
Deep Stereo using Adaptive Thin Volume Representation

with Uncertainty Awareness

Shuo Cheng1* Zexiang Xu1* Shilin Zhu1

Zhuwen Li2 Li Erran Li3,4 Ravi Ramamoorthi1 Hao Su1

1University of California, San Diego 2Nuro Inc. 3Scale AI 4Columbia University

Abstract

We present Uncertainty-aware Cascaded Stereo Network

(UCS-Net) for 3D reconstruction from multiple RGB im-

ages. Multi-view stereo (MVS) aims to reconstruct fine-

grained scene geometry from multi-view images. Previous

learning-based MVS methods estimate per-view depth using

plane sweep volumes (PSVs) with a fixed depth hypothesis

at each plane; this requires densely sampled planes for high

accuracy, which is impractical for high-resolution depth be-

cause of limited memory. In contrast, we propose adaptive

thin volumes (ATVs); in an ATV, the depth hypothesis of

each plane is spatially varying, which adapts to the uncer-

tainties of previous per-pixel depth predictions. Our UCS-

Net has three stages: the first stage processes a small PSV to

predict low-resolution depth; two ATVs are then used in the

following stages to refine the depth with higher resolution

and higher accuracy. Our ATV consists of only a small num-

ber of planes with low memory and computation costs; yet,

it efficiently partitions local depth ranges within learned

small uncertainty intervals. We propose to use variance-

based uncertainty estimates to adaptively construct ATVs;

this differentiable process leads to reasonable and fine-

grained spatial partitioning. Our multi-stage framework

progressively sub-divides the vast scene space with increas-

ing depth resolution and precision, which enables recon-

struction with high completeness and accuracy in a coarse-

to-fine fashion. We demonstrate that our method achieves

superior performance compared with other learning-based

MVS methods on various challenging datasets.

1. Introduction

Inferring 3D scene geometry from captured images is a

core problem in computer vision and graphics with appli-

cations in 3D visualization, scene understanding, robotics

and autonomous driving. Multi-view stereo (MVS) aims to

reconstruct dense 3D representations from multiple images
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Figure 1: Our UCS-Net leverages adaptive thin volumes

(ATVs) to progressively reconstruct a highly accurate high-

resolution depth map through multiple stages. We show the

input RGB image, depth predictions with increasing sizes

from three stages, and our final point cloud reconstruction

obtained by fusing multiple depth maps. We also illustrate

a local slice (red) from our depth prediction with the cor-

responding ATV boundaries that reflect pixel-wise uncer-

tainty intervals. Our ATVs become thinner after a stage with

reduced uncertainty, which enables higher accuracy.

with calibrated cameras. Inspired by the success of deep

convolutional neural networks (CNN), several learning-

based MVS methods have been presented [23, 27, 54, 20,

47]; the most recent work leverages cost volumes in a learn-

ing pipeline [58, 21], and outperforms many traditional

MVS methods [13].

At the core of the recent success on MVS [58, 21] is

the application of 3D CNNs on plane sweep cost volumes

to effectively infer multi-view correspondence. However,

such 3D CNNs involve massive memory usage for depth

estimation with high accuracy and completeness. In par-

ticular, for a large scene, high accuracy requires sampling

a large number of sweeping planes and high completeness

requires reconstructing high-resolution depth maps. In gen-

eral, given limited memory, there is an undesired trade-off

between accuracy (more planes) and completeness (more

pixels) in previous work [58, 21].
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Our goal is to achieve highly accurate and highly com-

plete reconstruction with low memory and computation

consumption at the same time. To do so, we propose a novel

learning-based uncertainty-aware multi-view stereo frame-

work, which utilizes multiple small volumes, instead of a

large standard plane sweep volume, to progressively regress

high-quality depth in a coarse-to-fine fashion. A key in

our method is that we propose novel adaptive thin volumes

(ATVs, see Fig. 1) to achieve efficient spatial partitioning.

Specifically, we propose a novel cascaded network with

three stages (see Fig. 2): each stage of the cascade predicts

a depth map with a different size; each following stage con-

structs an ATV to refine the predicted depth from the previ-

ous stage with higher pixel resolution and finer depth par-

titioning. The first stage uses a small standard plane sweep

volume with low image resolution and relatively sparse

depth planes – 64 planes that are fewer than the number of

planes (256 or 512) in previous work [58, 59]; the following

two stages use ATVs with higher image resolutions and sig-

nificantly fewer depth planes – only 32 and 8 planes. While

consisting of a very small number of planes, our ATVs are

constructed within learned local depth ranges, which en-

ables efficient and fine-grained spatial partitioning for ac-

curate and complete depth reconstruction.

