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Abstract

With the rapid growth of image and video data on the web, hashing has been
extensively studied for image or video search in recent years. Benefiting from
recent advances in deep learning, deep hashing methods have achieved promising
results for image retrieval. However, there are some limitations of previous deep
hashing methods (e.g., the semantic information is not fully exploited). In this
paper, we develop a deep supervised discrete hashing algorithm based on the
assumption that the learned binary codes should be ideal for classification. Both the
pairwise label information and the classification information are used to learn the
hash codes within one stream framework. We constrain the outputs of the last layer
to be binary codes directly, which is rarely investigated in deep hashing algorithm.
Because of the discrete nature of hash codes, an alternating minimization method
is used to optimize the objective function. Experimental results have shown that
our method outperforms current state-of-the-art methods on benchmark datasets.

1 Introduction

Hashing has attracted much attention in recent years because of the rapid growth of image and
video data on the web. It is one of the most popular techniques for image or video search due to
its low computational cost and storage efficiency. Generally speaking, hashing is used to encode
high dimensional data into a set of binary codes while preserving the similarity of images or videos.
Existing hashing methods can be roughly grouped into two categories: data independent methods and
data dependent methods.

Data independent methods rely on random projections to construct hash functions. Locality Sensitive
Hashing (LSH) [3] is one of the representative methods, which uses random linear projections to
map nearby data into similar binary codes. LSH is widely used for large scale image retrieval. In
order to generalize LSH to accommodate arbitrary kernel functions, the Kenelized Locality Sensitive
Hashing (KLSH) [7] is proposed to deal with high-dimensional kernelized data. Other variants of
LSH are also proposed in recent years, such as super-bit LSH [5], non-metric LSH [14]. However,
there are some limitations of data independent hashing methods, e.g., it makes no use of training data.
The learning efficiency is low, and it requires longer hash codes to attain high accuracy. Due to the
limitations of the data independent hashing methods, recent hashing methods try to exploit various
machine learning techniques to learn more effective hash function based on a given dataset.

Data dependent methods refer to using training data to learn the hash functions. They can be further
categorized into supervised and unsupervised methods. Unsupervised methods retrieve the neighbors
under some kinds of distance metrics. Iterative Quantization (ITQ) [4] is one of the representative
unsupervised hashing methods, in which the projection matrix is optimized by iterative projection and
thresholding according to the given training samples. In order to utilize the semantic labels of data
samples, supervised hashing methods are proposed. Supervised Hashing with Kernels (KSH) [13]
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is a well-known method of this kind, which learns the hash codes by minimizing the Hamming
distances between similar pairs, and at the same time maximizing the Hamming distances between
dissimilar pairs. Binary Reconstruction Embedding (BRE) [6] learns the hash functions by explicitly
minimizing the reconstruction error between the original distances and the reconstructed distances
in Hamming space. Order Preserving Hashing (OPH) [17] learns the hash codes by preserving the
supervised ranking list information, which is calculated based on the semantic labels. Supervised
Discrete Hashing (SDH) [15] aims to directly optimize the binary hash codes using the discrete cyclic
coordinate descend method.

Recently, deep learning based hashing methods have been proposed to simultaneously learn the
image representation and hash coding, which have shown superior performance over the traditional
hashing methods. Convolutional Neural Network Hashing (CNNH) [20] is one of the early works to
incorporate deep neural networks into hash coding, which consists of two stages to learn the image
representations and hash codes. One drawback of CNNH is that the learned image representation can
not give feedback for learning better hash codes. To overcome the shortcomings of CNNH, Network
In Network Hashing (NINH) [8] presents a triplet ranking loss to capture the relative similarities of
images. The image representation learning and hash coding can benefit each other within one stage
framework. Deep Semantic Ranking Hashing (DSRH) [26] learns the hash functions by preserving
semantic similarity between multi-label images. Other ranking-based deep hashing methods have
also been proposed in recent years [18, 22]. Besides the triplet ranking based methods, some pairwise
label based deep hashing methods are also exploited [9, 27]. A novel and efficient training algorithm
inspired by alternating direction method of multipliers (ADMM) is proposed to train very deep neural
networks for supervised hashing in [25]. The classification information is used to learn hash codes.
[25] relaxes the binary constraint to be continuous, then thresholds the obtained continuous variables
to be binary codes.

