
sensors

Article

Deep Temporal Convolution Network for Time
Series Classification

Bee Hock David Koh 1,* , Chin Leng Peter Lim 1 , Hasnae Rahimi 2, Wai Lok Woo 2 and Bin Gao 3

����������
�������

Citation: Koh, B.H.D.; Lim, C.L.P.;

Rahimi, H.; Woo, W.L.; Gao, B. Deep

Temporal Convolution Network for

Time Series Classification. Sensors

2021, 21, 603. https://doi.org/

10.3390/s21020603

Received: 11 December 2020

Accepted: 14 January 2021

Published: 16 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Engineering, Nanyang Polytechnic, Singapore 569830, Singapore; peter_lim@nyp.edu.sg
2 Department of Computer and Information Sciences, Northumbria University,

Newcastle upon Tyne NE1 8ST, UK; hasnae.rahimi@northumbria.ac.uk (H.R.);

wailok.woo@northumbria.ac.uk (W.L.W.)
3 School of Automation Engineering, University of Electronic Science and Technology of China,

Chengdu 611731, China; bin_gao@uestc.edu.cn

* Correspondence: david_b_h_koh@nyp.edu.sg

Abstract: A neural network that matches with a complex data function is likely to boost the clas-

sification performance as it is able to learn the useful aspect of the highly varying data. In this

work, the temporal context of the time series data is chosen as the useful aspect of the data that is

passed through the network for learning. By exploiting the compositional locality of the time series

data at each level of the network, shift-invariant features can be extracted layer by layer at different

time scales. The temporal context is made available to the deeper layers of the network by a set of

data processing operations based on the concatenation operation. A matching learning algorithm

for the revised network is described in this paper. It uses gradient routing in the backpropagation

path. The framework as proposed in this work attains better generalization without overfitting the

network to the data, as the weights can be pretrained appropriately. It can be used end-to-end with

multivariate time series data in their raw form, without the need for manual feature crafting or data

transformation. Data experiments with electroencephalogram signals and human activity signals

show that with the right amount of concatenation in the deeper layers of the proposed network, it

can improve the performance in signal classification.

Keywords: sensor signals; neural networks; time series classification

1. Introduction

With the proliferation of sensors, time series data are now widely available. They
are encountered in many real-world applications, such as human activity recognition [1],
identification of epileptic condition [2], diagnostic of heart diseases [3], defect detection [4],
and many others [5,6].

Due to the nonstationary, nonlinear, and noisy nature of real-world time series data, it
is daunting for the human cognitive process to classify the signals. This is, however, not a
problem for machine learning, and many methods have been devised by researchers to
solve the problem [7]. They can generally be categorized as feature-based, distance-based,
and neural network-based.

The traditional approach in machine learning to classify time series data is feature-
based. It models the time series as a generative process [8] by assuming a certain time
series model, such as the autoregressive model [9], the linear dynamic system [10], and the
hidden Markov model (HMM) [11]. After estimating the model parameters from the data,
they are then used as features in a machine learning classifier [12,13].

That approach needs domain knowledge, which is often unavailable. A more practical
approach is the discriminative approach. It is based on the distance between two time series.
To classify a data instance, the distance of the data instance from those in the training set
will be computed, which is then used in the k-nearest neighbor classifier [14]. The default

Sensors 2021, 21, 603. https://doi.org/10.3390/s21020603 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8937-5359
https://orcid.org/0000-0002-6841-6075
https://orcid.org/0000-0002-8698-7605
https://orcid.org/0000-0001-9993-1013
https://doi.org/10.3390/s21020603
https://doi.org/10.3390/s21020603
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020603
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/603?type=check_update&version=1

Sensors 2021, 21, 603 2 of 20

distance measure is the Euclidean distance. There are many alternative elastic distance
measures in the literature that can give better results, the most common being dynamic
time warping (DTW) [15], longest common subsequence (LCS) [16], edit distance with
real penalty (ERP), and edit distance on real sequence (EDR) [17]. They are able to shrink
or stretch the time axis to find the best alignment between the time series and obtain
the smallest distance between them [18]. The performance of distance-based methods
can be boosted by combining multiple classifiers with different elastic measures in a
single ensemble [19]. One such ensemble is Collective of Transformation-based Ensembles
(COTE). It makes use of 35 classifiers over different distance measures in the time and
frequency domains [20]. It is, however, computationally intensive to cross-validate the
hyperparameters of so many classifiers and elastic measures [21].

The neural network-based method, also known as deep learning, is an end-to-end
method. It is exciting, as it can extract features from the raw signals without the need to
perform feature engineering or specify the distance measure [22,23].

There are many network architectures for deep learning. Most of them are for image
classification [24], and only some are for the one-dimensional multivariate time series
data [25]. A one-dimensional time series is a function of a single independent variable,
usually time. When there is more than one channel of such signal, such as the channels of
an electrocardiogram, it forms a one-dimensional multivariate time series.

The baseline network for time series classification is the multilayer perceptron
(MLP) [26], which consists of hidden layers that are fully connected. Other networks
that have been proposed for the time series classification include the fully convolutional
networks (FCN) [27], multichannel deep convolution neural network (MC-DCNN) [28],
residual network (ResNet) [29], and the echo state network (ESN) [30]. They make use
of layers such as the batch normalization (BN) layer [31] and the global average pooling
(GAP) layer, as well as shortcut links [32] between layers, to stabilize the learning process
to reduce the vanishing gradient effect. Besides time series classification, deep neural
networks such as pyramid recurrent neural network [33] can be used for change point
detection to detect abrupt or gradual changes in the signal characteristics, achieved by
transforming the time series data into a pyramid of multiscale feature maps in a trainable
wavelet layer. In addition, an ensemble of neural networks can be used to boost the per-
formance of time series classification [34–36]. InceptionTime [37] is one where a set of five
different models formed by cascading multiple deep convolution neural networks, called
the Inception module [38], are used.

The foundation of all these networks is composition. In composition, the output of a
layer becomes the input of the next layer. This kind of compositional structure matches
with the compositional function of many natural signals such as image, text and speech [39].
These signals have what is called the property of locality [40], which means that the features
formed by neighboring points are related to one another at different scales and time. In this
work, we build upon the above idea and propose a new deep learning network to exploit
the compositional locality of the time series data at all levels of the network, including
the deeper layers of the network. The aim is to match the network with the complex data
function of a highly varying time series, so that shift-invariant features can be extracted
layer by layer at different time scales, and thus boost the classification performance. The
proposed network makes two key contributions to the neural network architecture, which
are (1) the use of data processing and the concatenation operation to introduce the temporal
context to the deeper layers, and (2) a matching learning algorithm for the revised network,
based on the idea of gradient routing in the backpropagation path.

The remainder of this paper is organized as follows: Section 2 shows the architec-
ture of the proposed network and explains how the temporal context can be represented,
distributed, and learnt in many layers. Section 3 describes the proposed methodology to
concatenate the temporal context, prepare the data, and learn by backpropagation with
gradient routing. Section 4 describes the data experiment on a multichannel electroen-

Sensors 2021, 21, 603 3 of 20

cephalogram data set and a human activity recognition data set, with the results and some
discussion. Section 5 concludes the paper.

2. Network with Temporal Context

Figure 1 shows the architecture of the proposed network. Starting from the bottom of
the figure, the time series data are first arranged in the time delay representation in mini-
batches, with each mini-batch consisting of a small number of data instances, for example
8 or 32 [41]. The output of each of the hidden layers is rearranged by the concatenation
operation, resulting in a new input for the next hidden layer. The network weights are
located between the new input and the next hidden layer. These weights are trained by
pretraining [42] in the forward path, and then by backpropagation [43] with gradient
routing in the backward path.