This is made possible by the novel uncertainty-aware

construction of an ATV. In particular, we leverage the vari-

ances of the predicted per-pixel depth probabilities, and in-

fer the uncertainty intervals (as shown in Fig. 1) by calcu-

lating variance-based confidence intervals of the per-pixel

probability distributions for the ATV construction. Specif-

ically, we apply the previously predicted depth map as a

central curved plane, and construct an ATV around the cen-

tral plane within local per-pixel uncertainty intervals. In

this way, we explicitly express the uncertainty of the depth

prediction at one stage, and embed this knowledge into the

input volume for the next stage.

Our variance-based uncertainty estimation is differen-

tiable and we train our UCSNet from end to end with depth

supervision for the predicted depths from all three stages.

Our network can thus learn to optimize the estimated un-

certainty intervals, to make sure that an ATV is constructed

with proper depth coverage that is both large enough – to

try to cover ground truth depth – and small enough – to en-

able accurate reconstruction for the following stages. Over-

all, our multi-stage framework can progressively sub-divide

the local space at a finer scale in a reasonable way, which

leads to high-quality depth reconstruction. We demonstrate

that our novel UCS-Net outperforms the state-of-the-art

learning-based MVS methods on various datasets.

2. Related Work

Multi-view stereo is a long-studied vision problem with

many traditional approaches [44, 39, 33, 32, 26, 10, 8, 13,

43]. Our learning-based framework leverages the novel spa-

tial representation, ATV to reconstruct high-quality depth

for fine-grain scene reconstruction. In this work, we mainly

discuss spatial representation for 3D reconstruction and

deep learning based multi-view stereo.

Spatial Representation for 3D Reconstruction. Exist-

ing methods can be categorized based on learned 3D rep-

resentations. Volumetric based approaches partition the

space into a regular 3D volume with millions of small vox-

els [23, 27, 54, 55, 60, 40], and the network predicts if

a voxel is on the surface or not. Ray tracing can be in-

corporated into this voxelized structure [49, 38, 50]. The

main drawback of these methods is computation and mem-

ory inefficiency, given that most voxels are not on the sur-

face. Researchers have also tried to reconstruct point clouds

[22, 13, 35, 52, 36, 2], however the high dimensional-

ity of a point cloud often results in noisy outliers since

a point cloud does not efficiently encode connectivity be-

tween points. Some recent works utilize single or multi-

ple images to reconstruct a point cloud given strong shape

priors [11, 22, 36], which cannot be directly extended to

large-scale scene reconstruction. Recent work also tried to

directly reconstruct surface meshes [34, 25, 53, 19, 46, 28],

deformable shapes [24, 25], and some learned implicit dis-

tance functions [7, 41, 37, 6]. These reconstructed surfaces

often look smoother than point-cloud-based approaches, but

often lack high-frequency details. A depth map repre-

sents dense 3D information that is perfectly aligned with

a reference view; depth reconstruction has been demon-

strated in many previous works on reconstruction with

both single view [9, 51, 16, 17, 62] and multiple views

[4, 48, 18, 14, 43, 57, 43]. Some of them leverage nor-

mal information as well [14, 15]. In this paper, we present

ATV, a novel spatial representation for depth estimation; we

use two ATVs to progressively partition local space, which

is the key to achieve coarse-to-fine reconstruction.

Deep Multi-View Stereo (MVS). The traditional MVS

pipeline mainly relies on photo-consistency constraints to

infer the underlying 3D geometry, but usually performs

poorly on texture-less or occluded areas, or under complex

lighting environments. To overcome such limitations, many

deep learning-based MVS methods have emerged in the last

two years, including regression-based approaches [58, 21],

classification-based approaches [20] and approaches based

on recurrent- or iterative- style architectures [59, 61, 5]

