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Abstract

Deep networks have recently enjoyed enormous success

when applied to recognition and classification problems in

computer vision [22, 33], but their use in graphics problems

has been limited ([23, 7] are notable recent exceptions). In

this work, we present a novel deep architecture that per-

forms new view synthesis directly from pixels, trained from

a large number of posed image sets. In contrast to tradi-

tional approaches, which consist of multiple complex stages

of processing, each of which requires careful tuning and can

fail in unexpected ways, our system is trained end-to-end.

The pixels from neighboring views of a scene are presented

to the network, which then directly produces the pixels of

the unseen view. The benefits of our approach include gen-

erality (we only require posed image sets and can easily

apply our method to different domains), and high quality

results on traditionally difficult scenes. We believe this is

due to the end-to-end nature of our system, which is able to

plausibly generate pixels according to color, depth, and tex-

ture priors learnt automatically from the training data. We

show view interpolation results on imagery from the KITTI

dataset [12], from data from [1] as well as on Google

Street View images. To our knowledge, our work is the first

to apply deep learning to the problem of new view synthesis

from sets of real-world, natural imagery.

1. Introduction

Estimating 3D shape from multiple posed images is a

fundamental task in computer vision and graphics, both as

an aid to image understanding and as a way to generate 3D

representations of scenes that can be rendered and edited. In

this work, we aim to solve the related problem of new view

synthesis, a form of image-based rendering (IBR) where

the goal is to synthesize a new view of a scene by warp-

ing and combining images from nearby posed images. This

can be used for applications such as cinematography, vir-

tual reality, teleconferencing [4], image stabilization [21],

∗Contributed while at Google.

Figure 1: The top image was synthesized from several input

panoramas. A portion of four of the inputs is shown on the

bottom row.

or 3-dimensionalizing monocular film footage.

New view synthesis is an extremely challenging, under-

constrained problem. An exact solution would require full

3D knowledge of all visible geometry in the unseen view

which is in general not available due to occluders. Addition-

ally, visible surfaces may have ambiguous geometry due to

a lack of texture. Therefore, good approaches to IBR typi-

cally require the use of strong priors to fill in pixels where

the geometry is uncertain, or when the target color is un-

known due to occlusions.

The majority of existing techniques for this problem in-

volve traditional multi-view stereo and/or image warping

methods and often explicitly model the stereo, color, and

occlusion components of each target pixel [39, 1]. A key

problem with these approaches is that they are prone to gen-

erating unrealistic and jarring rendering artifacts in the new

view. Commonly seen artifacts include tearing around oc-

cluders, elimination of fine structures, and aliasing. Han-

dling complex, self-occluding (but commonly seen) objects

such as trees is particularly challenging for traditional ap-
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proaches. Interpolating between wide baseline views tends

to exacerbate these problems.

Deep networks have enjoyed huge success in recent

years, particularly for image understanding tasks [22, 33].

Despite these successes, relatively little work exists on ap-

plying deep learning to computer graphics problems and es-

pecially to generating new views from real imagery. One

possible reason is the perceived inability of deep networks

to generate pixels directly, but recent work on denois-

ing [40], super-resolution [6], and rendering [23] suggests

that this is a misconception. Another common objection is

that deep networks have a huge number of parameters and

are prone to overfitting in the absence of enormous quanti-

ties of data, but recent work [33] has shown state-of-the-art

deep networks whose parameters number in the low mil-

lions greatly reducing the potential for overfitting.

In this work we present a new approach to new view syn-

thesis that uses deep networks to regress directly to output

pixel colors given posed input images. Our system is more

resilient to the failure modes of traditional approaches, and

is able to interpolate between views separated by a wide

baseline. We posit this is due to the end-to-end nature of

the training, and the ability of deep networks to learn ex-

tremely complex non-linear functions of their inputs [28].