 ‐
 ‐

 ‐
 ‐

‐ ‐

 ‐

 ‐

 𝒙 𝑁 𝒙𝒙 ,… , 𝒙 𝑤 𝑠 𝑠𝑤 𝑤

 ‐

Figure 1. Architecture of the proposed deep temporal convolution network, shown with three hidden

layers and a final classifier.

The proposed network addresses the following problems: (A) representation of tem-
poral context, (B) distribution of temporal context, and (C) learning with many layers. They
are explained in the following subsections.

2.1. Representation of Temporal Context

For a signal to be classified by a neural network, it will have to be represented in what
is called the time delay representation [44]. This can be done easily for discrete time series x

with N time series elements, i.e., sample points, at constant sampling rates, x = (x1, . . . , xN).
Simply slide a window of fixed length w across the signal with stride s, s < w. The result is
a set of overlapping segments. Each segment is a data vector containing w samples.

The data vector, used at the input of the neural network, can be viewed as a tapped
delay line used for convolution, as shown in Figure 2. A neural network that treats its
input in this way is called the time-delay neural network (TDNN). It was introduced by
Waibel et al. [45] and has been used in many time series applications, such as human sound
location [46] and the detection of Parkinson disease [47].

Sensors 2021, 21, 603 4 of 20

 ‐ 𝒘 4, 𝒔 1

 ‐
 ‐ ‐
 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 % 𝑤 𝑠w 100%

 ‐
 ‐ ‐

 ‐

 ‐

 ‐
 ‐ ‐

 ‐

 ‐

Figure 2. A tapped delay line at the input of a time-delay neural network (TDNN), w = 4, s = 1.

The sample points in the data vector are the lag observations of the signal. They
contain the time-dependent patterns that the algorithm can learn. The amount of overlap
between any two neighboring segments is shown in Equation (1) below.

overlap % =
w− s

w
× 100% (1)

The overlapping of the segments is important. It ensures that the nonstationary
features are represented at different time positions. This makes the training of a shift-
invariant model possible, so that there is no need to provide the exact starting and ending
points of the temporal features.

The sliding window method, used at the input to create the time delay representation,
is sufficient for good performance in time series classification. The problem with this
approach is the loss of temporal context in the hidden layers, and so the features learned in
the hidden layers are no longer time-invariant.

2.2. Distribution of Temporal Context

In Figure 2 shown earlier on, the data vector at the input of the neural network was a
tapped delay line. To distribute the temporal context to the hidden layers, the data at the
hidden layers can likewise be stored as tapped delay lines. This is shown in Figure 3. The
left-hand side shows the distributed TDNN with an input layer of 3 units (each unit with a
2-tap delay line), a hidden layer with 2 units (each unit with a 3-tap delay line), and a final
output layer with 2 units. The right-hand side shows the equivalent network. It is a plain
neural network which is static with no tapped delay line.

 ‐ 𝒘 4, 𝒔 1

 ‐
 ‐ ‐
 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 % 𝑤 𝑠w 100%

 ‐
 ‐ ‐

 ‐

 ‐

 ‐
 ‐ ‐

 ‐

 ‐

Figure 3. A distributed TDNN (left) and its equivalent network (right). The empty circle represents

a sample in the data vector. The circle with a plus sign represents the summation operation. The

diamond represents a nonlinear activation function such as the sigmoid function.

Sensors 2021, 21, 603 5 of 20

By comparing the distributed TDNN on the left-hand side and the equivalent network
on the right-hand side, it is found that the number of unique weights for both of them are
the same. This is despite the equivalent network having more nodes than the distributed
TDNN. The reason for this is that the nodes in the equivalent network are not fully
connected. For those nodes that are connected, many of them share the weights by simply
reusing the weights by shifting them down.

The idea of weight sharing is used in the proposed deep temporal convolution net-
work in the form of concatenation. The concatenation operation can be repeated in a deep
network, which is not amendable to the distributed TDNN in Figure 3 due to the computa-
tional issue of exploding and/or diminishing gradient when the number of hidden layers
is increased [48].

2.3. Learning with Many Layers

To overcome the computation problem, it is necessary to initialize the network weights
to some “good” values [49]. This is possible with pretraining as is used in the Deep Belief
Net—Deep Neural Network (DBN-DNN) [42].

The DBN-DNN is a static network that comprises two parts: a stack of restricted
Boltzmann machines (RBMs) [50], collectively known as the DBN, and a final output
classier (for example, a softmax layer) on top of it.

The training process of the DBN-DNN is divided into two stages, comprising the
pretraining stage and the fine-tuning stage. This is shown in Figure 4 below.

 ‐ ‐
 ‐

 ‐

 ‐

 ‐

 ‐
 ‐
 ‐

 ‐

 ‐

 ‐

 ‐

 ‐

‐

 ‐

 ‐

 ‐

Figure 4. The training process of a DBN-DNN, consisting of pretraining, the intermediate model,

and fine-tuning.

From Figure 4 above, it can be seen that the pretraining stage applies only to the DBN,
which is the intermediate model of the DBN-DNN. It does not involve the softmax layer or
the target labels. It is thus an unsupervised training process. This is in contrast with the
fine-tuning stage, which is a supervised training process.

The pretraining is pair-wise and operates in the forward direction [51]. It starts at
the bottom of the DBN, where a pair of layers, nominally the visible layer and the hidden
layer, forms the RBM. The process of unsupervised training by contrastive divergence [52]
is run on the RBM. Upon convergence, the weights between the two layers will become
fixed, and the same process of unsupervised training by contrastive divergence will then
be brought forward to the next pair of layers. In moving forward, the output (hidden layer)
of the previous RBM will become the input (visible layer) of the current RBM.

After pretraining, the weights in the DBN are transferred to the DBN-DNN, where
together with the weights of the softmax layer, they are fine-tuned by backpropagation.

A DBN-DNN trained in this manner (pretraining in the forward path, followed by
fine-tuning in the backward path) will make the network relatively immune to overfitting.

Sensors 2021, 21, 603 6 of 20

The limitation of the DBN-DNN is that the temporal context is not distributed to the
deeper layers of the network. To do so, we propose using data processing based on the
concatenation operation within the DBN-DNN. We will provide the matching learning
algorithm for the revised network.

3. Proposed Methodology

In this section, we explain the concept of concatenating temporal context in the deeper
layers, the details of preparing the data to maintain short-term temporal order in the mini-
batches, and the backpropagation with gradient routing method for the learning process.

3.1. Concatenate the Temporal Context

In this work, the temporal context of the time series data is chosen as the useful
aspect of the data that is passed through the network [53]. The temporal context consists of
neighbors that are next to each other in time.

An example of the concatenation operation is shown in Figure 5 below. The figure
shows 5 data instances in the layer Li at time t1, t2, t3, t4, and t5. They are combined to
become the new data instances in the layer Lic, which is the concatenation sublayer of the
input in Li.

 ‐
‐

 ‐

 ‐

 ‐

 ‐

 ‐

 𝐿 𝑡 𝑡 𝑡 𝑡 𝑡
 𝐿

 𝐿

 𝑇𝑆 3

 𝑡 𝑡 𝑡

 𝑡 𝑡 𝑡 ‐
 𝐿

 𝐿
 𝐿

 𝑇𝑆

 𝑇𝑆

 ‐

 ‐

 ‐

Figure 5. An illustration of the formation of the concatenation sublayer at TS = 3.

The combination of the data instances is according to their natural time order. It must
not be random. For example, in Figure 5 above, the data instances at t1, t2, and t3 form a
new data instance, while the data instances at t2, t3 and t4 form another new data instance.
As such, the new data instances in Lic, formed by the concatenation operation, will have
more temporal context than the individual data instances in Li. They will act as the new
input for the next hidden layer Li+1.

