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Abstract

We propose a Deep Texture Encoding Network (Deep-

TEN) with a novel Encoding Layer integrated on top of con-

volutional layers, which ports the entire dictionary learning

and encoding pipeline into a single model. Current methods

build from distinct components, using standard encoders

with separate off-the-shelf features such as SIFT descrip-

tors or pre-trained CNN features for material recognition.

Our new approach provides an end-to-end learning frame-

work, where the inherent visual vocabularies are learned

directly from the loss function. The features, dictionaries,

encoding representation and the classifier are all learned si-

multaneously. The representation is orderless and therefore

is particularly useful for material and texture recognition.

The Encoding Layer generalizes robust residual encoders

such as VLAD and Fisher Vectors, and has the property

of discarding domain specific information which makes the

learned convolutional features easier to transfer. Addition-

ally, joint training using multiple datasets of varied sizes

and class labels is supported resulting in increased recog-

nition performance. The experimental results show superior

performance as compared to state-of-the-art methods using

gold-standard databases such as MINC-2500, Flickr Ma-

terial Database, KTH-TIPS-2b, and two recent databases

4D-Light-Field-Material and GTOS. The source code for

the complete system are publicly available1.

1. Introduction

With the rapid growth of deep learning, convolutional

neural networks (CNNs) has become the de facto standard

in many object recognition algorithms. The goals of ma-

terial and texture recognition algorithms, while similar to

object recognition, have the distinct challenge of captur-

ing an orderless measure encompassing some spatial rep-

etition. For example, distributions or histograms of fea-

1http://ece.rutgers.edu/vision
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Figure 1: A comparison of classic approaches and the pro-

posed Deep Texture Encoding Network. Traditional meth-

ods such as bag-of-words BoW (left) have a structural simi-

larity to more recent FV-CNN methods (center). Each com-

ponent is optimized in separate steps as illustrated with dif-

ferent colors. In our approach (right) the entire pipeline is

learned in an integrated manner, tuning each component for

the task at hand (end-to-end texture/material/pattern recog-

nition).

tures provide an orderless encoding for recognition. In clas-

sic computer vision approaches for material/texture recog-

nition, hand-engineered features are extracted using inter-

est point detectors such as SIFT [31] or filter bank re-

sponses [10,11,26,43]. A dictionary is typically learned of-

fline and then the feature distributions are encoded by Bag-

of-Words (BoWs) [9,17,23,39], In the final step, a classifier

such as SVM is learned for classification. In recent work,

hand-engineered features and filter banks are replaced by

pre-trained CNNs and BoWs are replaced by the robust

residual encoders such as VLAD [22] and its probabilis-

tic version Fisher Vector (FV) [32]. For example, Cimpoi

et al. [5] assembles different features (SIFT, CNNs) with

different encoders (VLAD, FV) and have achieved state-

of-the-art results. These existing approaches have the ad-

vantage of accepting arbitrary input image sizes and have
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no issue when transferring features across different do-

mains since the low-level features are generic. However,

these methods (both classic and recent work) are comprised

of stacking self-contained algorithmic components (feature

extraction, dictionary learning, encoding, classifier train-

ing) as visualized in Figure 1 (left, center). Consequently,

they have the disadvantage that the features and the en-

coders are fixed once built, so that feature learning (CNNs

and dictionary) does not benefit from labeled data. We

present a new approach (Figure 1, right) where the entire

pipeline is learned in an end-to-end manner.

Deep learning [25] is well known as an end-to-end learn-

ing of hierarchical features, so what is the challenge in rec-

ognizing textures in an end-to-end way? The convolution

layer of CNNs operates in a sliding window manner acting

as a local feature extractor. The output featuremaps pre-

serve a relative spatial arrangement of input images. The re-

sulting globally ordered features are then concatenated and

fed into the FC (fully connected) layer which acts as a clas-

sifier. This framework has achieved great success in image

classification, object recognition, scene understanding and

many other applications, but is typically not ideal for rec-

ognizing textures due to the need for an spatially invariant

representation describing the feature distributions instead

of concatenation. Therefore, an orderless feature pooling

layer is desirable for end-to-end learning. The challenge is

to make the loss function differentiable with respect to the

inputs and layer parameters. We derive a new back prop-

agation equation series (see Appendix A). In this manner,

encoding for an orderless representation can be integrated

within the deep learning pipeline.

