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3. TEXT RECOGNITION MODELS

Text recognition in natural scene images. Allow
predictions not constrained to dictionary or by static
language model.
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Contributions
 (Combine two complementary text recognition CNN
models with a CRF in a joint model.

 Formulate the structured output loss and use to
jointly train the combined model.

A model able to perform zero-shot recognition,
and achieving state-of-the-art results in
constrained and unconstrained scenarios.

2. DATASETS

Synth90k

9 million images covering 90k words, training/test
splits defined.

Download: www.robots.ox.ac.uk/~vgg/data/text/

SynthRand
9 million images, 1-10 character random words
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CHARACTER SEQUENCE ENCODING (CHAR) BAG OF N-GRAMS ENCODING (NGRAM)
Single CNN with multiple independent classifiers. Each classifier predicts the character Represent a string as a bag-of-N-grams. o S
at each position of the word. T E.g. G(spires) = {s, p,i,r,e,s,sp, pi,ir, re, es, spi, pir, ire, res, spire, pires}
[1--0-- [L]char 1 P(c|®(x)) 1 1x10000
32x100x1 . ] a Visually model 10k common
— . : v 100x] b 1, 2, 3, and 4-grams.
NN X X :
j EI char 5 P(C5 (I)(x)) j . .
\ T ak 10k independent binary
...... NGRAM
« N ‘ char &~ P(co|®(2)) CNN L | ke classifiers.
c; =arg max P(c;|P(x)) B rett)
i €CUL} B IEERREY _ [ char 23 P(ca3|®(x)) : abd Result is N-gram detection
w* = Cl 62 Ce C; \Vlc;k ¢ {¢}% null character IX1X37 - rake  Vector.
shared features ~ | raze

Combine two models with different
word representations into a single joint CHAR
model. Sl /(@)
CHAR model defines unary scores of
nodes in graph.
NGRAM model defines edge scores (up .
to 4 order).
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Train with structured output loss
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where S(w™, z) = max S(w, )
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which leads to hinge loss
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Gradients back propagated to networks.

5. EXPERIMENTS
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CHAR: chocoma
JOINT: chocomel
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CHAR: 1ustralia CHAR: rgggan323
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JOINT: medical
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