Our method makes minimal assumptions about the scene

being rendered: largely, that the scene should be static and

should exist within a finite range of depths. Even when

these requirements are violated, the resulting images de-

grade gracefully and often remain visually plausible. When

uncertainty cannot be avoided, our method prefers to blur

detail, which generates much more visually pleasing re-

sults compared to tearing or repeating, especially when an-

imated. Additionally, although we focus on its application

to new view problems here, we believe that the deep archi-

tecture presented can be readily applied to other stereo and

graphics problems given suitable training data.

For the view synthesis problem, there is an abundance

of readily available training data—any set of posed images

can be used as a training set by leaving one image out and

trying to reproduce it from the remaining images. Based

on this key idea, we train two models using two corpuses:

large amounts of data mined from Google’s Street View, a

massive collection of posed imagery spanning much of the

globe [18], and posed imagery from the KITTI odometry

dataset [12], which we repurpose for view synthesis. Be-

cause of the variety of Street View scenes seen during train-

ing, our system is robust and generalizes to new types of

imagery, as well as to image collections used in prior work.

Suprisingly, even a model trained on the less varied KITTI

datset generalizes well to very different data.

To evaluate our method, we use held-out KITTI im-

agery to form a new view synthesis benchmark, and perform

quantitative comparisons to more traditional IBR methods

using this benchmark. We also qualitatively compare im-

ages generated by our model with the corresponding cap-

tured images, and compare our results qualitatively to exist-

ing state-of-the-art IBR methods [1].

2. Related Work

Learning depth from images. The problem of view syn-

thesis is strongly related to the problem of predicting depth

or 3D shape from imagery. In recent years, learning meth-

ods have been applied to this shape prediction problem,

often from just a single image—a very challenging vision

task. Automatic single-view methods include the Make3D

system of Saxena et al. [30], which uses aligned photos and

laser scans as training data, and the automatic photo pop-up

work of Hoiem et al. [15], which uses images with man-

ually annotated geometric classes. More recent methods

have used Kinect data for training [17, 20] and deep learn-

ing methods for single view depth or surface normal pre-

diction [9, 38]. However, the single-view problem remains

very challenging. Moreover, gathering sufficient training

data is difficult and time-consuming.

Other work has explored the use of machine learning

for the stereo problem (i.e., using more than one frame).

Learning has been used to estimate the parameters of more

traditional models such as MRFs [43, 41], as well as for

deriving low-level correlation filters for disparity estima-

tion [27, 19]. Zbontar and LeCun [42] train a convolutional

network on KITTI data to predict image patch similarity.

This patch similarity network is used as the basis of a stereo

matching cost, which, combined with traditional stereo fil-

tering, achieves impressive results. Unlike this prior work,

we learn to synthesize new views directly using a new deep

architecture, and do not require known depth or disparity as

training data.

View interpolation. There is a long history of work on

image-based rendering in vision and graphics based on a va-

riety of methods, including light fields [25, 14], image cor-

respondence and warping [31], and explicit shape and ap-

pearance estimation [37, 44, 32]. Much of the recent work

in this area has used a combination of 3D shape with im-

age warping and blending [10, 13, 1, 2]. These methods are

largely hand-built and do not leverage training data. Our

goal is to learn a model for predicting new viewpoints by

directly minimizing the prediction error on our training set.

We are particularly inspired by the work of Fitzgibbon

et al. on IBR using image-based priors [11]. Like them,

we consider the goal of faithfully reconstructing the out-

put image to be the key problem to be optimized for, as

opposed to reconstructing depth or other intermediate rep-

resentation. We use state-of-the-art machine learning meth-

ods with a new architecture to achieve this goal. Szeliski

[34] suggests image prediction as a metric for stereo algo-
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rithms; our method directly minimizes this prediction error.

Finally, a few recent papers have applied deep learning

to synthesizing imagery. Dosovitskiy et al. train a network

on synthetic images of rendered 3D chairs that can gener-

ate new chair images given parameters such as pose [7].

Kulkarni et al. propose a “deep convolutional inverse graph-

ics network” that can parse and rerender imagery such as

faces [24]. However, we believe ours is the first method to

apply deep learning to synthesizing novel natural imagery

from posed real-world input images.