and many other approaches [30, 38, 3, 45]. Most of these

methods build a single cost volume with uniformly sampled

depth hypotheses by projecting 2D image features into 3D

space, and then use a stack of either 2D or 3D CNNs to infer

the final depth [58, 12, 56]. However, a single cost volume

often requires a large number of depth planes to achieve

enough reconstruction accuracy, and it is difficult to recon-

struct high-resolution depth, limited by the memory bottle-
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Figure 2: Overview of our UCS-Net. Our UCS-Net leverages multi-scale cost volumes to achieve coarse-to-fine depth

prediction with three cascade stages. The cost volumes are constructed using multi-scale deep image features from a multi-

scale feature extractor. The last two stages utilize the uncertainty of the previous depth prediction to build adaptive thin

volumes (ATVs) for depth reconstruction at a finer scale. We mark different parts of the network in different colors. Please

refer to Sec 3 and the corresponding subsections for more details.

neck. R-MVSNet [59] leverages recurrent networks to se-

quentially build a cost volume with a high depth-wise sam-

pling rate (512 planes). In contrast, we apply an adaptive

sampling strategy with ATVs, which enables more efficient

spatial partitioning with a higher depth-wise sampling rate

using fewer depth planes (104 planes in total, see Tab. 3),

and our method achieves significantly better reconstruction

than R-MVSNet (see Tab. 1 and Tab. 2). On the other

hand, Point-MVSNet [5] densifies a coarse reconstruction

within a predefined local spatial range for better reconstruc-

tion with learning-based refinement. We propose to refine

depth in a learned local space with adaptive thin volumes to

obtain accurate high-resolution depth, which leads to better

reconstruction than Point-MVSNet and other state-of-the-

art methods (see Tab. 1 and Tab. 2).

3. Method

Some recent works aim to improve learning-based MVS

methods. Recurrent networks [59] have been utilized to

achieve fine depth-wise partitioning for high accuracy; a

PointNet-based method [5] is also presented to densify the

reconstruction for high completeness. Our goal is to recon-

struct high-quality 3D geometry with both high accuracy

and high completeness. To this end, we propose a novel

uncertainty-aware cascaded network (UCS-Net) to recon-

struct highly accurate per-view depth with high resolution.

Given a reference image I1 and N − 1 source im-

ages {Ii}
N
i=2, our UCS-Net progressively regresses a fine-

grained depth map at the same resolution as the refer-

ence image. We show the architecture of the UCS-Net in

Fig. 2. Our UCS-Net first leverages a 2D CNN to ex-

tract multi-scale deep image features at three resolutions

(Sec. 3.1). Our depth prediction is achieved through three

stages, which leverage multi-scale image features to predict

multi-resolution depth maps. In these stages, we construct

multi-scale cost volumes (Sec. 3.2), where each volume is a

plane sweep volume or an adaptive thin volume (ATV). We

then apply 3D CNNs to process the cost volumes to pre-

dict per-pixel depth probability distributions, and a depth

map is reconstructed from the expectations of the distribu-

tions (Sec. 3.3). To achieve efficient spatial partitioning, we

utilize the uncertainty of the depth prediction to construct

ATVs as cost volumes for the last two stages (Sec. 3.4).

Our multi-stage network effectively reconstructs depth in a

coarse-to-fine fashion (Sec. 3.5).

3.1. Multiscale feature extractor

Previous methods use downsampling layers [58, 59] or

a UNet [56] to extract deep features and build a plane

sweep volume at a single resolution. To reconstruct high-

resolution depth, we introduce a multi-scale feature extrac-

tor, which enables constructing multiple cost volumes at

different scales for multi-resolution depth prediction. As

schematically shown in Fig. 2, our feature extractor is a

small 2D UNet [42], which has an encoder and a decoder

with skip connections. The encoder consists of a set of con-

volutional layers followed by BN (batch normalization) and

ReLu activation layers; we use stride = 2 convolutions to
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downsample the original image size twice. The decoder

upsamples the feature maps, convolves the upsampled fea-

tures and the concatenated features from skip links, and

also applies BN and Relu layers. Given each input image

Ii, the feature extractor provides three scale feature maps,

Fi,1, Fi,2, Fi,3, from the decoder for the following cost

volume construction. We represent the original image size

as W × H , where W and H denote the image width and

height; correspondingly, Fi,1, Fi,2 and Fi,3 have resolutions

of W
4
× H

4
, W

2
× H

2
and W ×H , and their numbers of chan-

nels are 32, 16 and 8 respectively. Our multi-scale feature

extractor allows for the high-resolution features to properly

incorporate the information at lower resolutions through the

learned upsampling process; thus in the multi-stage depth

prediction, each stage is aware of the meaningful feature

knowledge used in previous stages, which leads to reason-

able high-frequency feature extraction.

