

1. OVERVIEW

Text recognition in natural scene images. Allow predictions not constrained to dictionary or by static language model.

Contributions

- Combine two complementary text recognition CNN $c_i^* = \arg \max_{c_i \in \mathcal{C} \cup \{\phi\}} P(c_i | \Phi(x))$ models with a CRF in a joint model.
- Formulate the **structured output loss** and use to jointly train the combined model.
- A model able to perform **zero-shot recognition**, and achieving state-of-the-art results in constrained and unconstrained scenarios.

2. DATASETS

Synth90k

9 million images covering 90k words, training/test splits defined.

Download: www.robots.ox.ac.uk/~vgg/data/text/

SynthRand

9 million images, 1-10 character random words

ICDAR 2003, ICDAR 2013

at each position of the word.

model.

Train with **structured output loss** $S(w_{qt}, x) \ge \mu + S(w^*, x)$ where $S(w^*, x) = \max S(w, x)$ $w \neq w_{ ext{gt}}$

Deep Structured Output Learning for Unconstrained Text Recognition

Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman Visual Geometry Group, Department of Engineering Science, University of Oxford, UK

CHARACTER SEQUENCE ENCODING (CHAR)

4. JOINT MODEL & STRUCTURED OUTPUT LOSS

which leads to hinge loss

 $\max_{w \neq w_{\text{gt},i}} \max(0, \mu + S(w, x) - S(w_{\text{gt},i}, x_i))$

Find max with Beam Search. Gradients back propagated to networks.

3. TEXT RECOGNITION MODELS

BAG OF N-GRAMS ENCODING (NGRAM)

Represent a string as a bag-of-N-grams. E.g. $G(\text{spires}) = \{s, p, i, r, e, s, sp, pi, ir, re, es, spi, pir, ire, res, spire, pires\}$ 1×1×10000

5. EXPERIMENTS

CHAR: chocoma JOINT: chocome] GT: chocomel CHAR: mediaal JOINT: medical medical GT:

		No Lexicon		Fixed Lexicon				
Model Type	Model	IC03	SVT	IC13	IC03- Full	SVT-50	IIIT5k -50	lllT5k- 1k
Unconstrained	Baseline (ABBYY)	-	-	-	55.0	35.0	24.3	-
Language Constrained	Wang, ICCV '11	-	-	-	62.0	57.0	-	-
	Bissacco, ICCV '13	-	78.0	87.6	-	90.4	-	-
	Yao, CVPR '14	-	-	-	80.3	75.9	80.2	69.3
	Jaderberg, ECCV '14	-	-	-	91.5	86.1	-	-
	Gordo, arXiv '14	-	-	-	-	90.7	93.3	86.6
	Jaderberg, NIPSDLW '14	98.6	80.7	90.8	98.6	95.4	97.1	92.7
Unconstrained	CHAR	85.9	68.0	79.5	96.7	93.5	95.0	89.3
	JOINT	89.6	71.7	81.8	97.0	93.2	95.5	89.6

Visually model 10k common 1, 2, 3, and 4-grams.

10k independent binary classifiers.

Result is N-gram detection vector.

а	Train Data	Test Data	CHAR	JOINT	
	Synth90k	Synth90k	87.3	91.0	
m -		Synth72k-90k	87.3	-	
e - n -		Synth45k-90k	87.3	-	
a - m -		IC03	85.9	89.6	
e -		SVT	68.0	71.7	
n - a -		IC13	79.5	81.8	
m - e -	Synth1-72k	Synth72k-90k	82.4	89.7	
a - m -	Synth1-45k	Synth45k-90k	80.3	89.1	
e - n -	SynthRand	SynthRand	80.7	79.5	

CHAR: iustralia JOINT: australia australia GT:

CHAR: rgqgan323 JOINT: rgqgan323 GT: rgqgan323