3. Approach

Given a set of N posed input images I1, I2, . . . , IN , with

poses V1, V2, . . . , VN , the view synthesis problem is to ren-

der a new image from the viewpoint of a new target cam-

era C. Despite the representative power of deep networks,

naively training a deep network to synthesize new views by

supplying the input images Ik as inputs directly is unlikely

to work well, for two key reasons.

First, the pose parameters of C and of the views

V1, V2, . . . , VN would need to be supplied as inputs to the

network in order to produce the desired view. The rela-

tionship between the pose parameters, the input pixels and

the output pixels is complex and non-linear—the network

would effectively need to learn how to interpret rotation an-

gles and perform image reprojection. Forcing the network

to learn projection is inefficient—it is a straightforward op-

eration that we can represent outside of the network.

Second, in order to synthesize a new view, the network

would need to compare and combine potentially distant pix-

els in the original source images, necessitating very dense,

long-range connections. Such a network would have many

parameters and would be slow to train, prone to overfitting,

and slow to run inference on. A network structure could be

designed to use the epipolar constraint internally in order to

limit connections to those on corresponding epipolar lines.

However, the epipolar lines, and thus the network connec-

tions, would be pose-dependent, making this very difficult

and likely computationally inefficient in practice.

Using plane-sweep volumes. Instead, we address these

problems by using ideas from traditional plane sweep stereo

[3, 35]. We provide our network with a set of 3D plane

sweep volumes as input. A plane sweep volume (PSV) con-

sists of a stack of images reprojected to the target camera

C (Fig. 2). Each image Ik in the stack is reprojected into

C at a set of varying depths d ∈ {d1, d2, . . . dD} to form

a plane sweep volume V k
C = {P k

1
, P k

2
, . . . P k

D}, where P k
i

refers to the reprojected image Ik at depth di. Reproject-

ing an input image into a target camera requires basic tex-

ture mapping and can be performed on a GPU. We create a

separate plane sweep volume V k
C for each input image Ik.

Each voxel vki,j,z in each plane sweep volume V k
C has RGB

Figure 2: Plane sweep stereo reprojects images I1 and I2
from viewpoints V1 and V2 to the target camera C at a range

of depths d ∈ d1 . . . dD. The dotted rays indicate the pixels

from the input images reprojected to a particular output im-

age pixel, and the images above each input view show the

corresponding reprojected images at different depths.

and A (alpha) components. The alpha channel indicates the

availability of source pixels for that voxel (e.g., alpha = 0

for pixels outside the field of view of a source image).

Using plane sweep volumes as inputs to the network re-

moves the need to supply the pose parameters since they are

now implicit inputs used in the construction of the PSV. Ad-

ditionally, the epipolar constraint is trivially enforced within

a PSV: corresponding pixels are now in corresponding i, j

columns of the PSV. Thus, long-range connections between

pixels are no longer needed, so a given output pixel depends

only on a small column of voxels from each of the per-

source PSVs. Similarly, the computation performed to pro-

duce an output pixel p at location i, j should be largely in-

dependent of the pixel location. This allows us to use more

efficient convolutional neural networks. Our model applies

2D convolutional layers to each plane within the input PSV.

In addition to sharing weights within convolutional layers,

we make extensive use of weight sharing across planes in

the PSV. Intuitively, weight sharing across planes makes

sense since the computation to be performed on each plane

will be largely independent of the plane’s depth.

Our model. Our network architecture (Fig. 3) consists of

two towers of layers, a selection tower and a color tower.

The intuition behind this dual architecture is that there are

really two related tasks we seek to accomplish:

• Depth prediction. First, we want to know the approx-

imate depth for each pixel in the output image. This

enables us to determine the source image pixels we

should use to generate that output pixel. In prior work,

this kind of probability over depth might be computed

via SSD, NCC, or variance; we learn how to compute

these probabilities using training data.
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Figure 3: The basic architecture of our network, with selec-

tion and color towers. The final output image is produced

by element-wise multiplication of the selection and color

tower outputs and then computing the sum over the depth

planes. Fig. 6 shows the full network details.