As the first contribution of this paper, we introduce a

novel learnable residual encoding layer which we refer to

as the Encoding Layer, that ports the entire dictionary learn-

ing and residual encoding pipeline into a single layer for

CNN. The Encoding Layer has three main properties. (1)

The Encoding Layer generalizes robust residual encoders

such as VLAD and Fisher Vector. This representation is or-

derless and describes the feature distribution, which is suit-

able for material and texture recognition. (2) The Encoding

Layer acts as a pooling layer integrated on top of convolu-

tional layers, accepting arbitrary input sizes and providing

output as a fixed-length representation. By allowing arbi-

trary size images, the Encoding Layer makes the deep learn-

ing framework more flexible and our experiments show that

recognition performance is often improved with multi-size

training. In addition, (3) the Encoding Layer learns an in-

herent dictionary and the encoding representation which

is likely to carry domain-specific information and there-

fore is suitable for transferring pre-trained features. In this

work, we transfer CNNs from object categorization (Ima-

geNet [12]) to material recognition. Since the network is

trained end-to-end as a regression, the convolutional fea-
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Figure 2: The Encoding Layer learns an inherent Dictio-

nary. The Residuals are calculated by pairwise difference

between the input visual descriptors and the codewords of

the dictionary. The Assignment Weights based on pairwise

distance between input descriptors and codewords. Finally,

the residual vectors are aggregated with the assignment

weights.

tures learned together with Encoding Layer on top are easier

to transfer (likely to be domain-independent).

The second contribution of this paper is a new frame-

work for end-to-end material recognition which we refer to

as Texture Encoding Network - Deep TEN, where the feature

extraction, dictionary learning and encoding representation

are learned together in a single network as illustrated in Fig-

ure 1. Our approach has the benefit of gradient information

passing to each component during back propagation, tuning

each component for the task at hand. Deep-Ten outperforms

existing modular methods and achieves the state-of-the-art

results on material/texture datasets such as MINC-2500 and

KTH-TIPS-2b. Additionally, this Deep Encoding Network

performs well in general recognition tasks beyond texture

and material as demonstrated with results on MIT-Indoor

and Caltech-101 datasets. We also explore how convolu-

tional features learned with Encoding Layer can be trans-

ferred through joint training on two different datasets. The

experimental result shows that the recognition rate is signif-

icantly improved with this joint training.

2. Learnable Residual Encoding Layer

Residual Encoding Model Given a set of N visual

descriptors X = {x1, ..xN} and a learned codebook

C = {c1, ...cK} containing K codewords that are D-

dimensional, each descriptor xi can be assigned with a

weight aik to each codeword ck and the corresponding

residual vector is denoted by rik = xi − ck, where i =
1, ...N and k = 1, ...K. Given the assignments and the

residual vector, the residual encoding model applies an ag-

gregation operation for every single codeword ck:

ek =

N
∑

i=1

eik =

N
∑

i=1

aikrik. (1)
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Deep Features Dictionary Learning Residual Encoding Any-size Fine-tuning End-to-end Classification

BoWs X X

Fisher-SVM [41] X X X

Encoder-CNN (FV [5] VLAD [18] X X X X

CNN X X X

B-CNN [28] X X

SPP-Net [19] X X X X

Deep TEN (ours) X X X X X X

Table 1: Methods Overview. Compared to existing methods, Deep-Ten has several desirable properties: it integrates deep

features with dictionary learning and residual encoding and it allows any-size input, fine-tuning and provides end-to-end

classification.

The resulting encoder outputs a fixed length representa-

tion E = {e1, ...eK} (independent of the number of input

descriptors N ).