3.2. Cost volume construction

We construct multiple cost volumes at multiple scales by

warping the extracted feature maps, Fi,1, Fi,2, Fi,3 from

source views to a reference view. Similar to previous work,

this process is achieved through differentiable unprojection

and projection. In particular, given camera intrinsic and ex-

trinsic matrices {Ki, Ti} for each view i, the 4× 4 warping

matrix at depth d at the reference view is given by:

Hi(d) = KiTiT
−1

1 K−1

1 . (1)

In particular, when warping to a pixel in the reference image

I1 at location (x, y) and depth d, Hi(d) multiplies the ho-

mogeneous vector (xd, yd, d, 1) to finds its corresponding

pixel location in each Ii in homogeneous coordinates.

Each cost volume consists of multiple planes; we use

Lk,j to denote the depth hypothesis of the jth plane at the

kth stage, and Lk,j(x) represents its value at pixel x. At

stage k, once we warp per-view feature maps Fi,k at all

depth planes with corresponding hypotheses Lk,j , we cal-

culate the variance of the warped feature maps across views

at each plane to construct a cost volume. We use Dk to rep-

resent the number of planes for stage k. For the first stage,

we build a standard plane sweep volume, whose depth hy-

potheses are of constant values, i.e. L1,j(x) = dj . We

uniformly sample {dj}
D1

j=1
from a pre-defined depth inter-

val [dmin, dmax] to construct the volume, in which each

plane is constructed using Hi(dj) to warp multi-view im-

ages. For the second and third stages, we build novel adap-

tive thin volumes, whose depth hypotheses have spatially-

varying depth values according to pixel-wise uncertainty es-

timates of the previous depth prediction. In this case, we

calculate per-pixel per-plane warping matrices by setting

d = Lk,j(x) in Eqn. 1 to warp images and construct cost

volumes. Please refer to Sec. 3.4 for uncertainty estimation.

3.3. Depth prediction and probability distribution

At each stage, we apply a 3D CNN to process the cost

volume, infer multi-view correspondence and predict depth

probability distributions. In particular, we use a 3D UNet

similar to [58], which has multiple downsampling and up-

sampling 3D convolutional layers to reason about scene ge-

ometry at multiple scales. We apply depth-wise softmax at

the end of the 3D CNNs to predict per-pixel depth proba-

bilities. Our three stages use the same network architecture

without sharing weights, so that each stage learns to process

its information at a different scale. Please refer to the sup-

plemental material for details of our 3D CNN architecture.

The 3D CNN at each stage predicts a depth probability

volume that consists of Dk depth probability maps Pk,j as-

sociated with the depth hypotheses Lk,j . Pk,j expresses

per-pixel depth probability distributions, where Pk,j(x)
represents how probable the depth at pixel x is Lk,j(x). A

depth map L̂k at stage k is reconstructed by weighted sum:

L̂k(x) =

Dk
∑

j=1

Lk,j(x) ·Pk,j(x). (2)

3.4. Uncertainty estimation and ATV

The key for our framework is to progressively sub-

partition the local space and refine the depth prediction with

increasing resolution and accuracy. To do so, we construct

novel ATVs for the last two stages, which have curved

sweeping planes with spatially-varying depth hypotheses

(as illustrated in Fig. 1 and Fig. 2), based on uncertainty

inference of the predicted depth in its previous stage.

Given a set of depth probability maps, previous work

only utilizes the expectation of the per-pixel distributions

(using Eqn. (2)) to determine an estimated depth map. For

the first time, we leverage the variance of the distribution for

uncertainty estimation, and construct ATVs using the uncer-

tainty. In particular, the variance V̂k(x) of the probability

distribution at pixel x and stage k is calculated as:

V̂k(x) =

Dk
∑

j=1

Pk,j(x) · (Lk,j(x)− L̂k(x))
2, (3)

and the corresponding standard deviation is σ̂k(x) =
√

V̂k.

