were removed through visual inspection. Finally, the data

composition used in this article is shown in Table I. The

number of fMRI frames participating in CDAE model training

was 93650.

B. Model Training

The deep learning model is implemented by the keras

framework with tensorflow as the back-end. The optimizer

adopts the Adam optimizer with a learning rate of 0.0001 and

a batchsize of 50. CDAE consists of two parts: convolu-

tion encoder and deconvolution decoder. The encoder part is

employed to extract the feature map of the frame of the fMRI

while the decoder is used to reconstruct the image from the

feature map. Fig. 5 shows the CDAE-AdaDT model proposed

in this article.

Fig. 5 (a) shows the training process of the CDAE model

with 15 layers. The first layer and the last layer are input and

output layer respectively. The second layer to the seventh layer

belongs to the encoder and the eighth layer to the fourteenth

layer belongs to the decoder. Each layer is connected to the

next layer by linear multiplication and activation function.

The network is optimized by minimizing the loss function.

Fig. 5 (b) shows the ADHD classification flow chart based on

the CDAE-AdaDT model.

The detailed training steps of CDAE-AdaDT model are as

follows:

First, every single fMRI image with random noise was used

as an input with the size of 60×72×60. The encoder consists

of three layers of the convolution layer and each convolution

layer is connected with a max-pooling layer. The kernels in

the convolution layers are 3 × 3 × 3, 2 × 2 × 2 and 3 × 3 × 3

respectively while the window size of max-pooling layer are

2 × 2 × 2, 3 × 3 × 3 and 2 × 2 × 2 respectively. The max-

pooling layer can reduce the size of the feature map and the

parameters of the network. The kernel size and window size of

the pooling layer in the decoder are symmetric to the encoder.

At the end of the encoder network, a dense layer was added to

realize the nonlinear combination of features and increase the

representativeness of the extracted features. The model learned
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Fig. 6. Weights in the first convolution layer.

the abstract features of the image during training. As shown

in Fig. 5 (a), the output of the previous layer was the input of

the next layer. The activation function is the corrected linear

units (ReLU), that is

f (z) = max (0, z) (7)

where z is the input of the next layer.

In this article, the adaptive moment estimation (Adam)

algorithm was adopted to optimize the network by minimizing

the error between the clean image and the reconstructed image,

that is

loss = (yi − xi)
2
�

x2
i (8)

where xi denotes the original clean image and yi is the

reconstructed image.

Finally, the pre-trained encoder was used as the initial

feature extractor of fMRI data. It is worth noting that the

scrambled fMRI frame data is used in the training of CDAE,

while the fMRI data is passed through the encoder in chrono-

logical order to obtain the time characteristics in the feature

extraction stage. The output of the encoder was connected to

a global average pooling layer which transforms the features

of the extracted fMRI sequences into one-dimension vectors.

The global average pooling layer has fewer parameters com-

pared with the traditional fully connected layer. Because of

the characteristics of “small sample with high-dimension” of

fMRI data, PCA was adopted to reduce the dimensionality of

the extracted time series to reducing the occurrence of the

overfitting problem. PCA is a kind of data dimensionality

reduction method widely used in data analysis. The initial

feature vector of fMRI after PCA is n × pc, where n is the

time points of each fMRI and pc is the number of features left

after dimension reduction. In this article, the selected value of

pc is 48. And n varies according to the subjects of different

sites.

The data of different sites after dimension reduction are

sent to the classifier for training. The scanning parameters are

different among sites and testing at all sites may aggravate

the impact of data heterogeneity, hence we chose to train

classifiers and test them on individual sites. It is very important

to choose two parameters when training AdaDT classifier: the

number of weak classifiers and the number of nodes in each

tree. In this article, the optimal parameters were selected for

each site classifier to achieve the best classification results

through a large number of experiments.

Fig. 7. Feature map of the first layer convolution layer in the first filter.

IV. RESULTS AND DISCUSSION

A. Visualization

The traditional fully connected network is a “black box”

algorithm. To better understand the features learned by CDAE,

the weight of the convolution layer and the feature map

are visualized. Weight plays an important role in the neural

networks, and the Xavier is used to initialize the weight, that

is, the weight is initialized to a uniform distribution, keeping

the variance of information flowing in the neural network

unchanged. Fig. 6 shows the visualization of 16 weights of

the first convolution layer. Fig. 6 shows that the weights of the

first convolution layer changed differently compared with the

weights of the initial state, which had a uniform distribution.

Different weights of convolution kernels mean that different

convolution kernels can extract features from different angles,

so they can effectively learn and process the fMRI image.

Fig. 7 shows the output of the first convolution layer on the

first filter.

Fig. 8 shows the difference of the feature map of the first

filter in the third convolution layer of ADHD and TD randomly

selected. As can be seen from Fig. 7 and Fig. 8, the features

learned by the model became more abstract with the increase

of the convolution layer.

B. Comparison of Different Parameter Values

In order to choose the best pc value and classifier, we com-

pare the combination of different pc values and classifiers.

We adopt the grid search to select the optimal parameters of

the classifiers. The comparison of classifiers includes linear

support vector machine (L-SVM), radial basis function kernel

support vector machine (RBF-SVM) and random forest (RF).

The PCA values are 12, 24, 48 and 96. The accuracy, sensitiv-

ity and specificity are used as evaluation indices. The accuracy

represents the ability of the model to distinguish ADHD and

TD correctly. It is given by the following formula:

Accuracy =
T P + T N

T P + T N + F P + F N
(9)

Sensitivity represents the ability to distinguish ADHD cor-

rectly, which is estimated by the following formula:

Sensibili ty =
T P

T P + F N
(10)



8 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 8. Difference feature map of the first filter in the third convolution
layer of ADHD and TD.