Encoding Layer The traditional visual recognition ap-

proach can be partitioned into feature extraction, dictionary

learning, feature pooling (encoding) and classifer learning

as illustrated in Figure 1. In our approach, we port the dic-

tionary learning and residual encoding into a single layer

of CNNs, which we refer to as the Encoding Layer. The

Encoding Layer simultaneously learns the encoding param-

eters along with with an inherent dictionary in a fully su-

pervised manner. The inherent dictionary is learned from

the distribution of the descriptors by passing the gradient

through assignment weights. During the training process,

the updating of extracted convolutional features can also

benefit from the encoding representations.

Consider the assigning weights for assigning the descrip-

tors to the codewords. Hard-assignment provides a single

non-zero assigning weight for each descriptor xi, which

corresponds to the nearest codeword. The k-th element

of the assigning vector is given by aik = ✶(‖rik‖
2 =

min{‖ri1‖
2, ...‖riK‖2}) where ✶ is the indicator func-

tion (outputs 0 or 1). Hard-assignment doesn’t consider

the codeword ambiguity and also makes the model non-

differentiable. Soft-weight assignment addresses this issue

by assigning a descriptor to each codeword [42]. The as-

signing weight is given by

aik =
exp(−β‖rik‖

2)
∑K

j=1
exp(−β‖rij‖2)

, (2)

where β is the smoothing factor for the assignment.

Soft-assignment assumes that different clusters have

equal scales. Inspired by guassian mixture models (GMM),

we further allow the smoothing factor sk for each cluster

center ck to be learnable:

aik =
exp(−sk‖rik‖

2)
∑K

j=1
exp(−sj‖rij‖2)

, (3)

which provides a finer modeling of the descriptor distri-

butions. The Encoding Layer concatenates the aggregated

residual vectors with assigning weights (as in Equation 1).

As is typical in prior work [1, 32], the resulting vectors are

normalized using the L2-norm.

End-to-end Learning The Encoding Layer is a directed

acyclic graph as shown in Figure 2, and all the compo-

nents are differentiable w.r.t the input X and the param-

eters (codewords C = {c1, ...cK} and smoothing factors

s = {s1, ...sk}). Therefore, the Encoding Layer can be

trained end-to-end by standard SGD (stochastic gradient de-

scent) with backpropagation. We provide the details and

relevant equation derivations in the Appendix A.

2.1. Relation to Other Methods

Relation to Dictionary Learning Dictionary Learning is

usually learned from the distribution of the descriptors in

an unsupervised manner. K-means [30] learns the dictio-

nary using hard-assignment grouping. Gaussian Mixture

Model (GMM) [15] is a probabilistic version of K-means,

which allows a finer modeling of the feature distributions.

Each cluster is modeled by a Gaussian component with its

own mean, variance and mixture weight. The Encoding

Layer makes the inherent dictionary differentiable w.r.t the

loss function and learns the dictionary in a supervised man-

ner. To see the relationship of the Encoding Layer to K-

means, consider Figure 2 with omission of the residual vec-

tors (shown in green of Figure 2) and let smoothing factor

β → ∞. With these modifications, the Encoding Layer acts

like K-means. The Encoding Layer can also be regarded

as a simplified version of GMM, that allows different scal-

ing (smoothing) of the clusters. A concurrent work also

achieves supervised task-driven dictionary learning [40].

Relation to BoWs and Residual Encoders BoWs (bag-

of-word) methods typically hard assign each descrip-

tor to the nearest codeword and counts the occurrence

of the visual words by aggregating the assignment vec-

tors
∑N

i=1
ai [36]. An improved BoW employs a soft-

assignment weights [29]. VLAD [22] aggregates the resid-

ual vector with the hard-assignment weights. NetVLAD

[22] makes two relaxations: (1) soft-assignment to make
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the model differentiable and (2) decoupling the assignment

from the dictionary which makes the assigning weights de-

pend only on the input instead of the dictionary. There-

fore, the codewords are not learned from the distribution

of the descriptors. Considering Figure 2, NetVLAD drops

the link between visual words with their assignments (the

blue arrow in Figure 2). Fisher Vector [32] concatenates

both the 1st order and 2nd order aggregated residuals. FV-

CNN [5] encodes off-the-shelf CNNs with pre-trained CNN

and achieves good result in material recognition. Fisher

Kernel SVM [41] iteratively update the SVM by a convex

solver and the inner GMM parameters using gradient de-

scent. A key difference from our work is that this Fisher

Kernel method uses hand-crafted instead of learning the

features. VLAD-CNN [18] and FV-CNN [5] build off-the-

shelf residual encoders with pre-trained CNNs and achieve

great success in robust visual recognition and understanding

areas.