In this work, the amount of concatenation will be described by a variable known as the
time steps, TS. It is a hyperparameter of the proposed network. In the example in Figure 5
above, the value of TS is 3. This is because each concatenation consists of 3 data instances.

The data instances in the concatenation sublayer are all obtained with the same set of
weights before they are concatenated. Concatenation can therefore be viewed as weight-sharing.

The 5 individual data instances in Figure 5 above form what is known as a mini-batch,
a term used to differentiate from the term “batch” as used in “batch gradient descend”
where it refers to the entire data set. All operations in the proposed network, including data
preparation and network learning, will be done in mini-batches rather than by individual
data instances.

3.2. Preparing the Data

The time series data and their labels will have to be reformatted so that the shift-
invariant temporal context can be learnt. This reformatting includes the following processes:

Sensors 2021, 21, 603 7 of 20

(1) Maintain short-term temporal order within a mini-batch
(2) Create mini-batches that overlap with their neighbors
(3) Pool the count of the target labels through the deeper layers

The first two steps are used to prepare the time series data for use as the input of the
network. The third step is used to associate the training data to the correct target labels
for learning.

3.2.1. Short-Term Temporal Order

To have short-term temporal order, the data instances in the mini-batches must be kept
in their natural time order. The mini-batches will then be shuffled to shatter the long-term
time order.

Maintaining short-term temporal order clears up the following dilemma faced by the
proposed network.

On one hand, the concatenation of the data instances is only meaningful if the data
instances are in their natural time order, otherwise randomness will be injected into the
concatenated data and worsen the network performance.

On the other hand, each of the data instances must be a sample that is independent
and identically distributed, otherwise the simple output pattern in the time series data set
will be learnt by the network. As this pattern is incidental to the training data and unlikely
to recur in the test data, overfitting the network [54] to it will produce poor test result in
spite of the good training result.

The use of short-term temporal order solves the aforementioned dilemma. In addition,
it fits into the practice of using mini-batches for computational efficiency. The size of a
mini-batch is typically a small number from 8 to 32. Keeping the mini-batch size to 32 or
less provides improved generalization performance with a small memory footprint [41].
It should be 8 or more to cater for the need to form the concatenation sublayers in the
proposed network.

3.2.2. Mini-Batches That Overlap

The mini-batches should overlap with their neighbors so that the network can be
shift-invariant and less dependent on the precise location of the temporal feature within
the mini-batch. This is a necessary step and is in addition to the time delay representation.
The mini-batches will have to be randomized before they are passed through the proposed
network for training. This will ensure that the temporal context maintained by short-term
temporal order in the mini-batch can be learnt in a shift-invariant manner.

Figure 6 shows the proposed two-stage sliding window method to create mini-batches
that overlap with their neighbors. On the time series, which is a sequence of samples in
their time order, slide a fixed-size window along it to create the time delay representation.
On the time delay representation thus created, slide another fixed-size window to create
the mini-batches that overlap with each other.

 ‐ ‐

 ‐ ‐
 ‐

 ‐

 ‐

 ‐

 ‐
 ‐

 ‐

Figure 6. A two-stage sliding window to create mini-batches that overlap.

Sensors 2021, 21, 603 8 of 20

Within each of the mini-batches, there is an unequal contribution of the data instances.
For example, in the first mini-batch in Figure 6 above, the data instance #1 appears once,
whereas the data instance #3 appears three times. The unequal contribution will be largely
eradicated when all the overlapping mini-batches are considered as a whole. It will not
affect the effective training of the network, as it is similar in nature to the random sampling
of nonstationary time series.

3.2.3. Pool Target Labels through the Deeper Layers

As there are many samples in a data vector, their target label in common has to be
decided by majority voting. While this could be done at the input layer of the TDNN, it
should instead be delayed until the final classifier in the proposed network. This is because
the concatenation operation will add more data to the deeper layers, and so it is necessary
to add the count of the target labels as and when the concatenation operation is done.

A simplistic scheme will distort the actual class distribution. For example, if there
are three data vectors, two of them class 1 and one of them class 2, then class 1, being
the majority class, will be deemed as the target label of the concatenated vector in this
simplistic scheme. The distortion occurs because the target labels of the data vectors are
themselves the result of majority voting in the previous layer and have lost some of the
information due to the summarization.

The proposed solution is to pool the count of the target labels and accumulate them
through the deeper layers. The target labels are first expressed in the one-hot encoding
format so that there is one category per class. This allows the count of each class to be
updated after the concatenation operation, as shown in Figure 7.

 ‐ ‐

 ‐ ‐
 ‐

 ‐

 ‐

 ‐

 ‐
 ‐

 ‐

Figure 7. Pooling of the class counts of newly concatenated data. The diagram shows how the count

of each class in a newly concatenated data vector is pooled from the count of the classes in the input

of the concatenation.

The updated counts of the classes at the last layer (the final classifier) are then used
by the majority voting scheme to decide on the final target label of the data. In case of
tie, a pseudorandom number generator can be used to decide on the class of the target
label. Pooling the target labels through the deeper layers of the deep temporal convolution
network avoids the loss of information, thus enhancing the validity of the target labels.

3.2.4. Learn by Backpropagation with Gradient Routing

The proposed network can be trained in two stages: pretraining as a stack of RBMs
and fine-tuning of the entire network by backpropagation with gradient routing.

Pretraining

The pretraining of the proposed network is by the same pair-wise unsupervised
training using contrastive divergence as the DBN-DNN. The difference is that now, the
visible layer of the RBM is the concatenation sublayer rather than the hidden layer.

Sensors 2021, 21, 603 9 of 20

This is illustrated in Figure 8 below. In the DBN-DNN, the RBM would be between L1

and L2; but in the proposed network, the weights are located between the concatenated
sublayer L1c and the next hidden layer L2, and so the RBM is formed between L1c and
L2 instead.

 ‐

 ‐

 ‐
 ‐

 ‐ 𝐿 𝐿 ‐

 𝐿 𝐿 𝐿
 𝐿

 ‐

 𝑾 ←𝑾 𝛼∂𝐽 𝑾∂𝑾

 𝐽 𝑾
 𝐸
 𝑖‐ 𝑖‐ 𝐸

 ‐
 𝛅 𝐿 𝑖‐

 𝐸 𝒚 𝛅 ≜ ∂𝐸∂𝒚

 𝛅

 ‐

 𝐿 𝐿

Figure 8. Restricted Boltzmann machines (RBM) in the deep temporal convolution network.

Backpropagation with Gradient-Routing

In general, the weights in a network can be updated by gradient descend, as shown in
Equation (2) below.

W←W− α
∂J(W)

∂W
(2)

In Equation (2), J(W) is the cost function. It will subsequently be abbreviated here as
the error E. To update the weights of a layer in a network with many layers, say that of the
i-th layer, the contribution of the i-th layer to the error E should be determined precisely.
That contribution, sometimes referred to as the delta or the sensitivity, is denoted as δ(Li),
where Li is the i-th layer. It is, by definition, the derivative of the cost function E with
respect to the linear output y(Li), and is shown in Equation (3) below.

δ
(Li) ,

∂E

∂y(Li)
(3)

The determination of δ(Li) should proceed layer by layer in the backward direction.
There is one catch, though. All the sections in the backward path must be able to be linked
together by the chain rule of derivative.

The above condition cannot be satisfied by the proposed network. This is because
the concatenation operation is not a smooth function, and so the backward path from
the concatenation sublayer to the preconcatenation hidden layer is not differentiable. In
Figure 9 below, the nondifferentiable section is from L1c to L1.