• Color prediction. Second, we want to produce a color

for that output pixel, given all of the relevant source

image pixels. Again, the network does not just per-

form, e.g., a simple average, but learns to optimally

combine the source pixels using training data.

The two towers in our network correspond to these two

tasks: the selection tower produces a probability map (or

selection map) for each depth indicating the likelihood of

each pixel having that depth. The color tower produces

a full color output image for each depth; one can think

of this tower as producing the best color it can for each

depth, assuming that the depth is the correct one. These

D color images are then combined as a per-pixel weighted

sum with weights drawn from the selection maps: the se-

lection maps decide on the best color layers to use for each

output pixel. This simple new approach to view synthe-

sis has several attractive properties. For instance, we can

learn all of the parameters of both towers simultaneously,

end-to-end using deep learning methods. The weighted av-

eraging across color layers also yields some resilience to

uncertainty—regions where the algorithm is not confident

tend to be blurred out, rather than being filled with warped

or distorted input pixels.

More formally, the selection tower computes, for each

pixel pi,j , in each plane Pz , the selection probability si,j,z
for the pixel being at that depth. The color tower computes

for each pixel pi,j in each plane Pz the color ci,j,z for the

pixel at that plane. The final output color for each pixel is

computed as a weighted summation over the output color

planes, weighted by the selection probability (Fig. 3):

c
f
i,j =

∑
si,j,z ci,j,z. (1)

The input to each tower is the set of plane sweep volumes

V k
C (consisting of N×D reprojected images in total over all
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Figure 4: The selection tower learns to produce a selec-

tion probability si,j,z for each pixel pi,j in each depth plane

Pz . The first 2D layer operates on the individual reprojected

images. Subsequent layers operate on the concatenated fea-

tures per depth plane.

volumes, where N is the number of source images, and D

is the number of depth planes). The first layer of each tower

operates on each reprojected image P i
k independently, al-

lowing it to learn low-level image features. After the first

layer, the feature maps corresponding to the N sources are

concatenated per depth plane, and subsequent layers oper-

ate on these per-depth-plane feature maps. The final layers

of the selection tower additionally use connections across

depth planes.

The selection tower. The selection tower (Fig. 4) consists

of two main stages. The early layers, as discussed, con-

sist of a number of 2D convolutional rectified linear lay-

ers that share weights across all depth planes (and within a

depth plane for the first layer.) Intuitively, the early layers

will compute features that are independent of depth, such

as pixel differences, so their weights can be shared. The fi-

nal set of layers are connected across depth planes in order

to model interactions between depth planes, such as those

caused by occlusion (e.g., the network might learn to prefer

closer planes that have high scores in case of ambiguities in

depth). The final layer of the network is a per-pixel softmax

normalization transformer over depth. The softmax trans-

former encourages the model to pick a single depth plane

per pixel, whilst ensuring that the sum over all depth planes

is 1. We found that using a tanh activation for the penulti-

mate layer gives more stable training than the more natural

choice of a linear layer. In our experiments the linear layer

would often “shut down” certain depth planes1 and never re-

cover, presumably due to large gradients from the softmax

layer. The output of the selection tower is a 3D volume of

single-channel nodes si,j,z where
∑D

z=1
si,j,z = 1.

The color tower. The color tower (Fig. 5) is simpler and

consists of only 2D convolutional rectified linear layers that

1The depth planes would receive zero weight for all inputs and pixels.
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Figure 5: The color tower learns to combine and warp pix-

els across sources to produce a color ci,j,z for each pixel

pi,j in each depth plane Pz . As in the selection tower, the

first 2D layer operates on the individual reprojected images.

Subsequent layers operate on the concatenated features per

depth plane.

share weights across all planes, followed by a linear recon-

struction layer. Occlusion effects are not relevant for the

color layer so no across-depth interaction is needed. The

output of the color tower is again a 3D volume of nodes

ci,j,z . Each node in the output has three channels (RGB).

The output of the color tower and the selection tower are

multiplied together per node to produce the output image

cf (Eq. 1). During training the resulting image is compared

with the known target image It using a per-pixel L1 loss.