Although deep learning based methods have achieved great progress in image retrieval, there are
some limitations of previous deep hashing methods (e.g., the semantic information is not fully
exploited). Recent works try to divide the whole learning process into two streams under the multi-
task learning framework [11, 21, 22]. The hash stream is used to learn the hash function, while the
classification stream is utilized to mine the semantic information. Although the two stream framework
can improve the retrieval performance, the classification stream is only employed to learn the image
representations, which does not have a direct impact on the hash function. In this paper, we use CNN
to learn the image representation and hash function simultaneously. The last layer of CNN outputs
the binary codes directly based on the pairwise label information and the classification information.

The contributions of this work are summarized as follows. 1) The last layer of our method is
constrained to output the binary codes directly. The binary codes are learned to preserve the similarity
relationship and keep the label consistent simultaneously. To the best of our knowledge, this is the first
deep hashing method that uses both pairwise label information and classification information to learn
the hash codes under one stream framework. 2) In order to reduce the quantization error, we keep
the discrete nature of the hash codes during the optimization process. An alternating minimization
method is proposed to optimize the objective function by using the discrete cyclic coordinate descend
method. 3) Extensive experiments have shown that our method outperforms current state-of-the-art
methods on benchmark datasets for image retrieval, which demonstrates the effectiveness of the
proposed method.

2 Deep supervised discrete hashing

2.1 Problem definition

Given N image samples X = {xi}
N
i=1 ∈ R

d×N , hash coding is to learn a collection of K-bit

binary codes B ∈ {−1, 1}
K×N

, where the i-th column bi ∈ {−1, 1}
K

denotes the binary codes
for the i-th sample xi. The binary codes are generated by the hash function h (·), which can
be rewritten as [h1 (·) , ..., hK (·)]. For image sample xi, its hash codes can be represented as
bi = h (xi) = [h1 (xi) , ..., hK (xi)]. Generally speaking, hashing is to learn a hash function to
project image samples to a set of binary codes.
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2.2 Similarity measure

In supervised hashing, the label information is given as Y = {yi}
N
i=1 ∈ R

c×N , where yi ∈ {0, 1}
c

corresponds to the sample xi, c is the number of categories. Note that one sample may belong
to multiple categories. Given the semantic label information, the pairwise label information is
derived as: S = {sij}, sij ∈ {0, 1}, where sij = 1 when xi and xj are semantically similar,
sij = 0 when xi and xj are semantically dissimilar. For two binary codes bi and bj , the relationship
between their Hamming distance distH (·, ·) and their inner product 〈·, ·〉 is formulated as follows:
distH (bi, bj) =

1
2 (K − 〈bi, bj〉). If the inner product of two binary codes is small, their Hamming

distance will be large, and vice versa. Therefore the inner product of different hash codes can be used
to quantify their similarity.

Given the pairwise similarity relationship S = {sij}, the Maximum a Posterior (MAP) estimation of
hash codes can be represented as:

p (B|S) ∝ p (S|B) p (B) = Π
sij∈S

p (sij |B) p (B) (1)

where p (S|B) denotes the likelihood function, p (B) is the prior distribution. For each pair of the
images, p (sij |B) is the conditional probability of sij given their hash codes B, which is defined as
follows:

p (sij |B) =

{

σ (Φij) , sij = 1
1− σ (Φij) , sij = 0

(2)

where σ (x) = 1/ (1 + e−x) is the sigmoid function, Φij = 1
2 〈bi, bj〉 =

1
2b

T
i bj . From Equation 2

we can see that, the larger the inner product 〈bi, bj〉 is, the larger p (1|bi, bj) will be, which implies
that bi and bj should be classified as similar, and vice versa. Therefore Equation 2 is a reasonable
similarity measure for hash codes.

2.3 Loss function

In recent years, deep learning based methods have shown their superior performance over the
traditional handcrafted features on object detection, image classification, image segmentation, etc. In
this section, we take advantage of recent advances in CNN to learn the hash function. In order to have
a fair comparison with other deep hashing methods, we choose the CNN-F network architecture [2]
as a basic component of our algorithm. This architecture is widely used to learn the hash function
in recent works [9, 18]. Specifically, there are two separate CNNs to learn the hash function, which
share the same weights. The pairwise samples are used as the input for these two separate CNNs. The
CNN model consists of 5 convolutional layers and 2 fully connected layers. The number of neurons
in the last fully connected layer is equal to the number of hash codes.