Relation to Pooling In CNNs, a pooling layer (Max or

Avg) is typically used on top of the convolutional layers.

Letting K = 1 and fixing c = 0, the Encoding Layer sim-

plifies to Sum pooling (e =
∑N

i=1
xi and dℓ

dxi

= dℓ

de
). When

followed by L2-normalization, it has exactly the same be-

havior as Avg pooling. The convolutional layers extract fea-

tures in a sliding window, which can accept arbitrary input

image sizes. However, the pooling layers usually have fixed

receptive field size, which lead to the CNNs only allowing

fixed input image size. SPP pooling layer [19] accepts dif-

ferent size by fixing the pooling bin number instead of re-

ceptive field sizes. The relative spatial orders of the descrip-

tors are preserved. Bilinear pooling layer [28] removes the

globally ordered information by summing the outer-product

of the descriptors across different locations. Our Encoding

Layer acts as a pooling layer by encoding robust residual

representations, which converts arbitrary input size to a fix

length representation. Table 1 summarizes the comparison

our approach to other methods.

3. Deep Texture Encoding Network

We refer to the deep convolutional neural network with

the Encoding Layer as Deep Texture Encoding Network

(Deep-TEN). In this section, we discuss the properties of

the Deep-TEN, that is the property of integrating Encoding

Layer with an end-to-end CNN architecture.

Domain Transfer Fisher Vector (FV) has the property of

discarding the influence of frequently appearing features in

the dataset [32], which usually contains domain specific in-

formation [49]. FV-CNN has shown its domain transfer

ability practically in material recognition work [5]. Deep-

TEN generalizes the residual encoder and also preserves

output size Deep-TEN 50

Conv1 176×176×64 7×7, stride 2

Res1 88×88×256

3× 3 max pool, stride 2




1×1, 64

3×3, 64

1×1, 256



×3

Res2 44×44×512





1×1, 128

3×3, 128

1×1, 512



×4

Res3 22×22×1024





1×1, 256

3×3, 256

1×1, 1024



×6

Res4 11×11×2048





1×1, 512

3×3, 512

1×1, 2048



×3

Projection
121×128

conv 1×1, 2048⇒128

+ Reshape W×H×D⇒N×D

Encoding 32×128 32 codewords

L2-norm + FC n classes 1×1 FC

Table 2: Deep-TEN architectures for adopting 50 layer pre-

trained ResNet. The 2nd column shows the featuremap sizes

for input image size of 352×352. When multi-size training

for input image size 320×320, the featuremap after Res4 is

10×10. We adopt a 1×1 convolutional layer after Res4 to

reduce number of channels.

this property. To see this intuitively, consider the follow-

ing: when a visual descriptor xi appears frequently in the

data, it is likely to be close to one of the visual centers

ck. Therefore, the resulting residual vector corresponding

to ck, rik = xi − ck, is small. For the residual vectors

of rij corresponding to cj where j 6= k, the correspond-

ing assigning weight aij becomes small as shown in Equa-

tion 3. The Encoding Layer aggregates the residual vectors

with assignment weights and results in small values for fre-

quently appearing visual descriptors. This property is es-

sential for transferring features learned from different do-

main, and in this work we transfer CNNs pre-trained on the

object dataset ImageNet to material recognition tasks.