Given the depth prediction L̂k(x) and its variance σ̂k(x)
2

at pixel x, we propose to use a variance-based confidence

interval to measure the uncertainty of the prediction:

Ck(x) = [L̂k(x)− λσ̂k(x), L̂k(x) + λσ̂k(x)], (4)

where λ is a scalar parameter that determines how large

the confidence interval is. For each pixel x, we uniformly

sample Dk+1 depth values from Ck(x) of the kth stage, to

get its depth values Lk+1,1(x), Lk+1,2(x),...,Lk+1,Dk+1
(x)
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Figure 3: We illustrate detailed depth and uncertainty es-

timation of two examples. On the top, we show the RGB

image crops, predicted depth and ground truth depth. On

the bottom, we show the details of of two pixels (red points

in the images) with predicted depth probabilities (connected

blue dots) , depth prediction (red dash line), the ground truth

depth (black dash line) and uncertainty intervals (purple) in

the three stages.

of the depth planes for stage (k + 1). In this way, we

construct Dk+1 spatially-varying depth hypotheses Lk+1,j ,

which form the ATV for stage (k + 1).

The estimated Ck(x) expresses the uncertainty inter-

val of the prediction L̂k(x), which determines the physi-

cal thickness of an ATV at each pixel. In Fig. 3, we show

two actual examples with two pixels and their estimated un-

certainty intervals Ck(x) around the predictions (red dash

line). The Ck essentially depicts a probabilistic local space

around the ground truth surface, and the ground truth depth

is located in the uncertainty interval with a very high con-

fidence. Note that, our variance-based uncertainty estima-

tion is differentiable, which enables our UCS-Net to learn

to adjust the probability prediction at each stage to achieve

optimized intervals and corresponding ATVs for follow-

ing stages in an end-to-end training process. As a result,

the spatially varying depth hypotheses in ATVs naturally

adapt to the uncertainty of depth predictions, which leads to

highly efficient spatial partitioning.

3.5. Coarsetofine prediction

Our UCS-Net leverages three stages to reconstruct depth

at multiple scales from coarse to fine, which generally sup-

ports different numbers (Dk) of planes in each stage. In

practice, we use D1 = 64, D2 = 32 and D3 = 8 to

construct a plane sweep volume and two ATVs with sizes

of W
4

× H
4
× 64, W

2
× H

2
× 32 and H × W × 8 to es-

timate depth at corresponding resolutions. While our two

ATVs have small numbers (32 and 8) of depth planes, they

in fact partition local depth ranges at finer scales than the

first stage volume; this is achieved by our novel uncertainty-

aware volume construction process which adaptively con-

trols local depth intervals. This efficient usage of a small

Method Acc. Comp. Overall

Camp [4] 0.835 0.554 0.695

Furu [13] 0.613 0.941 0.777

Tola [48] 0.342 1.190 0.766

Gipuma [14] 0.283 0.873 0.578

SurfaceNet [46] 0.450 1.040 0.745

MVSNet [58] 0.396 0.527 0.462

R-MVSNet [59] 0.383 0.452 0.417

Point-MVSNet [5] 0.342 0.411 0.376

Our 1st stage 0.548 0.529 0.539

Our 2nd stage 0.401 0.397 0.399

Our full model 0.338 0.349 0.344

Table 1: Quantitative results of accuracy, completeness and

overall on the DTU testing set. Numbers represent distances

in millimeters and smaller means better.

number of depth planes enables the last two stages to deal

with higher pixel-wise resolutions given the limited mem-

ory, which makes fine-grained depth reconstruction possi-

ble. Our novel ATV effectively expresses the locality and

uncertainty in the depth prediction, which enables state-of-

the-art depth reconstruction results with high accuracy and

high completeness through a coarse-to-fine framework.

3.6. Training details

Training set. We train our network on the DTU dataset [1].

We split the dataset into training, validate and testing set,

and create ground truth depth similar to [58]. In particular,

we apply Poisson reconstruction [29] on the point clouds

in DTU, and render the surface at the captured views with

three resolutions, W
4
× H

4
, W

2
× H

2
and the original W ×H .

In particular, we use W ×H = 640× 512 for training.

Loss function. Our UCS-Net predicts depth at three resolu-

tions; we apply L1 loss on depth prediction at each resolu-

tion with the rendered ground truth at the same resolution.

Our final loss is the combination of the three L1 losses.