Considering the similarity measure, the following loss function is used to learn the hash codes:

J = − log p (S|B) = −
∑

sij∈S

log p (sij |B) = −
∑

sij∈S

(

sijΦij − log
(

1 + eΦij

))

. (3)

Equation 3 is the negative log likelihood function, which makes the Hamming distance of two similar
points as small as possible, and at the same time makes the Hamming distance of two dissimilar
points as large as possible.

Although pairwise label information is used to learn the hash function in Equation 3, the label
information is not fully exploited. Most of the previous works make use of the label information
under a two stream multi-task learning framework [21, 22]. The classification stream is used to
measure the classification error, while the hash stream is employed to learn the hash function. One
basic assumption of our algorithm is that the learned binary codes should be ideal for classification.
In order to take advantage of the label information directly, we expect the learned binary codes to be
optimal for the jointly learned linear classifier.

We use a simple linear classifier to model the relationship between the learned binary codes and the
label information:

Y = WTB, (4)

where W = [w1, w2,...,wC ] is the classifier weight, Y = [y1, y2,...,yN ] is the ground-truth label
vector. The loss function can be calculated as:

Q = L
(

Y,WTB
)

+ λ ‖W‖
2
F =

N
∑

i=1

L
(

yi,W
T bi

)

+ λ ‖W‖
2
F , (5)
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where L (·) is the loss function, λ is the regularization parameter, ‖·‖F is the Frobenius norm of a
matrix. Combining Equation 5 and Equation 3, we have the following formulation:

F = J + µQ = −
∑

sij∈S

(

sijΦij − log
(

1 + eΦij

))

+ µ
N
∑

i=1

L
(

yi,W
T bi

)

+ ν ‖W‖
2
F , (6)

where µ is the trade-off parameters, ν = λµ. Suppose that we choose the l2 loss for the linear
classifier, Equation 6 is rewritten as follows:

F = −
∑

sij∈S

(

sijΦij − log
(

1 + eΦij

))

+ µ
N
∑

i=1

∥

∥yi −WT bi
∥

∥

2

2
+ ν ‖W‖

2
F , (7)

where ‖·‖2 is l2 norm of a vector. The hypothesis for Equation 7 is that the learned binary codes
should make the pairwise label likelihood as large as possible, and should be optimal for the jointly
learned linear classifier.

2.4 Optimization

The minimization of Equation 7 is a discrete optimization problem, which is difficult to optimize
directly. There are several ways to solve this problem. (1) In the training stage, the sigmoid or tanh
activation function is utilized to replace the ReLU function after the last fully connected layer, and
then the continuous outputs are used as a relaxation of the hash codes. In the testing stage, the hash
codes are obtained by applying a thresholding function on the continuous outputs. One limitation of
this method is that the convergence of the algorithm is slow. Besides, there will be a large quantization
error. (2) The sign function is directly applied after the outputs of the last fully connected layer, which
constrains the outputs to be binary variables strictly. However, the sign function is non-differentiable,
which is difficult to back propagate the gradient of the loss function.

Because of the discrepancy between the Euclidean space and the Hamming space, it would result in
suboptimal hash codes if one totally ignores the binary constraints. We emphasize that it is essential
to keep the discrete nature of the binary codes. Note that in our formulation, we constrain the outputs
of the last layer to be binary codes directly, thus Equation 7 is difficult to optimize directly. Similar
to [9, 18, 22], we solve this problem by introducing an auxiliary variable. Then we approximate
Equation 7 as:

F = −
∑

sij∈S

(

sijΨij − log
(

1 + eΨij

))

+ µ
N
∑

i=1

∥

∥yi −WT bi
∥

∥

2

2
+ ν ‖W‖

2
F ,

s.t. bi = sgn(hi), hi ∈ R
K×1, (i = 1, ..., N) ,

(8)

where Ψij =
1
2hi

Thj . hi (i = 1, ..., N) can be seen as the output of the last fully connected layer,
which is represented as:

hi = MTΘ(xi; θ) + n, (9)

where θ denotes the parameters of the previous layers before the last fully connected layer, M ∈
R

4096×K represents the weight matrix, n ∈ R
K×1 is the bias term.