 𝑖‐ 𝜹 ‐
 𝜹 ≜ 𝜕𝐸𝜕𝒚 𝜕𝐸𝜕𝒚 𝜕𝒚𝜕𝒂 𝜕𝒂𝜕𝒂 𝜕𝒂𝜕𝒚

 𝒚 ‐

 𝐿 𝒂 𝐿
 𝒂 𝐿 𝒚 𝐿

 𝜹

 𝑾 𝐿 𝒚 𝑾 𝒂 ‐
 𝒂

 𝜕𝐸𝜕𝒂 𝜕𝐸𝜕𝒚 𝜕𝒚𝜕𝒂 𝑾 𝜹

 ‐

 𝒂
 𝜕𝐸𝜕𝒂 𝜕𝐸𝜕𝒚 𝜕𝒚𝜕𝒂 𝜕𝒂𝜕𝒂

 𝒂

 𝒂
 𝜕𝐸𝜕𝒂 → 𝜕𝐸𝜕𝒂

 𝒂𝒚 ‐

 ‐ 𝜹 ‐

 𝑖‐
 𝜹

Figure 9. Backward path from concatenation sublayer to the preconcatenation hidden layer.

By the chain rule of derivative, the contribution of the i-th layer δ(Li) can be factorized
as the product of four terms, as shown in Equation (4) below.

δ
(Li) ,

∂E

∂y(Li)
=

∂E

∂y(Li+1)

∂y(Li+1)

∂a(Lic)

∂a(Lic)

∂a(Li)

∂a(Li)

∂y(Li)
(4)

By tracing through the four terms in Equation (4), it can be seen that the delta passes
through the following parts of the network: 1. y(Li+1), the linear output of the upper hidden

Sensors 2021, 21, 603 10 of 20

layer Li+1, 2. a(Lic), the activation of the layer Lic, which is a concatenation sublayer, 3. a(Li),
the activation of the layer Li, which is the preconcatenation hidden layer, and 4. y(Li), the
linear output of the layer Li.

The first two terms in Equation (4) pose no problem for computation. The first term
is, by definition, the delta of the upper layer δ(Li+1), and so is available from the previous
calculation during backpropagation. The second term is, by differentiation, the weight
W(Li+1) of the upper layer Li+1, since y(Li+1) = W(Li+1)a(Lic). With these two terms avail-
able, their product, denoted as ∂E

∂a(Lic)
in Equation (5) below, can be computed directly by

multiplication according to the chain rule.

∂E

∂a(Lic)
=

∂E

∂y(Li+1)

∂y(Li+1)

∂a(Lic)
= W(Li+1)δ

(Li+1) (5)

The third term in Equation (4) is problematic. It lies across the concatenation operation,
which is nondifferentiable. As a result, the product of the first three terms, denoted as

∂E

∂a(Li)
in Equation (6) below, cannot be computed directly by multiplication according to

the chain rule.
∂E

∂a(Li)
=

∂E

∂y(Li+1)

∂y(Li+1)

∂a(Lic)

∂a(Lic)

∂a(Li)
(6)

Although nondifferentiable, concatenation is an invertible operation. The proposed
solution is to make use of gradient routing to unstack the concatenation, so as to link ∂E

∂a(Lic)

in Equation (5) to ∂E

∂a(Li)
in Equation (6). The transformation that gradient routing intends

to achieve is shown in Equation (7) below.

∂E

∂a(Lic)
→

∂E

∂a(Li)
(7)

The very last term in Equation (4), i.e., ∂a(Li)

∂y(Li)
, is the derivative of the activation function.

This derivative is known for activation functions that are common, such as sigmoid or
ReLU [55]. It can be computed and then multiplied with the result of gradient routing in an
element-wise manner. The result is the delta δ(Li) that was shown earlier on in Equation (4).

This completes the argument for backpropagation with gradient routing for the i-th
layer. With delta δ(Li) now available, it can be used to compute the error gradient, which is
then used to update the weights.

The gradient routing as aforementioned can be implemented by the proposed “split-
slide-add” method. First, the error attributed to the concatenation sublayer is split into its
preconcatenation parts. Then, the preconcatenation parts are aligned in time by sliding.
Finally, the aligned parts are summed together.

To illustrate the “split-slide-add” method, consider the error contribution from the
concatenation sublayer Lic, i.e., ∂E

∂a(Lic)
in Equation(5). Figure 10 below shows a table with

16 rows. Each of the rows in the table is the contribution of a particular concatenated vector
in Lic to the error. There are 16 concatenated vectors in Lic in this example, as it is assumed
here that the mini-batch size is 18 and that the concatenation is done with the time steps
TS set to 3.

The first operation is to split the table into separate columns. Each of the columns are
the contribution of the data before concatenation. The second operation, that of sliding the
columns, aligns the preconcatenation parts according to their natural temporal order. This
enables the summation in the third step to be meaningful. In summation, the values in the
columns, now aligned in time, are added together. In consequence, ∂E

∂a(Lic)
is transformed

to ∂E

∂a(Li)
.

Gradient routing redistributes the error contribution from the concatenation sublayer
Lic to the preconcatenation hidden layer Li. It does not involve any learning of weight
values. In other words, the amount of delta that the preconcatenation hidden layer receives

Sensors 2021, 21, 603 11 of 20

is exactly the same as the delta passed to it from the concatenation sublayer. Thus, it will
not cause overfitting in the proposed network.

 ‐
‐

 ‐ ‐

 𝐿 𝒂
 ‐
 𝐿 𝐿

 ‐
 𝑇𝑆

 ‐ ‐

 𝒂

 𝒂
 𝐿 𝐿

 ‐

 ‐ ‐

 ‐

Figure 10. The three steps of the “split-slide-add” method for gradient routing.

With gradient routing done with the “split-slide-add” method, the proposed network
will be able to learn about the temporal context that is passed through the network by the
concatenation operation, even though it is a nondifferentiable operation.

The proposed methodology is different from the other convolutional neural networks
used for time series classification. In those networks, the upsampling function used in
the pooling layer for backward propagation of error is done based on the individual
data instances. In contrast, in the deep temporal convolution network, the concatenation
operation in the forward path, as well as the backpropagation with gradient routing in
the backward path, are all done in mini-batches. These mini-batches keep the short-term
temporal order of the data instances within them, and so the learning algorithm is able to
learn the temporal context in them in the deeper layers of the network.

4. Data Experiments and Results

This section describes the data experiments that were done on two data sets from the
UCI Machine Learning Repository [56], namely the EEG Eye State data set [57] and the
human activity recognition (HAR) data set [1].

The data experiments on the EEG Eye State data set are presented here in three sections.
Section 4.1 describes the spot-checking that was done to get the general benchmark of the
data set and to verify the need to shuffle data; Section 4.2 shows the results of the 10-fold
validation of the proposed network with TS values of 1, 2, and 5; Section 4.3 compares the
performance of the proposed network with TS values of 2 and 5 with the DBN-DNN of
equal complexity.

The data experiments on the HAR data set are arranged in two sections. Section 4.4
describes the general benchmark of the data set; Section 4.5 shows the results of the 10-fold
validation of the proposed network with TS values of 2 and 5.

4.1. Spot Checking of the Eye State Data Set

The EEG Eye State data set is a multivariate numeric time series recorded from a single
subject with a commercial EEG headset. It has 14 channels, corresponding to the fourteen

Sensors 2021, 21, 603 12 of 20

electrodes of the EEG headset. After removing 4 outliers, the time series has 14,976 samples
in it. Of these, 8254 samples (55.12%) correspond to the state of the eyes being open, and
6722 samples (44.88%) correspond to the state of the eyes being closed. The samples in the
time series are related to each other in time, so the temporal context in the time series can
be learnt by the proposed deep temporal convolution network.