Training policy. We train our full three-stage network from

end to end for 60 epochs. We use Adam optimizer with

an initial learning rate of 0.0016. We use 8 NVIDIA GTX

1080Ti GPUs to train the network with a batch size of 16

(mini-batch size of 2 per GPU).

4. Experiments

We now evaluate our UCS-Net. We do benchmarking on

the DTU and Tanks and Temple datasets. We then justify

the effectiveness of the designs of our network, in terms of

uncertainty estimation and multi-stage prediction.

Evaluation on the DTU dataset [1]. We evaluate our

method on the DTU testing set. To reconstruct the final

point cloud, we follow [14] to fuse the depth from mul-

tiple views; we use this fusion method for all our exper-
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Method Mean Family Francis Horse Lighthouse M60 Panther PlaygroundTrain

MVSNet[58] 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69

R-MVSNet[59] 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38

Dense-R-MVSNet[59] 50.55 73.01 54.46 43.42 43.88 46.80 46.69 50.87 45.25

Point-MVSNet[5] 48.27 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06

Our full model 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89

Table 2: Quantitative results of F-scores (higher means better) on Tanks and Temples.

R-MVSNet Our result Ground truth

Figure 4: Comparisons with R-MVSNet on an example in

the DTU dataset. We show rendered images of the point

clouds of our method, R-MVSNet and the ground truth.

In this example, the ground truth from scanning is incom-

plete. We also show insets for detailed comparisons marked

as a blue box in the ground truth. Note that our result is

smoother and has fewer outliers than R-MVSNet’s result.

iments. For fair comparisons, we use the same view se-

lection, image size and initial depth range as in [58] with

N = 5, W = 1600, H = 1184, dmin = 425mm and

dmax = 933.8mm; similar settings are also used in other

learning-based MVS methods [5, 59]. We use a NVIDIA

GTX 1080 Ti GPU to run the evaluation.

We compare the accuracy and the completeness of the

final reconstructions using the distance metric in [1]. We

compare against both traditional methods and learning-

based methods, and the average quantitative results are

shown in Tab. 1. While Gipuma [14] (a traditional method)

achieves the best accuracy among all methods, our method

has significantly better completeness and overall scores.

Besides, our method outperforms all state-of-the-art base-

line methods in terms of both accuracy and completeness.

Note that with the same input, MVSNet and R-MVSNet

predict depth maps with a size of only W
4

× H
4

; our final

depth maps are estimated at the original image size, which

are of much higher resolution and lead to significantly bet-

ter completeness. Meanwhile, such high completeness is

obtained without losing accuracy; our accuracy is also sig-

nificantly better thanks to our uncertainty-aware progressive

reconstruction. Point-MVSNet [5] densifies low-resolution

depth within a predefined local depth range, which also re-

constructs depth at the original image resolution; in con-

trast, our UCS-Net leverages learned adaptive local depth

ranges and achieves better accuracy and completeness.

We also show results from our intermediate low-

resolution depth of the first and the second stages in Tab. 1.

Note that, because of sparser depth planes, our first-stage

results (64 planes) are worse than MVSNet (256 planes)

and R-MVSNet (512 planes) that reconstruct depth at the

same low resolution. Nevertheless, our novel uncertainty-

aware network introduces highly efficient spatial partition-

ing with ATVs in the following stages, so that our inter-

mediate second-stage reconstruction is already much better

than the two previous methods, and our third stage further

improves the quality and achieves the best reconstruction.

We show qualitative comparisons between our method

and R-MVSNet [59] in Fig. 4, in which we use the released

point cloud reconstruction on R-MVSNet’s website for the

comparison. While both methods achieve comparable com-

pleteness in this example, it is very hard for R-MVSNet to

achieve high accuracy at the same time, which introduces

obvious outliers and noise on the surface. In contrast, our

method is able to obtain high completeness and high ac-

curacy simultaneously as reflected by the smooth complete

geometry in the image.