According to the Lagrange multipliers method, Equation 8 can be reformulated as:

F = −
∑

sij∈S

(

sijΨij − log
(

1 + eΨij

))

+µ
N
∑

i=1

∥

∥yi −WT bi
∥

∥

2

2
+ ν ‖W‖

2
F + η

N
∑

i=1

‖bi − sgn (hi)‖
2
2,

s.t. bi ∈ {−1, 1}
K
, (i = 1, ..., N) ,

(10)

where η is the Lagrange Multiplier. Equation 10 can be further relaxed as:

F = −
∑

sij∈S

(

sijΨij − log
(

1 + eΨij

))

+µ
N
∑

i=1

∥

∥yi −WT bi
∥

∥

2

2
+ ν ‖W‖

2
F + η

N
∑

i=1

‖bi − hi‖
2
2,

s.t. bi ∈ {−1, 1}
K
, (i = 1, ..., N) .

(11)
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The last term actually measures the constraint violation caused by the outputs of the last fully
connected layer. If the parameter η is set sufficiently large, the constraint violation is penalized
severely. Therefore the outputs of the last fully connected layer are forced closer to the binary codes,
which are employed for classification directly.

The benefit of introducing an auxiliary variable is that we can decompose Equation 11 into two sub
optimization problems, which can be iteratively solved by using the alternating minimization method.

First, when fixing bi, W , we have:

∂F
∂hi

= − 1
2

∑

j:sij∈S

(

sij −
e
Ψij

1+e
Ψij

)

hj −
1
2

∑

j:sji∈S

(

sji −
e
Ψji

1+e
Ψji

)

hj − 2η (bi − hi) (12)

Then we update parameters M , n and Θ as follows:

∂F
∂M

= Θ(xi; θ)
(

∂F
∂hi

)T

, ∂F
∂n

= ∂F
∂hi

, ∂F
∂Θ(xi;θ)

= M ∂F
∂hi

. (13)

The gradient will propagate to previous layers by Back Propagation (BP) algorithm.

Second, when fixing M , n, Θ and bi, we solve W as:

F = µ

N
∑

i=1

∥

∥yi −WT bi
∥

∥

2

2
+ ν ‖W‖

2
F . (14)

Equation 14 is a least squares problem, which has a closed form solution:

W =

(

BBT +
ν

µ
I

)−1

BTY, (15)

where B = {bi}
N
i=1 ∈ {−1, 1}

K×N
, Y = {yi}

N
i=1 ∈ R

C×N .

Finally, when fixing M , n, Θ and W , Equation 11 becomes:

F = µ
N
∑

i=1

∥

∥yi −WT bi
∥

∥

2

2
+ η

N
∑

i=1

‖bi − hi‖
2
2,

s.t. bi ∈ {−1, 1}
K
, (i = 1, ..., N) .

(16)

In this paper, we use the discrete cyclic coordinate descend method to iteratively solve B row by row:

min
B

∥

∥WTB
∥

∥

2
− 2 Tr (P ) , s.t. B ∈ {−1, 1}

K×N
, (17)

where P = WY + η
µ
H . Let xT be the kth (k = 1, ...,K) row of B, B1 be the matrix of B excluding

xT , pT be the kth column of matrix P , P1 be the matrix of P excluding p, wT be the kth column of
matrix W , W1 be the matrix of W excluding w, then we can derive:

x = sgn
(

p−BT
1 W1w

)

. (18)

It is easy to see that each bit of the hash codes is computed based on the pre-learned K − 1 bits B1.
We iteratively update each bit until the algorithm converges.

3 Experiments

3.1 Experimental settings

We conduct extensive experiments on two public benchmark datasets: CIFAR-10 and NUS-WIDE.
CIFAR-10 is a dataset containing 60,000 color images in 10 classes, and each class contains 6,000
images with a resolution of 32x32. Different from CIFAR-10, NUS-WIDE is a public multi-label
image dataset. There are 269,648 color images in total with 5,018 unique tags. Each image is
annotated with one or multiple class labels from the 5,018 tags. Similar to [8, 12, 20, 24], we use a
subset of 195,834 images which are associated with the 21 most frequent concepts. Each concept
consists of at least 5,000 color images in this dataset.