The effect of shuffling and windowing are tested with 10-fold cross-validations with
Python 3.6.5, Scikit-learn 0.19.1, and Keras 2.2.2. Four classification algorithms [58] in their
default configurations are used, namely logistic regression (LR), k-nearest neighbor (KNN),
decision tree (CART), and neural network (MLP).

Table 1 shows the results when there is no shuffling. Two sets of results are presented,
one without windowing, and one with window length of 16 (125 millisecond) and a stride
of 8.

Table 1. Mean classification accuracy and variance, without shuffling.

Without Windowing With Windowing p-Value

LR 37.76% (19.38%) 36.44% (15.87%) 0.563

KNN 51.03% (13.33%) 53.81% (16.29%) 0.204

CART 50.67% (8.90%) 52.05% (8.48%) 0.516

MLP 50.38% (14.36%) 53.78% (17.48%) 0.453

As can be seen from Table 1, the accuracies are rather poor. Many of them are close to
the random chance of 55.12% as might be produced by a zero-rule algorithm that always
predicts the majority class. The high p-value of the Student’s paired t-test shows that there
is no benefit in using the time delay representation when there is no shuffling.

The poor performance could be attributed to the classifiers learning the output patterns
of the time series. To show the necessity of shuffling the data instances produced from a
single time series, the same set of algorithms is run again, this time with the data instances
in the data set randomized in order. The performance is shown in Table 2 below.

Table 2. Mean classification accuracy and variance, with shuffling.

Without Windowing With Windowing p-Value

LR 64.10% (0.771%) 62.20% (2.141%) 0.058

KNN 96.35% (0.413%) 95.80% (1.023%) 0.148

CART 83.93% (1.034%) 75.67% (2.597%) 0.000

MLP 95.20% (0.503%) 97.43% (1.117%) 0.001

The accuracies are now significantly better. In particular, the MLP neural network in
the default configuration (115 nodes in the hidden layer) achieved a classification accuracy
of 95.2% without windowing and 97.4% with windowing. The low p-values shows that the
time delay representation does improve the performance of the classifiers.

The results confirm the assertion in Section 2 that the sliding window method, used at
the input to create the time delay representation, is sufficient for good performance in time
series classification. The purpose of this work, however, is to go beyond the input layer to
exploit the compositional locality of the time series data in the deeper layers of a network.

4.2. 10-Fold Validation of the Eye State Data Set with the Proposed Network, at TS = 1, 2, and 5

The proposed deep temporal convolution network (DTCN) is configured in this part of
the work to have 224 nodes in the input layer, corresponding to a window length of 16 for
each of the 14 electrodes, and just 20 nodes in the hidden layers, as shown in Table 3 below.

Sensors 2021, 21, 603 13 of 20

Table 3. Configuration of deep temporal convolution network (DTCN).

No. of Nodes

Input layer, L0 224

First hidden layer, L1 20

Second hidden layer, L2 20

Third hidden layer, L3 20

Softmax layer, Lc 2

The small set of nodes in the hidden layers will have a negative effect on the per-
formance, as less features will be extracted from the input by the network. However, in
the proposed network, this will be counteracted by passing in the temporal context by
concatenation to the deeper layers. As more discriminatory information will be available,
the proposed network should be able to achieve better results, even though the number of
nodes is made so few.

To confirm this, with the network configured as in Table 3 above, the DTCN is run
with TS = 1, 2, and 5. The first DTCN, with TS = 1, has no concatenation and is equivalent
to the DBN-DNN. Its performance serves as the benchmark of the other two DTCNs at
TS = 2 and 5.

The results for the DTCNs at TS = 1, 2, and 5 are shown in Table 4 below. They are
arranged in 10 folds so that the fluctuation across the folds can be seen.

Table 4. Cross-validation results (accuracies in %) of DTCN at TS = 1, 2, and 5.

Time Steps
Fold No.

1 2 3 4 5 6 7 8 9 10

TS = 1 93.11 93.24 92.03 95.68 91.35 92.57 89.19 82.84 89.59 90.95

TS = 2 93.51 95.81 99.46 99.86 98.92 91.08 94.73 94.32 90.54 92.03

TS = 5 99.05 98.92 100.0 99.86 99.46 98.92 98.51 99.86 99.19 98.92

From Table 4 above, it can be seen the performance of the DBN-DNN, i.e., DTCN at
TS = 1, is lower than the MLP shown in Table 2. This is not surprising, as the DBN-DNN
is a very narrow network with only 20 nodes in the hidden layers. The performance of the
DTCN gets better with the amount of concatenation increased to TS = 2. When the amount
of concatenation is increased further to TS = 5, the improvement becomes obvious, as it
is now better than the MLP. Not only is there an increase in the classification accuracies
across the folds, the variance of the accuracies gets smaller also. This can be seen from the
summary statistics of the 10-fold validation of the DTCNs at TS = 1, 2, and 5, as shown in
Table 5 below.

Table 5. Mean and standard deviations of 10-fold results of DTCN at TS = 1, 2, and 5.

Time Step Mean Std Dev

TS = 1 91.05% 3.44%

TS = 2 95.03% 3.42%

TS = 5 99.27% 0.50%

Two observations can be made about the results when they are plotted in the line chart
as shown in Figure 11 below: (1) the curve for TS = 5 is higher, compared to the curves for
TS = 1 and TS = 2, and (2) there is less fluctuation in the curve for TS = 5.

Sensors 2021, 21, 603 14 of 20

 𝑇𝑆 2
 𝑇𝑆 5 ‐

 ‐ 𝑇𝑆 1 2 5

 ‐ 𝑇𝑆

 𝑇𝑆 1 𝑇𝑆 2 𝑇𝑆 5

 𝑇𝑆 5
 𝑇𝑆 1 𝑇𝑆 2 𝑇𝑆 5

 ‐

 ‐

 ‐

 𝑇𝑆 2
 5 ‐ ‐
 ‐

Figure 11. Classification accuracy over 10 folds, DTCN, TS = 1, 2 and 5.

The line chart in Figure 11 above shows that the bias is reduced (i.e., the classification
has improved) and that the variance has reduced (less overfitting to the noise in the data).
There is thus an improvement in the generalization performance [59] by the DTCN. This
confirms the hypothesis that the concatenation of features at the deeper layers will provide
the temporal context for better discrimination by the final classifier.

4.3. Comparing with Equivalent DBN-DNN

It is known that better performance can be achieved with a more complex network.
A more complex network, such as a wider and deeper network, will also tend to extract
more redundant information and so be more prone to overfitting [60]. To account for the
improvement in performance due to higher network complexity, performance comparison
should be made between networks of equal complexity.

In this part of the data experiment, comparison is made between DTCN at TS = 2 and
5 and DBN-DNNs of equal complexity in terms of the number of network parameters [61].
The configurations of the equivalent DBN-DNNs are shown in Table 6 below. From the
table, it can be seen that the number of hidden nodes has increased from 20 in Table 3 to 23
and 31 in Table 6.

Table 6. Configuration of Equivalent DBN-DNN for TS = 2 and 5.

No. of Nodes in Equivalent DBN-DNN

TS = 2 TS = 5

Input layer 224 224

First hidden layer 23 31

Second hidden layer 23 31

Third hidden layer 20 20

Softmax layer 2 2

Total No. of Parameters 6181 8565

The 10-fold validation results of the two equivalent DBN-DNNs are shown in Table 7
below. The summary statistics are in Table 8. Due to the higher network complexity, they
have higher classification accuracy than the DTCN at TS = 1 (refer to the first row of
Tables 4 and 5). This comes with an increase in variance, indicating some overfitting of the
networks to the data.

Sensors 2021, 21, 603 15 of 20

Table 7. Cross-validation results (accuracies in percentage) of equivalent DBN-DNN for TS = 2 and 5.