Evaluation on Tanks and Temple dataset [31]. We now

evaluate the generalization of our model by testing our net-

work trained with the DTU dataset on complex outdoor

scenes in the Tanks and Temple intermediate dataset. We

use N = 5 and W × H = 1920 × 1056 for this exper-

iment. Our method outperforms most published methods,

and to the best of our knowledge, when comparing with

all published learning-based methods, we achieve the best

average F-score (54.83) as shown in Tab. 2. In particu-

lar, our method obtains higher F-scores than MVSNet [58]

and Point-MVSNet [5] in all nine testing scenes. Dense-R-

MVSNet leverages a well-designed post-processing method

and achieves slightly better performance than ours on two

of the scenes, whereas our work is focused on high-quality

per-view depth reconstruction, and we use a traditional fu-
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Ratio Interval Dk Unit

PSV 100% 508.8mm 64 7.95mm

1st ATV 94.72% 13.88mm 32 0.43mm

2st ATV 85.22% 3.83mm 8 0.48mm

Table 3: Evaluation of uncertainty estimation. The PSV

is the first-stage plane sweep volume; the 1st ATV is con-

structed after the first stage and used in the second stage;

the 2nd ATV is used in the third stage. We show the per-

centages of uncertainty intervals that cover the ground truth

depth. We also show the average length of the intervals, the

number of depth planes and the unit sampling distance.

sion technique for post-processing. Nonetheless, thanks to

our high-quality depth, our method still outperforms Dense-

R-MVSNet on most of the testing scenes and achieves the

best overall performance.

Evaluation of uncertainty estimation. One key design of

our UCS-Net is leveraging differentiable uncertainty esti-

mation for the ATV construction. We now evaluate our un-

certainty estimation on the DTU validate set. In Tab. 3, we

show the average length of our estimated uncertainty inter-

vals, the corresponding average sampling distances between

planes, and the ratio of the pixels whose estimated uncer-

tainty intervals cover the ground truth depth in the ATVs;

we also show the corresponding values of the standard plane

sweep volume (PSV) used in the first stage, which has an

interval length of dmax − dmin = 508.8mm and covers the

ground truth depth with certainty.

We can see that our method is able to construct efficient

ATVs that cover very local depth ranges. The first ATV sig-

nificantly reduces the initial depth range from 508.8mm to

only 13.88mm in average, and the second ATV further re-

duces it to only 3.83mm. Our ATV enables efficient depth

sampling in an adaptive way, and obtains about 0.48mm

sampling distance with only 32 or 8 depth planes. Note

that, MVSNet and R-MVSNet sample the same large depth

range (508.8mm) in a uniform way with a large number of

planes (256 and 512); yet, the uniform sampling merely

obtains volumes with sampling distances of 1.99mm and

0.99mm along depth. In contrast, our UCS-Net achieves a

higher actual depth-wise sampling rate with a small number

of planes; this allows for the focus of the cost volumes to

be changed from sampling the depth to sampling the image

plane with dense pixels in ATVs given the limited memory,

which enables high-resolution depth reconstruction.

Besides, our adaptive thin volumes achieve high ratios

(94.72% and 85.22%) of covering the ground truth depth in

the validate set, as shown in Tab. 3; this justifies that our

estimated uncertainty intervals are of high confidence. Our

variance-based uncertainty estimation is equivalent to ap-

Stage Scale Size Acc. Comp. Overall

1 ×1 400x296 0.548 0.529 0.539

1 ×2 800x592 0.411 0.535 0.473

2 ×1 800x592 0.401 0.397 0.399

2 ×2 1600x1184 0.342 0.386 0.364

3 ×1 1600x1184 0.338 0.349 0.344

Table 4: Ablation study on the DTU testing set with differ-

ent stages and upsampling scales (a scale of 1 represents the

original result at the stage). The quantitative results repre-

sent average distances in mm (lower is better).

proximating a depth probability distribution as a Gaussian

distribution and then computing its confidence interval with

a specified scale on its standard deviation as in Eqn. 4.

We note that our variance-based uncertainty estimation

is not only valid for single-mode Gaussian-like distributions

as in Fig. 3.a, but also valid for many multi-mode cases as

in Fig. 3.b, which shows a challenging example near object

boundary. In Fig. 3.b, the predicted first-stage depth distri-

bution has multiple modes; yet, it correspondingly has large

variance and a large enough uncertainty interval. Our net-

work predicts reasonable uncertainty intervals that are able

to cover the ground truth depth in most cases, which al-

lows for increasingly accurate reconstruction in the follow-

ing stages at finer local spatial scales. This is made possible

by the differentiable uncertainty estimation and the end-to-

end training process, from which the network learns to con-

trol per-stage probability estimation to obtain proper uncer-

tainty intervals for ATV construction. Because of this, we

observe that our network is not very sensitive to different λ,

and learns to predict similar uncertainty. Our uncertainty-

aware volume construction process enables highly efficient

spatial partitioning, which further allows for the final recon-

struction to be of high accuracy and high completeness.