We follow the previous experimental setting in [8, 9, 18]. In CIFAR-10, we randomly select 100
images per class (1,000 images in total) as the test query set, 500 images per class (5,000 images in
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total) as the training set. For NUS-WIDE dataset, we randomly sample 100 images per class (2,100
images in total) as the test query set, 500 images per class (10,500 images in total) as the training set.
The similar pairs are constructed according to the image labels: two images will be considered similar
if they share at least one common semantic label. Otherwise, they will be considered dissimilar.
We also conduct experiments on CIFAR-10 and NUS-WIDE dataset under a different experimental
setting. In CIFAR-10, 1,000 images per class (10,000 images in total) are selected as the test query
set, the remaining 50,000 images are used as the training set. In NUS-WIDE, 100 images per class
(2,100 images in total) are randomly sampled as the test query images, the remaining images (193,734
images in total) are used as the training set.

As for the comparison methods, we roughly divide them into two groups: traditional hashing methods
and deep hashing methods. The compared traditional hashing methods consist of unsupervised
and supervised methods. Unsupervised hashing methods include SH [19], ITQ [4]. Supervised
hashing methods include SPLH [16], KSH [13], FastH [10], LFH [23], and SDH [15]. Both the
hand-crafted features and the features extracted by CNN-F network architecture are used as the input
for the traditional hashing methods. Similar to previous works, the handcrafted features include a
512-dimensional GIST descriptor to represent images of CIFAR-10 dataset, and a 1134-dimensional
feature vector to represent images of NUS-WIDE dataset. The deep hashing methods include
DQN [1], DHN [27], CNNH [20], NINH [8], DSRH [26], DSCH [24], DRCSH [24], DPSH [9],
DTSH [18] and VDSH [25]. Note that DPSH, DTSH and DSDH are based on the CNN-F network
architecture, while DQN, DHN, DSRH are based on AlexNet architecture. Both the CNN-F network
architecture and AlexNet architecture consist of five convolutional layers and two fully connected
layers. In order to have a fair comparison, most of the results are directly reported from previous
works. Following [25], the pre-trained CNN-F model is used to extract CNN features on CIFAR-10,
while a 500 dimensional bag-of-words feature vector is used to represent each image on NUS-WIDE
for VDSH. Then we re-run the source code provided by the authors to obtain the retrieval performance.
The parameters of our algorithm are set based on the standard cross-validation procedure. µ, ν and η
in Equation 11 are set to 1, 0.1 and 55, respectively.

Similar to [8], we adopt four widely used evaluation metrics to evaluate the image retrieval quality:
Mean Average Precision (MAP) for different number of bits, precision curves within Hamming
distance 2, precision curves with different number of top returned samples and precision-recall curves.
When computing MAP for NUS-WIDE dataset under the first experimental setting, we only consider
the top 5,000 returned neighbors. While we consider the top 50,000 returned neighbors under the
second experimental setting.

3.2 Empirical analysis

Number of bits

15 20 25 30 35 40 45

P
re

c
is

io
n

 (
H

a
m

m
in

g
 d

is
t.

 <
=

2
)

0.5

0.6

0.7

0.8

0.9

(a)

Number of top returned images

100 300 500 700 900

P
re

c
is

io
n

0.5

0.6

0.7

0.8

0.9

(b)

Recall

0  0.2 0.4 0.6 0.8 1  

P
re

c
is

io
n

0  

0.2

0.4

0.6

0.8

1  
DSDH-A

DSDH-B

DSDH-C

DSDH

(c)

Figure 1: The results of DSDH-A, DSDH-B, DSDH-C and DSDH on CIFAR-10 dataset: (a) precision
curves within Hamming radius 2; (b) precision curves with respect to different number of top returned
images; (c) precision-recall curves of Hamming ranking with 48 bits.

In order to verify the effectiveness of our method, several variants of our method (DSDH) are
also proposed. First, we only consider the pairwise label information while neglecting the linear
classification information in Equation 7, which is named DSDH-A (similar to [9]). Then we design
a two-stream deep hashing algorithm to learn the hash codes. One stream is designed based on
the pairwise label information in Equation 3, and the other stream is constructed based on the
classification information. The two streams share the same image representations except for the last
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Table 1: MAP for different methods under the first experimental setting. The MAP for NUS-WIDE
dataset is calculated based on the top 5,000 returned neighbors. DPSH∗ denotes re-running the code
provided by the authors of DPSH.