Fig. 9. The comparison of classifiers.

Fig. 10. Comparison of combinations of different classifiers and pc.

Specificity describes the ability of the model to distinguish

TD correctly, which can be obtained from the following

formula.

Speci f ici ty =
T N

T N + F P
(11)

where T P is the true positive rate (the number of correctly

classified as ADHD), F P is the false positive rate (the number

of correctly classified as ADHD), T N is the true negative

rate (the number of correctly classified as TD), T P is the

false negative rate (the number of wrongly classified as TD in

ADHD patients).

Fig.9 shows the boxplot of three evaluation indices obtained

by different classifiers based on all test sets. It indicates that

the ensemble classifiers (RF and AdaDT) yield better results

than the SVM classifiers. What’s more, the AdaDT can keep

the balance among all the three indices.

TABLE II

COMPARISON OF DIFFERENT ALGORITHMS IN DIFFERENT SITES

Since the Accuracy, Sensitivity and Specificity are of equal

importance, we adopt the three indices as the data of the

boxplot on the all test sets to select the best value of pc. Fig.10

shows the results with different combination of classifiers and

pc. Upon inspecting Fig. 10, we see that the indices increase

the value of pc when it is less than 48 and achieve the

best performance when pc is 48. However, the performance

decreases when pc is greater than 48. And the AdaDT yields

the best results when pc is 48. On the basis of the above

research results, we adopt AdaDT as the classifier and 48 as

the value of pc to perform classification.

C. Comparison of Classification Results Among Different
Sites

In this article, the test dataset of ADHD-200 is used to

evaluate the performance of the model. There are two different

ways to compare the results in the literature using ADHD-

200 data: classification comparison among different sites and

classification comparison in comprehensive sites. The vast

majority of literature only choose one method to explain

the effectiveness of the experiment, meanwhile the evaluation

indicators vary according to the comparison methods. In order

to make the proposed method more persuasive, we employ

each of the two methods to explain the experimental results.

1) Comparison of Classification Results Among Different

Sites: The following ADHD classification algorithms were

selected for comparison: (1) the 2017 ADHD-200 global

competition champion algorithm (ADHD-2017) provided in

[9]; (2) the deep belief network based ADHD classification

algorithm (DBN) proposed in [14]; (3) the 3D-CNN based

ADHD classification algorithm (3D-CNN) proposed in [12]

(4) an R-RELIEF based ADHD classification algorithm (R-

RELIEF) proposed in [52]. Table II shows the results of the

proposed method and comparison algorithms on the test set,

where “-” represents that the corresponding site had not been

adopted, so the corresponding experimental results are none.

Table II shows that the accuracy of our method is the

highest in different sites which is 70.59%-83.33%. Compared

with ADHD-2017, the accuracy of different sites increased by

16.98-40.42%; the accuracy of DBN in NYU is only 37.41%

while the accuracy in NYU is increased by 37.98% in our

algorithm. And in KKI, the accuracy of our method is the

same as R-RELIEF while the OHSU is added in our method

and the rest of the sites are better than R-RELIEF.

In order to comprehensively demonstrate the effect of the

model, the ROC curve and (Area Under the Curve) AUC are

employed to evaluate the model. The ROC curve takes the

false positive rate (i.e. specificity) as the abscissa and the true
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Fig. 11. ROC comparison of different sites.

TABLE III

COMPARISON OF DIFFERENT CLASSIFICATION METHODS

positive rate (i.e. sensitivity) as the ordinate, which can reflect

the trend of sensitivity (FPR) and specificity (TPR) of the

model when selecting different thresholds. Compared with P-

R curves (accuracy and recall rate), ROC curve has a huge

advantage that when the distribution of positive and negative

samples changes, its shape can basically remain unchanged,

while the shape of P-R curve generally changes dramatically.

This evaluation method can reduce the interference caused by

different test sets and more objectively measure the perfor-

mance of the model itself. AUC is the area under ROC curve.

The larger the AUC value is, the better the model classification

effect is. Fig. 11 shows the ROC curves and AUC values of

the algorithm at different sites.

2) Comparison of Classification Results in Comprehensive

Sites: In order to make the experiment more intact, we also

attempt to test our model in all site datasets. The compari-

son methods are as follows: (1) The classification algorithm

(denoted as MKL) by using multi-kernel learning fusion

multimodal MRI features is proposed in [10]; (2) The clas-

sification algorithm (denoted as MDS-SVM) by using support

vector machine after multi-dimensional scaling of functional

connection network is proposed in [53]; (3) The algorithm of

ADHD classification (denoted as 3D-CNN) based on 3D-CNN

proposed in [12]; (4) The algorithm (denoted as 4D-CNN)

based on 4D-CNN proposed in [15]. Table III shows that the

proposed method yields the best results compared with others.

V. CONCLUSION

In this article, a new ADHD classification method based on

fMRI is proposed, which can directly extract features from

fMRI images to classify ADHD and TD. The experimental

results at different sites show that the proposed method is supe-

rior to the existing methods in accuracy and can maintain a

certain balance between specificity and sensitivity. Visualizing

the feature maps of the middle layers shows that CDAE can

effectively extract local information from spatial dimensions,

which is helpful for classification. Although the pretraining of

CDAE will increase the computational complexity of training

and storage, it can effectively improve the performance in the

classification of ADHD. In future work, we will focus on how

to eliminate the impact of data heterogeneity on classification

results as much as possible. Given the lack of utilization of the

fMRI data as a time series (thereby implicitly ignoring time

as an independent dimension), we will try to explore a better

model and method to extract time dimension features.
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