The total loss is thus: L =
∑

i,j |c
t
i,j − c

f
i,j | where cti,j is

the target color at pixel i, j.

Multi-resolution patches. Rather than predict a full im-

age at a time, we predict the output image patch-by-patch.

We found that passing in a set of lower resolution versions

of successively larger areas around the input patches im-

proved results by providing the network with more context.

We pass in four different resolutions. Each resolution is first

processed independently by several layers and then upsam-

pled and concatenated before entering the final layers. The

upsampling uses nearest neighbor interpolation. The full

details of the complete network are shown in Fig. 6.

Training. Training our network is a matter of simply tak-

ing a posed set of images, leaving one image out, and pre-

dicting it from the remaining ones. To evaluate the effect

of different types of training data, we trained two networks

from two distinct image sources. The first network used

images from Street View. These images were posed using

a combination of odometry and traditional structure-from-

motion methods [18]. The vehicle captures a set of images,

known as a rosette, from different directions for each expo-

sure. Each camera uses a rolling shutter sensor, which is

taken into account by our camera model. We used approx-

imately 100K of such image sets during training. The sec-

ond network was trained using the posed image sequences

(00-10) from from the KITTI odometry dataset [12]. Dur-

ing training, we held out sequence 04 as a validation set for

hyperparameter training, as well as sequence 10 for use as a

test set for final evaluation; we trained on the remaining ap-

proximately 20k images. We used both of the color stereo

cameras during training and testing.

Our network uses subsets of N + 1 images during train-

ing (where we used N = 4 for all experiments in this pa-

per). The center image is used as the target and the other N

are used as input. We used a continuously running online

sample generation pipeline that selected a random subset

from the training imagery and reprojected random patches

from this subset. The network was trained to produce 8× 8

patches from overlapping input patches of size 30× 30. We

used D = 96 depth planes in all results shown. Since the

network is fully convolutional, there are no border effects

as we transition between patches in the output image. In

order to increase the variability of the patches during train-

ing, patches from many images are mixed together to cre-

ate mini-batches of size 96. We trained our network using

Adagrad [8] with an initial learning rate of 0.0001 using the

system of Dean et al. [5]. In our experiments, training con-

verged after approximately 1M steps. Due to sample ran-

domization, it is unlikely that any patch was used more than

once in training.

4. Results

To evaluate our model quantitatively on the task of view

interpolation, we generated novel images from the same

viewpoint as known (but withheld) images from our KITTI

test set, consisting of 200 randomly selected images from

sequence 10, camera 2. We then measured the L1 per-pixel,

per-channel, prediction error of the synthesized vs. ground

truth image. To evaluate the effect of varying the camera

spacing (i.e. baseline) of the source images on our method,

we tried several experiments where we varied the baseline

of the images used during training. The median distance

between the original KITTI images is 0.8m. To generate

different baselines, we used variants of the dataset where

we took every other (median spacing 1.6m), or every third

image (median spacing 2.4m), creating natural variations in

baselines. We used the same set of held-out images inde-

pendently of baseline—only the source input images used

for view interpolation changed. We show the prediction er-

ror on a random sample of 200 images from the training

data. As expected this is comparable but slightly lower than

the test error. We show quantitative results in Table 1, and

qualitative results in 8.

All three KITTI-trained models did well on the natural

baseline (0.8m) and the wide baseline (1.6m) test data. They

all had difficulty on the very wide baseline (2.4m) test data.

All images shown used the wide baseline trained model.

The size of baselines that the models were trained on did
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Figure 6: Full network diagram. The initial stages of both the color and selection towers are the same structure, but do not

share parameters.