Method
CIFAR-10

Method
NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

Ours 0.740 0.786 0.801 0.820 Ours 0.776 0.808 0.820 0.829

DQN 0.554 0.558 0.564 0.580 DQN 0.768 0.776 0.783 0.792

DPSH 0.713 0.727 0.744 0.757 DPSH
∗ 0.752 0.790 0.794 0.812

DHN 0.555 0.594 0.603 0.621 DHN 0.708 0.735 0.748 0.758

DTSH 0.710 0.750 0.765 0.774 DTSH 0.773 0.808 0.812 0.824

NINH 0.552 0.566 0.558 0.581 NINH 0.674 0.697 0.713 0.715

CNNH 0.439 0.511 0.509 0.522 CNNH 0.611 0.618 0.625 0.608

FastH 0.305 0.349 0.369 0.384 FastH 0.621 0.650 0.665 0.687

SDH 0.285 0.329 0.341 0.356 SDH 0.568 0.600 0.608 0.637

KSH 0.303 0.337 0.346 0.356 KSH 0.556 0.572 0.581 0.588

LFH 0.176 0.231 0.211 0.253 LFH 0.571 0.568 0.568 0.585

SPLH 0.171 0.173 0.178 0.184 SPLH 0.568 0.589 0.597 0.601

ITQ 0.162 0.169 0.172 0.175 ITQ 0.452 0.468 0.472 0.477

SH 0.127 0.128 0.126 0.129 SH 0.454 0.406 0.405 0.400

fully connected layer. We denote this method as DSDH-B. Besides, we also design another approach
directly applying the sign function after the outputs of the last fully connected layer in Equation 7,
which is denoted as DSDH-C. The loss function of DSDH-C can be represented as:

F = −
∑

sij∈S

(

sijΨij − log
(

1 + eΨij

))

+ µ
N
∑

i=1

∥

∥yi −WThi

∥

∥

2

2

+ ν ‖W‖
2
F + η

N
∑

i=1

‖bi − sgn (hi)‖
2
2, s.t. hi ∈ RK×1, (i = 1, ..., N)

(19)

Then we use the alternating minimization method to optimize DSDH-C. The results of different
methods on CIFAR-10 under the first experimental setting are shown in Figure 1. From Figure 1
we can see that, (1) The performance of DSDH-C is better than DSDH-A. DSDH-B is better than
DSDH-A in terms of precision with Hamming radius 2 and precision-recall curves. More information
is exploited in DSDH-C than DSDH-A, which demonstrates the classification information is helpful
for learning the hash codes. (2) The improvement of DSDH-C over DSDH-A is marginal. The reason
is that the classification information in DSDH-C is only used to learn the image representations,
which is not fully exploited. Due to violation of the discrete nature of the hash codes, DSDH-C has a
large quantization loss. Note that our method further beats DSDH-B and DSDH-C by a large margin.

3.3 Results under the first experimental setting

The MAP results of all methods on CIFAR-10 and NUS-WIDE under the first experimental setting
are listed in Table 1. From Table 1 we can see that the proposed method substantially outperforms
the traditional hashing methods on CIFAR-10 dataset. The MAP result of our method is more than
twice as much as SDH, FastH and ITQ. Besides, most of the deep hashing methods perform better
than the traditional hashing methods. In particular, DTSH achieves the best performance among all
the other methods except DSDH on CIFAR-10 dataset. Compared with DTSH, our method further
improves the performance by 3 ∼ 7 percents. These results verify that learning the hash function and
classifier within one stream framework can boost the retrieval performance.

The gap between the deep hashing methods and traditional hashing methods is not very huge on
NUS-WIDE dataset, which is different from CIFAR-10 dataset. For example, the average MAP result
of SDH is 0.603, while the average MAP result of DTSH is 0.804. The proposed method is slightly
superior to DTSH in terms of the MAP results on NUS-WIDE dataset. The main reasons are that
there exits more categories in NUS-WIDE than CIFAR-10, and each of the image contains multiple
labels. Compared with CIFAR-10, there are only 500 images per class for training, which may not
be enough for DSDH to learn the multi-label classifier. Thus the second term in Equation 7 plays a
limited role to learn a better hash function. In Section 3.4, we will show that our method will achieve

7



Table 2: MAP for different methods under the second experimental setting. The MAP for NUS-WIDE
dataset is calculated based on the top 50,000 returned neighbors. DPSH∗ denotes re-running the
code provided by the authors of DPSH.