Fold No.

Eqv 1 2 3 4 5 6 7 8 9 10

TS = 2 94.46 92.84 96.49 92.70 88.78 88.24 95.95 88.65 94.32 83.92

TS = 5 99.32 88.65 92.84 99.46 94.32 83.65 73.78 95.68 98.78 97.30

Table 8. Means and standard deviations of 10-fold results of equivalent DBN-DNN for TS = 2 and 5.

Mean Std Dev

Eqv TS = 2 91.64% 4.06%

Eqv TS = 5 92.38% 8.26%

When the comparison is based on networks of the same complexity, it is found that
the proposed deep temporal convolution network has better generalization performance
than the equivalent DBN-DNNs. This can be seen from the line chart in Figure 12 for the
DTCN at TS = 2 and its equivalent DBN-DNN. The accuracy of the DTCN outperforms the
equivalent DBN-DNN, and the variance of the DTCN is smaller than that of the equivalent
DBN-DNN.

 ‐ 𝑇𝑆

 ‐ 𝑻𝑺 𝟐 𝑻𝑺 𝟓

 ‐ ‐
 ‐

 𝑇𝑆 1
 ‐

 ‐ ‐ 𝑇𝑆

 𝑇𝑆 2 𝑇𝑆 5

 ‐ ‐ 𝑇𝑆

 𝑇𝑆 2
 𝑇𝑆 5

 ‐
 𝑇𝑆 2 ‐

 ‐ ‐
 ‐

Figure 12. Performance of DTCN at TS = 2 vs. equivalent DBN-DNN.

The improvement in generalization performance is even more marked for the DTCN
when the time steps is changed to TS = 5, as shown by the line chart in Figure 13. This
suggests that the amount of concatenation is the cause for the improvement.

 𝑇𝑆 2 ‐

 𝑇𝑆 5

 ‐

 ‐

 ‐

Figure 13. Performance of DTCN at TS = 5 vs. equivalent DBN-DNN.

Sensors 2021, 21, 603 16 of 20

By comparing the DTCN with the equivalent DNN-DBN, the confounding effect of
network complexity can be discounted, and the benefit of passing in the temporal context
to the deeper layers of the proposed network is confirmed.

4.4. Human Activity Recognition

This section describes the data experiment done on the human activity recognition
(HAR) data set [1]. It is a motion sensor data set (accelerometer and gyroscope readings
in three dimensions) based on the recordings of 30 subjects performing activities of daily
living, as shown in Table 9 below.

Table 9. Description of the 12 classes of activities in the human activity recognition (HAR) data set.

Class Description

Basic Activity

1 Walking

2 Walking Upstairs

3 Walking Downstairs

4 Sitting

5 Standing

6 Laying

Transitional Activity

7 Stand to Sit

8 Sit to Stand

9 Sit to Lie

10 Lie to Sit

11 Stand to Lie

12 Lie to Stand

In the data experiment, a fixed-width sliding window of 128 samples (2.56 s) and a
slide of 64 samples (50% overlap) was used to create 10,299 data vectors from the data set.
Each data vector has 768 samples in it, corresponding to 128 samples from each of the six
readings (accelerometer and gyroscope in three dimensions).

To have a general benchmark of the data set, 10-fold cross-validation was done in
Python with five different algorithms, namely (1) logistic regression, (2) k-nearest neighbor,
(3) CART decision tree, (4) MLP neural network, and (5) ensemble by voting. All the
algorithms were run in their default configurations in Python. In each fold, a random set of
3 subjects are used for testing and the other 27 subjects are used for training. The data were
standardized in each of the folds during cross-validation. The data vectors in the data table
are shuffled before they are used for training. The results are shown in Table 10 below.

Table 10. Classification accuracy and variance of the HAR data set, with shuffling.

Algorithm Accuracy (in Percentage), 10-Fold Validated

logistic regression 64.822 (1.309)

k-nearest neighbor 77.009 (1.035)

CART 72.836 (1.465)

MLP 87.868 (0.870)

ensemble 85.29 (0.95)

There is certainly room for improvement in the performance. That could be done with
the deep temporal convolution network (DTCN).

4.5. 10-Fold Validation of the HAR Data Set with the Proposed Network, at TS = 1, 2, and 5

In this data experiment, the DTCN is set at 768 nodes at the input layer, 200 nodes in
the first hidden layer, 350 nodes in the second hidden layer, 200 nodes in the third hidden
layer, and 12 nodes in the softmax layer, corresponding to the 12 activities to be classified.

Sensors 2021, 21, 603 17 of 20

Tables 11 and 12 below show the classification accuracies of the deep temporal convo-
lution network at TS = 1, 2, and 5.

Table 11. Cross-validation accuracies (%) of the HAR Data Set for DTCN at TS = 1, 2, and 5.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

TS = 1 97.78 97.64 97.88 98.16 97.5 97.59 96.98 96.51 97.36 97.08

TS = 2 99.83 99.96 99.91 99.91 99.96 99.83 99.91 99.83 99.87 99.87

TS = 5 98.78 98.64 98.88 98.16 98.5 98.59 97.98 98.51 98.36 98.08

Table 12. Means and standard deviation of the cross-validation result of the HAR Data Set for DTCN

at TS = 1, 2, and 5.

Time Step Mean Std Dev

TS = 1 97.45% 0.48%

TS = 2 99.89% 0.05%

TS = 5 98.45% 0.30%

It can be seen that the mean accuracy increased from 97.45 to 99.89% when concate-
nation is used in the DTCN by using a TS value of 2 instead of 1. This is accompanied by
a corresponding decrease in the standard deviation from 0.48 to 0.05%. This shows that
for the HAR data set, the proposed network does have better generalization performance
when concatenation is introduced to the deeper layers of the network.

At TS = 2, the DTCN is able to match the complex function of the HAR signal well
and is able to learn the useful aspect of the highly varying data to achieve high classification
accuracy. When TS is further increased to 5, overfitting [60] is likely to have occurred,
which is seen in a drop in accuracy and an increase in variance, despite the increase in
computational requirement. Due to the nonlearning nature of gradient routing and the
weight-sharing nature of concatenation, it can be argued that overfitting, were it to occur, is
due to the increased size of the neural network after concatenation is added to the network.
This can be avoided by tuning the value of TS to within the range of 2 to 5.

5. Conclusions

The proposed network addresses the need in deep learning to match the data function
of a time series data with an appropriate network structure. For nonstationary time series
data such as physiological signals, the data function is highly varying, and so the compo-
sition of functions, as used in the proposed network, can be helpful in achieving better
performance. To expose the temporal context and encourage the model to be shift-invariant,
data processing is used in the proposed network, including 1. short term temporal order,
2. mini-batches that overlap, and 3. pooling of target labels through deeper layers. A
matching learning algorithm by backpropagation with gradient routing is also proposed,
with the “split-slide-add” operation being used for gradient routing.

The proposed network was tested with the electroencephalogram data set and the
human activity recognition data set. The result shows that with the right amount of
concatenation in the deeper layers of a network, it can generalize better than the equivalent
DBN-DNN that uses just the time delay representation at the input layer. The proposed
network is thus a useful way to classify time series data that originate from sensors, one
that produces high accuracy without the need for manual feature crafting.

Author Contributions: Conceptualization, B.H.D.K. and W.L.W.; methodology, B.H.D.K. and W.L.W.;

software, B.H.D.K. and C.L.P.L.; validation, B.H.D.K., C.L.P.L., H.R. and W.L.W.; investigation,

B.H.D.K., B.G. and W.L.W.; writing—original draft preparation, B.H.D.K. and W.L.W.; writing—

review and editing, B.H.D.K., C.L.P.L., W.L.W., H.R., B.G.; visualization, C.L.P.L.; supervision,

W.L.W.; project administration, B.H.D.K. and H.R., funding acquisition, W.L.W. and B.G. All authors

have read and agreed to the published version of the manuscript.