KITTI L1 Prediction Error

Test: 0.8m Test: 1.6m Test: 2.4m

KITTI training error 7.0 10.23 13.53

Trained on KITTI (0.8m) 7.49 10.41 13.44

Trained on KITTI (1.6m) 7.60 10.28 12.97

Trained on KITTI (2.4m) 8.06 10.73 13.37

Trained on Street View 10.50 15.49 20.40

Depth Splatting 10.80 15.92 20.08

Table 1: Prediction error for varying training and test

sets. Results are shown as L1 image prediction error on the

test set (lower is better). The first row of numbers shows

the training error of our method on each spacing. Each

subsequent row shows test set errors for each training set

and method: KITTI training sets with 0.8m, 1.6m, and

2.4m spacings, the Street View training set, and the depth

splatting baseline approach. Each column shows prediction

scores for KITTI test sets with different spacings.

not appear to have a large effect. As with other methods,

our method had difficulty primarily near the left and right

edges of the images, e.g. last row of 8, where the relative

pixel motion is very fast. Additionally it occasionally had

problems with thin structures, but less often than the com-

peting methods, e.g. second last row of 8.

The Street-View-trained model did not do as well on this

dataset. During training, every Street View rosette provides

pixels in every direction, so the reprojected depth planes

always have valid pixels. With the KITTI dataset, however,

some parts of the depth planes were not visible from all

cameras. Since the model had not seen such missing pixels

during training, it made large errors. This chiefly affects

the boundaries of the rendered images; the interiors where

all sources are available look much better. It is likely that

a training regime that randomly removed parts of the Street

View images would mitigate this problem.

Comparison to prior work. For comparison, we imple-

mented a baseline IBR algorithm that computes depth using

[29] for the four nearest input images and splats the pixels

from the two nearest images into the target view. To fill any

small remaining holes, we diffused neighboring valid pix-

els. We ran this algorithm on the KITTI test set and com-

puted L1 pixel differences as before (Table 1, last row). Our

method (trained on KITTI) outperformed the simple IBR

algorithm on all spacings. We note that these scenes are

difficult for stereo algorithms because of the abundance of

natural vegetation, specularities and thin structures such as

lampposts.

Chaurasia et al. [1] attempted to run their algorithms on

the same KITTI data, but their algorithms were unable to

generate images on this data. They mentioned difficulty

obtaining a good initial reconstruction due to challenging

lighting conditions, vegatation and high image noise. As

we discuss below, their algorithm works well on other types

of data.

Additionally, we compare our method to one that uses a

recent state-of-the-art optical flow algorithm [26] to inter-

polate an in-between image. There is no notion of 3D pose

when doing optical flow, so the interpolated image is only

approximately at the viewpoint of the witheld image. Addi-

tionally [26] uses only two images as input so the compar-

ison is not completely fair. However even in interior image

areas our method looks qualitatively better, e.g. the third

row of 8.

Additional images, as well as an interpolated video, are

included as supplemental material.

Additional datasets. Finally, we used our method to in-

terpolate from images featured in the work of Chaurasia,

et al. [2, 1]. The results are shown in Figure 9. We again

held out a known image and predicted from nearby images.

The authors provided us with the result of their algorithm on

these held-out images, and we compared our results using

both the KITTI-trained model and the Street-View-trained

model. The images in this dataset were captured with a

handheld DSLR camera, and hence are quite different from
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our training images, particularly from the KITTI data. De-

spite the fact that our models were not trained directly for

this task, they did a reasonable job at reproducing the input

images. Our method also had difficultly with the repeating

structure and occluding pillars in the second example; the

Chaurasia method likely benefited from being able to use

more images to resolve this ambiguity. As in the KITTI ex-

amples, the Street-View-trained model again had difficulty

when some depth planes were missing pixels, as can be seen

seen near image boundaries.

Overall, our model produces plausible outputs that are

difficult to immediately distinguish from the original im-

agery. Our model can handle a variety of traditionally dif-

ficult surfaces, including trees and glass as shown in Fig-

ure 1. Although the network does not attempt to model

specular surfaces, the images in Figure 8 show that perfor-

mance degrades gracefully in their presence. Noticeable ar-

tifacts in our results include a slight loss of resolution and

the occasional disappearance of thin foreground structures.

Moving objects, which occur often in training, are handled

gracefully by our model: they are blurred in a manner that

evokes motion blur (e.g. the flag in Figure 9). On the other

hand, violating the maximum camera motion assumption

significantly degrades the quality of the interpolated results.