Evaluation of multi-stage depth prediction. We have

quantitatively demonstrated that our multi-stage framework

reconstructs scene geometry with increasing accuracy and

completeness in every stage (see Fig. 1). We now further

evaluate our network and do ablation studies about different

stages on the DTU testing set with detailed quantitative and

qualitative comparisons. We compare with naive upsam-

pling to justify the effectiveness of our uncertainty-aware

coarse-to-fine framework. In particular, we compare the re-

sults from our full model and the results from the first two

stages with naive bilinear upsampling using a scale of 2 (for

both height and width) in Tab. 4. We can see that upsam-

pling does improve the reconstruction, which benefits from

denser geometry and using our high-quality low-resolution

results as input. However, the improvement made by naive

upsampling is very limited, which is much lower than our

improvement from our ATV-based upsampling. Our UCS-

Net makes use of the ATV – a learned local spatial repre-
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Our first stage Our second stage Our full model Ground truth

Figure 5: Qualitative comparisons between multi-stage point clouds and the ground truth point cloud on a scene in the DTU

validate set. We show zoom-out (top) and zoom-in (bottom) rendered point clouds; the corresponding zoom-in region is

marked in the ground truth as a green box. Our UCS-Net achieves increasingly dense and accurate reconstruction through

the multiple stages. Note that, the ground truth point cloud is obtained by scanning, which is even of lower quality than our

reconstructions in this example.

Method Running

time (s)

Memory

(MB)

Input size Prediction

size

One stage

Two stages

Our full model

0.065

0.114

0.257

1309

1607

1647

640x480

160x120

320x240

640x480

MVSNet [58] 1.049 4511 640x480 160x120

R-MVSNet [59] 1.421 4261 640x480 160x120

Table 5: Performance comparisons. We show the running

time and memory of our method by running the first stage,

the first two stages and our full model.

sentation that is constructed in an uncertainty-aware way –

to reasonably densify the map with a significant increase of

both completeness and accuracy at the same time.

Figure. 5 shows qualitative comparisons between our re-

constructed point clouds and the ground truth point cloud.

Our UCS-Net is able to effectively refine and densify the re-

construction through multiple stages. Note that, our MVS-

based reconstruction is even more complete than the ground

truth point cloud that is obtained by scanning, which shows

the high quality of our reconstruction.

Comparing runtime performance. We now evaluate the

timing and memory usage of our method. We run our model

on the DTU validate set with an input image resolution of

W ×H = 640×480; We compare performance with MVS-

Net and R-MVSNet with 256 depth planes using the same

inputs. Table 5 shows the performance comparisons includ-

ing running time and memory. Note that, our full model is

the only one that reconstructs the depth at the original image

resolution that is much higher than the comparison methods.

However, this hasn’t introduced any higher computation or

memory consumption. In fact, our method requires signif-

icantly less memory and shorter running time, which are

only about a quarter of the memory and time used in other

methods. This demonstrates the benefits of our coarse-to-

fine framework with fewer depth planes (104 in total), in

terms of system resource usage. Our UCS-Net with ATVs

achieves high-quality reconstruction with high computation

and memory efficiency.

5. Conclusion

In this paper, we present a novel deep learning-based

approach for multi-view stereo. We propose the novel

uncertainty-aware cascaded stereo network (UCS-Net),

which utilizes the adaptive thin volume (ATV), a novel spa-

tial representation. For the first time, we make use of the

uncertainty of the prediction in a learning-based MVS sys-

tem. Specifically, we leverage variance-based uncertainty

intervals at one cascade stage to construct an ATV for its

following stage. The ATVs are able to progressively sub-

partition the local space at a finer scale, and ensure that the

smaller volume still surrounds the actual surface with a high

probability. Our novel UCS-Net achieves highly accurate

and highly complete scene reconstruction in a coarse-to-fine

fashion. We compare our method with various state-of-the-

art benchmarks; we demonstrate that our method is able

to achieve the qualitatively and quantitatively best perfor-

mance with high computation- and memory- efficiency. Our

novel UCS-Net takes a step towards making the learning-

based MVS method more reliable and efficient.
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