Sensors 2021, 21, 603 18 of 20

Funding: This research was funded by UK Global Challenge Research Fund, National Natural

Science Foundation of China (No. 61971093, No. 61401071, No. 61527803), supported by NSAF

(Grant No. U1430115).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The various

datasets used are to be found in the cited references.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A Public Domain Dataset for Human Activity Recognition

Using Smartphones. In Proceedings of the ESANN 2013 Proceedings, European Symposium on Artificial Neural Networks,

Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013; pp. 24–26.

2. Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear deterministic and finite-

dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E

2001, 64, 8. [CrossRef] [PubMed]

3. Clifford, G.D.; Liu, C.; Moody, B.; Springer, D.; Silva, I.; Li, Q.; Mark, R.G. Classification of Normal/Abnormal Heart Sound

Recordings: The PhysioNet/Computing in Cardiology Challenge 2016. Comput. Cardiol. 2016, 43, 3–6.

4. Hu, B.; Gao, B.; Woo, W.L.; Ruan, L.; Jin, J.; Yang, Y.; Yu, Y. A Lightweight Spatial and Temporal Multi-Feature Fusion Network

for Defect Detection. IEEE Trans. Image Process. 2021, 30, 472–486. [CrossRef] [PubMed]

5. Woo, W.L.; Koh, B.H.D.; Gao, B.; Nwoye, E.O.; Wei, B.; Dlay, S.S. Early Warning of Health Condition and Visual Analytics for

Multivariable Vital Signs. In Proceedings of the ACM International Conference Proceeding Series, Sanya, China, 24 April 2020.

6. Gao, B.; Li, X.; Woo, W.L.; Tian, G.Y. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic

Algorithm for Inductive Thermography Imaging. IEEE Trans. Image Process. 2018, 27, 2160–2175. [CrossRef] [PubMed]

7. Woo, W.L. Future trends in I&M: Human-machine co-creation in the rise of AI. IEEE Instrum. Meas. Mag. 2020, 23, 71–73.

[CrossRef]

8. Längkvist, M.; Karlsson, L.; Loutfi, A. A review of unsupervised feature learning and deep learning for time-series modeling.

Pattern Recognit. Lett. 2014, 42, 11–24. [CrossRef]

9. Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer: Berlin/Heidelberg, Germany, 2005.

10. Fairman, F. Introduction to dynamic systems: Theory, models and applications. Proc. IEEE 2008, 69, 1173. [CrossRef]

11. Rabiner, L.; Juang, B. An introduction to hidden Markov models. IEEE ASSP Mag. 1986, 3, 4–16. [CrossRef]

12. Gao, B.; Lu, P.; Woo, W.L.; Tian, G.; Zhu, Y.; Johnston, M. Variational Bayesian Subgroup Adaptive Sparse Component Extraction

for Diagnostic Imaging System. IEEE Trans. Ind. Electron. 2018, 65, 8142–8152. [CrossRef]

13. Lim, C.L.P.; Woo, W.L.; Dlay, S.S.; Gao, B.; Lim, C.L.P. Heartrate-Dependent Heartwave Biometric Identification With Thresholding-

Based GMM–HMM Methodology. IEEE Trans. Ind. Informatics 2019, 15, 45–53. [CrossRef]

14. Geler, Z.; Kurbalija, V.; Ivanović, M.; Radovanović, M. Weighted kNN and constrained elastic distances for time-series classifica-

tion. Expert Syst. Appl. 2020, 162, 113829. [CrossRef]

15. Keogh, E.; Ratanamahatana, C.A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 2005, 7, 358–386. [CrossRef]

16. Soleimani, G.; Abessi, M. DLCSS: A new similarity measure for time series data mining. Eng. Appl. Artif. Intell. 2020, 92, 103664.

[CrossRef]

17. Jiang, W. Time series classification: Nearest neighbor versus deep learning models. SN Appl. Sci. 2020, 2, 1–17. [CrossRef]

18. Oregi, I.; Pérez, A.; Del Ser, J.; Lozano, J.A. On-line Elastic Similarity Measures for time series. Pattern Recognit. 2019, 88, 506–517.

[CrossRef]

19. Lines, J.; Bagnall, A. Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Discov. 2015, 29,

565–592. [CrossRef]

20. Bagnall, A.; Lines, J.; Hills, J.; Bostrom, A. Time-series classification with COTE: The collective of transformation-based en-

sembles. In Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering, ICDE 2016, Helsinki, Finland,

16–20 May 2016.

21. Tan, C.W.; Petitjean, F.; Webb, G.I. FastEE: Fast Ensembles of Elastic Distances for time series classification. Data Min. Knowl.

Discov. 2020, 34, 231–272. [CrossRef]

22. Wei, B.; Hamad, R.A.; Yang, L.; He, X.; Wang, H.; Gao, B.; Woo, W. A Deep-Learning-Driven Light-Weight Phishing Detection

Sensor. Sensors 2019, 19, 4258. [CrossRef]

23. Li, W.; Logenthiran, T.; Phan, V.T.; Woo, W.L. A novel smart energy theft system (SETS) for IoT-based smart home. IEEE Internet

Things J. 2019, 6, 5531–5539. [CrossRef]

24. Ruan, L.; Gao, B.; Wu, S.; Woo, W.L. DeftectNet: Joint loss structured deep adversarial network for thermography defect detecting

system. Neurocomputing 2020, 417, 441–457. [CrossRef]

http://doi.org/10.1103/PhysRevE.64.061907
http://www.ncbi.nlm.nih.gov/pubmed/11736210
http://doi.org/10.1109/TIP.2020.3036770
http://www.ncbi.nlm.nih.gov/pubmed/33186116
http://doi.org/10.1109/TIP.2017.2783627
http://www.ncbi.nlm.nih.gov/pubmed/29432098
http://doi.org/10.1109/mim.2020.9062691
http://doi.org/10.1016/j.patrec.2014.01.008
http://doi.org/10.1109/PROC.1981.12150
http://doi.org/10.1109/MASSP.1986.1165342
http://doi.org/10.1109/TIE.2018.2801809
http://doi.org/10.1109/TII.2018.2874462
http://doi.org/10.1016/j.eswa.2020.113829
http://doi.org/10.1007/s10115-004-0154-9
http://doi.org/10.1016/j.engappai.2020.103664
http://doi.org/10.1007/s42452-020-2506-9
http://doi.org/10.1016/j.patcog.2018.12.007
http://doi.org/10.1007/s10618-014-0361-2
http://doi.org/10.1007/s10618-019-00663-x
http://doi.org/10.3390/s19194258
http://doi.org/10.1109/JIOT.2019.2903281
http://doi.org/10.1016/j.neucom.2020.07.093

Sensors 2021, 21, 603 19 of 20

25. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.-A. Deep learning for time series classification: A review. Data Min.

Knowl. Discov. 2019, 33, 917–963. [CrossRef]

26. Marius-Constantin, P.; Balas, V.E.; Perescu-Popescu, L.; Mastorakis, N. Multilayer perceptron and neural networks. In World

Scientific and Engineering Academy and Society (WSEAS); Periodicals: Stevens Point, WI, USA, 2009.

27. Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings

of the International Joint Conference on Neural Networks, Anchorage, AK, USA, 14–19 May 2017.

28. Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, J.L. Exploiting multi-channels deep convolutional neural networks for multivariate time

series classification. Front. Comput. Sci. 2016, 10, 96–112. [CrossRef]

29. Geng, Y.; Luo, X. Cost-sensitive convolutional neural networks for imbalanced time series classification. Intell. Data Anal. 2019,

23, 357–370. [CrossRef]

30. Jaeger, H.; Haas, H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science

2004, 304, 78–80. [CrossRef]

31. Munz, E.D. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift Sergey. Nerven-

heilkunde 2017, 37, 448–456.

32. Liu, T.; Chen, M.; Zhou, M.; Du, S.S.; Zhou, E.; Zhao, T. Towards understanding the importance of shortcut connections in

residual networks. arXiv 2019, arXiv:1909.04653.

33. Ebrahimzadeh, Z.; Zheng, M.; Karakas, S.; Kleinberg, S. Deep learning for multi-scale changepoint detection in multivariate time

series. arXiv 2019, arXiv:1905.06913.

34. Koh, B.H.D.; Woo, W.L. Multi-View Temporal Ensemble for Classification of Non-Stationary Signals. IEEE Access 2019, 7,

32482–32491. [CrossRef]

35. Lim, C.L.P.; Woo, W.L.; Dlay, S.S.; Wu, D.; Gao, B. Deep Multiview Heartwave Authentication. IEEE Trans. Ind. Informatics 2019,

15, 777–786. [CrossRef]

36. Jin, J.; Gao, B.; Yang, S.; Zhao, B.; Luo, L.; Woo, W.L. Attention-Block Deep Learning Based Features Fusion in Wearable Social

Sensor for Mental Wellbeing Evaluations. IEEE Access 2020, 8, 89258–89268. [CrossRef]

37. Fawaz, H.I.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.-A.; Petitjean, F.

InceptionTime: Finding AlexNet for time series classification. Data Min. Knowl. Discov. 2020, 1–27. [CrossRef]

38. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June

2014; pp. 1–9.

39. Mhaskar, H.; Liao, Q.; Poggio, T. When and Why Are Deep Networks Better than Shallow Ones? In Proceedings of the Thirty-First

AAAI Conference on Artificial Intelligence (AAAI-1); AAAI Press: San Francisco, CA, USA, 2017; pp. 2343–2349.

40. Lin, H.W.; Tegmark, M.; Rolnick, D. Why Does Deep and Cheap Learning Work So Well? J. Stat. Phys. 2017, 168, 1223–1247.

[CrossRef]

41. Masters, D.; Luschi, C. Revisiting small batch training for deep neural networks. arXiv 2018, arXiv:1804.07612.

42. Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P.-A.; Vincent, P.; Bengio, S. Why Does Unsupervised Pre-training Help Deep

Learning? J. Mach. Learn. Res. 2010, 11, 625–660.

43. Chauvin, Y.; Rumelhart, D.E. Backpropagation: Theory, Architectures, and Applications; Psychology Press: East Sussex, UK, 1995.

44. Keogh, E.; Chu, S.; Hart, D.; Pazzani, M. An online algorithm for segmenting time series. In Proceedings of the 2001 IEEE

International Conference on Data Mining, San Jose, CA, USA, 29 November–2 December 2001.

45. Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; Lang, K. Phoneme recognition using time-delay neural networks. IEEE Trans.

Acoust. Speech Signal Process. 1989, 37, 328–339. [CrossRef]

46. Jin, C.; Schenkel, M.; Carlile, S. Neural system identification model of human sound localization. J. Acoust. Soc. Am. 2000, 108,

1215–1235. [CrossRef]

47. Jane, Y.N.; Nehemiah, H.K.; Arputharaj, K. A Q-backpropagated time delay neural network for diagnosing severity of gait

disturbances in Parkinson’s disease. J. Biomed. Informatics 2016, 60, 169–176. [CrossRef]

48. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks

1994, 5, 157–166. [CrossRef]

49. Sutskever, I.; Martens, J.; Dahl, G.E.; Hinton, G.E. On the importance of initialization and momentum in deep learning. In

Proceedings of the 30th International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; Volume 28,

pp. 1139–1147.

50. AFischer, A.; Igel, C. An introduction to restricted Boltzmann machines. In Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2012.

51. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy Layer-Wise Training of Deep Networks. In Advances in Neural

Information Processing Systems 19; MIT Press: Cambridge, MA, USA, 2018.

52. Bengio, Y.; Delalleau, O. Justifying and Generalizing Contrastive Divergence. Neural Comput. 2009, 21, 1601–1621. [CrossRef]

53. Cariani, P. Neural timing nets. Neural Netw. 2001, 14, 737–753. [CrossRef]

54. Keskar, N.S.; Nocedal, J.; Tang, P.T.P.; Mudigere, D.; Smelyanskiy, M. On large-batch training for deep learning: Generalization

gap and sharp minima. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017—Conference

Track Proceedings, Toulon, France, 10 February 2017.

http://doi.org/10.1007/s10618-019-00619-1
http://doi.org/10.1007/s11704-015-4478-2
http://doi.org/10.3233/IDA-183831
http://doi.org/10.1126/science.1091277
http://doi.org/10.1109/ACCESS.2019.2903571
http://doi.org/10.1109/TII.2018.2874477
http://doi.org/10.1109/ACCESS.2020.2994124
http://doi.org/10.1007/s10618-020-00710-y
http://doi.org/10.1007/s10955-017-1836-5
http://doi.org/10.1109/29.21701
http://doi.org/10.1121/1.1288411
http://doi.org/10.1016/j.jbi.2016.01.014
http://doi.org/10.1109/72.279181
http://doi.org/10.1162/neco.2008.11-07-647
http://doi.org/10.1016/S0893-6080(01)00056-9

Sensors 2021, 21, 603 20 of 20

55. Glorot, X.; Bordes, A.; Bengio, Y. ReLU. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics,

Ft. Lauderdale, FL, USA, 11–13 April 2011.

56. EDua, D.; Karra Taniskidou, E. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]; University of California, School of

Information and Computer Science: Irvine, CA, USA, 2017.

57. Oliver, R.; Suendermann, D. A First Step towards Eye State Prediction Using EEG. 2013. Available online: http://www.oeft.com/

su/pdf/aihls2013.pdf (accessed on 11 December 2020).

58. Kotsiantis, S.B. Supervised machine learning: A review of classification techniques. Informatica (Ljubljana) 2007, 31, 249–268.

59. Geman, S.; Bienenstock, E.; Doursat, R. Neural Networks and the Bias/Variance Dilemma. Neural Comput. 1992, 4, 1–58.

[CrossRef]

60. Ayinde, B.O.; Inanc, T.; Zurada, J.M. On correlation of features extracted by deep neural networks. arXiv 2019, arXiv:1901.10900.

61. Sontag, E.D. VC dimension of neural networks. NATO ASI Ser. F Comput. Syst. Sci. 1998, 168, 69–96.

http://archive.ics.uci.edu/ml
http://www.oeft.com/su/pdf/aihls2013.pdf
http://www.oeft.com/su/pdf/aihls2013.pdf
http://doi.org/10.1162/neco.1992.4.1.1

	Introduction
	Network with Temporal Context
	Representation of Temporal Context
	Distribution of Temporal Context
	Learning with Many Layers

	Proposed Methodology
	Concatenate the Temporal Context
	Preparing the Data
	Short-Term Temporal Order
	Mini-Batches That Overlap
	Pool Target Labels through the Deeper Layers
	Learn by Backpropagation with Gradient Routing

	Data Experiments and Results
	Spot Checking of the Eye State Data Set
	10-Fold Validation of the Eye State Data Set with the Proposed Network, at TS = 1, 2, and 5
	Comparing with Equivalent DBN-DNN
	Human Activity Recognition
	10-Fold Validation of the HAR Data Set with the Proposed Network, at TS = 1, 2, and 5

	Conclusions
	References