While our network can theoretrically model occlussion, we

find that it does not always perform correctly and that thin

objects occasionally fade into the background. This can be

seen at the top of the lamppost in the fourth row of Figure 8.

In order to better demonstrate what the network learns,

we have included crops of the the input reprojected images

and layer outputs from the color and selection towers for a

single depth plane in Figure 7. The particular depth planes

shown have been chosen so that the cropped regions have

strong selection probability at that plane, as shown in the

selection layer output. As shown in that figure, the color

layer does more than simply average the input reprojected

images: it learns to warp and robustly combine the input to

produce the color image for that depth plane. This ability

allows us to have depth planes that are separated by more

than one pixel of disparity.

Computational Costs. The network renders images in

small patches, as rendering an entire image would be pro-

hibitively expensive in RAM, and takes about 12 minutes

on a multi-core workstation to render a 512× 512 pixel im-

age. If the convolutional nature of the network were fully

exploited, approximately 15 TFlops (multiply-adds) would

be needed to render the same image.

5. Discussion

We have shown that it is possible to train a deep network

end-to-end to perform novel view synthesis. Our method is

versatile and requires only sets of posed imagery. Results

comparing real views with synthesized views show the gen-

Two reprojected inputs. Selection and color layers. Average.

Figure 7: Layer outputs at one depth plane, showing repro-

jected input views (left), the outputs of the selection and

color layers at a given depth (middle), and a comparison

to the average (right). Note that while averaging produces

ghosting, the color layer can tolerate misalignment.

erality of our approach. Our results are competitive with

existing image-based rendering methods, even though our

training data is considerably different from the test sets.

One drawback of our method is speed, which is min-

utes per image. However, based on an analysis of the total

FLOPs required, we believe that an optimized GPU imple-

mentation could render a 512×512 image in just a few sec-

onds. We have not performed extensive experiments on the

depths of the internal network layers, reducing these (while

maintaining quality) may offer large speed-ups. Separable

convolutions [16] and quantization [36] could also be used

to speed up inference.

Our method currently requires reprojecting each input

image to a set of depth planes; we currently use 96 depth

planes, which limits the resolution of the output images

that we can produce. Increasing resolution would require

a larger number of depth planes, which would mean that the

network takes longer to train and run. This is a drawback

shared with other volumetric stereo methods. However,

our method requires reprojected images per rendered frame,

rather than just once when creating the scene. We plan to

explore pre-computing parts of the network and warping to

new views before running the final layers.

Another interesting direction of future work is to explore

different network architectures. For instance, one could use

a recurrent network to process the reprojected depth images

one depth plane at a time. Such a network would not need

expensive connections across depth. We believe that, with

some of these improvements, our method could offer real-

time performance on a GPU.

Our network is trained using four input views per tar-

get view. We currently cannot change the number of in-

put views after training, which is suboptimal when there are

denser sets of cameras that can be exploited, as in sequences

from [1]. One idea is to choose the set of input views per

pixel; however, this risks introducing discontinuties at tran-

sitions between chosen views. Alternatively, a more com-

plex recurrent model could handle arbitrary numbers of in-

put views, though this would likely complicate training. It
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Figure 8: Comparison of real to synthesized KITTI images, showing results from the Kitti- and Street-View-trained model,

a depth splatting algorithm from computed depth maps [29] and an optical flow algorithm [26]. The optical flow interpolates

images halfway between the two input images.

Reference Image DeepStereo KITTI DeepStereo Street View Chaurasia [1]

Figure 9: Comparison of real to synthesized images from Chaurasia [1], showing results from the Kitti- and Street-View-

trained model with those from Chaurasia [1].

would also be interesting to investigate using the outputs of

the internal layers of the network. For instance, it is likely

that the network learns a strong pixel similarity measure in

the select tower that could be incorporated into a more tra-

ditional stereo framework.

Finally, similar networks could likely be applied to other

problems, such as synthesizing intermediate frames in video

or predicting a depth map, given appropriate training data.
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