Method
CIFAR-10

Method
NUS-WIDE

16 bits 24 bits 32 bits 48 bits 16 bits 24 bits 32 bits 48 bits

Ours 0.935 0.940 0.939 0.939 Ours 0.815 0.814 0.820 0.821

DTSH 0.915 0.923 0.925 0.926 DTSH 0.756 0.776 0.785 0.799

DPSH 0.763 0.781 0.795 0.807 DPSH 0.715 0.722 0.736 0.741

VDSH 0.845 0.848 0.844 0.845 VDSH 0.545 0.564 0.557 0.570

DRSCH 0.615 0.622 0.629 0.631 DRSCH 0.618 0.622 0.623 0.628

DSCH 0.609 0.613 0.617 0.620 DSCH 0.592 0.597 0.611 0.609

DSRH 0.608 0.611 0.617 0.618 DSRH 0.609 0.618 0.621 0.631

DPSH
∗ 0.903 0.885 0.915 0.911 DPSH

∗ N/A

Table 3: MAP for different methods under the first experimental setting. The MAP for NUS-WIDE
dataset is calculated based on the top 5,000 returned neighbors.

Method
CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

Ours 0.740 0.786 0.801 0.820 0.776 0.808 0.820 0.829

FastH+CNN 0.553 0.607 0.619 0.636 0.779 0.807 0.816 0.825

SDH+CNN 0.478 0.557 0.584 0.592 0.780 0.804 0.815 0.824

KSH+CNN 0.488 0.539 0.548 0.563 0.768 0.786 0.790 0.799

LFH+CNN 0.208 0.242 0.266 0.339 0.695 0.734 0.739 0.759

SPLH+CNN 0.299 0.330 0.335 0.330 0.753 0.775 0.783 0.786

ITQ+CNN 0.237 0.246 0.255 0.261 0.719 0.739 0.747 0.756

SH+CNN 0.183 0.164 0.161 0.161 0.621 0.616 0.615 0.612

a better performance than other deep hashing methods with more training images per class for the
multi-label dataset.

3.4 Results under the second experimental setting

Deep hashing methods usually need many training images to learn the hash function. In this section,
we compare with other deep hashing methods under the second experimental setting, which contains
more training images. Table 2 lists MAP results for different methods under the second experimental
setting. As shown in Table 2, with more training images, most of the deep hashing methods perform
better than in Section 3.3. For CIFAR-10 dataset, the average MAP result of DRSCH is 0.624, and
the average MAP results of DPSH, DTSH and VDSH are 0.787, 0.922 and 0.846, respectively. The
average MAP result of our method is 0.938 on CIFAR-10 dataset. DTSH, DPSH and VDSH have
a significant advantage over other deep hashing methods. Our method further outperforms DTSH,
DPSH and VDSH by about 2 ∼ 3 percents. For NUS-WIDE dataset, our method still achieves the
best performance in terms of MAP. The performance of VDSH on NUS-WIDE dataset drops severely.
The possible reason is that VDSH uses the provided bag-of-words features instead of the learned
features.

3.5 Comparison with traditional hashing methods using deep learned features

In order to have a fair comparison, we also compare with traditional hashing methods using deep
learned features extracted by the CNN-F network under the first experimental setting. The MAP
results of different methods are listed in Table 3. As shown in Table 3, most of the traditional
hashing methods obtain a better retrieval performance using deep learned features. The average
MAP results of FastH+CNN and SDH+CNN on CIFAR-10 dataset are 0.604 and 0.553, respectively.
And the average MAP result of our method on CIFAR-10 dataset is 0.787, which outperforms the
traditional hashing methods with deep learned features. Besides, the proposed algorithm achieves a
comparable performance with the best traditional hashing methods on NUS-WIDE dataset under the
first experimental setting.
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4 Conclusion

In this paper, we have proposed a novel deep supervised discrete hashing algorithm. We constrain
the outputs of the last layer to be binary codes directly. Both the pairwise label information and the
classification information are used for learning the hash codes under one stream framework. Because
of the discrete nature of the hash codes, we derive an alternating minimization method to optimize
the loss function. Extensive experiments have shown that our method outperforms state-of-the-art
methods on benchmark image retrieval datasets.
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