Traditional approaches do not have domain transfer

problems because the features are usually generic and the

domain-specific information is carried by the dictionary and

encoding representations. The proposed Encoding Layer

generalizes the dictionary learning and encoding frame-

work, which carries domain-specific information. Because

the entire network is optimized as a regression progress,

the resulting convolutional features (with Encoding Layer

learned on top) are likely to be domain-independent and

therefore easier to transfer.
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Multi-size Training CNNs typically require a fixed in-

put image size. In order to feed into the network, images

have to be resized or cropped to a fixed size. The convo-

lutional layers act in a sliding window manner, which can

allow any input sizes (as discussed in SPP [19]). The FC

(fully connected) layer acts as a classifier which take a fix

length representation as input. Our Encoding Layer act as a

pooling layer on top of the convolutional layers, which con-

verts arbitrary input sizes to a fixed length representation.

Our experiments show that the classification results are of-

ten improved by iteratively training the Deep Encoding Net-

work with different image sizes. In addition, this multi-size

training provides the opportunity for cross dataset training.

Joint Deep Encoding There are many labeled datasets

for different visual problems, such as object classifica-

tion [6, 12, 24], scene understanding [45, 47], object detec-

tion [14, 27] and material recognition [2, 48]. An interest-

ing question to ask is: how can different visual tasks ben-

efit each other? Different datasets have different domains,

different labeling strategies and sometimes different image

sizes (e.g. CIFAR10 [24] and ImageNet [12]). Sharing con-

volutional features typically achieves great success [19,34].

The concept of multi-task learning [37] was originally pro-

posed in [8], to jointly train cross different datasets. An

issue in joint training is that features from different datasets

may not benefit from the combined training since the im-

ages contain domain-specific information. Furthermore, it

is typically not possible to learn deep features from differ-

ent image sizes. Our Encoding Layer on top of convolu-

tion layers accepts arbitrary input image sizes and learns

domain independent convolutional features, enabling con-

venient joint training. We present and evaluate a network

that shares convolutional features for two different datasets

and has two separate Encoding Layers. We demonstrate

joint training with two datasets and show that recognition

results are significantly improved.

4. Experimental Results

Datasets The evaluation considers five material and tex-

ture datasets. Materials in Context Database (MINC) [2]

is a large scale material in the wild dataset. In this work, a

publicly available subset (MINC-2500, Sec 5.4 of original

paper) is evaluated with provided train-test splits, contain-

ing 23 material categories and 2,500 images per-category.

Flickr Material Dataset (FMD) [35], a popular benchmark

for material recognition containing 10 material classes, 90

images per-class used for training and 10 for test. Ground

Terrain in Outdoor Scenes Dataset (GTOS) [46] is a dataset

of ground materials in outdoor scene with 40 categories.

The evaluation is based on provided train-test splits. KTH-

TIPS-2b (KTH)- [3], contains 11 texture categories and

four samples per-category. Two samples are randomly

Figure 3: Comparison between single-size training and

multi-size training. Iteratively training Deep-TEN with two

different intput sizes (352×352 and 320×320) makes the

network converging faster and improves the performance.

The top figure shows the training curve on MIT-Indoor and

the bottom one shows the first 35 epochs on MINC-2500.

picked for training and the others for test. 4D-Light-Field-

Material (4D-Light) [44] is a recent light-field material

dataset containing 12 material categories with 100 samples

per-category. In this experiment, 70 randomly picked sam-

ples per-category are used as training and the others for test

and only one angular resolution is used per-sample. For

general classification evaluations, two additional datasets

are considered. MIT-Indoor [33] dataset is an indoor scene

categorization dataset with 67 categories, a standard subset

of 80 images per-category for training and 20 for test is used

in this work. Caltech 101 [16] is a 102 category (1 for back-

ground) object classification dataset; 10% randomly picked

samples are used for test and the others for training.

Baselines In order to evaluate different encoding and rep-

resentations, we benchmark different approaches with sin-

gle input image sizes without ensembles, since we expect

that the performance is likely to improve by assembling fea-

tures or using multiple scales. We fix the input image size

to 352×352 for SIFT, pre-trained CNNs feature extractions
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MINC-2500 FMD GTOS KTH 4D-Light MIT-Indoor Caltech-101

FV-SIFT 46.0 47.0 65.5 66.3 58.4 51.6 63.4

FV-CNN (VGG-VD) 61.8 75.0 77.1 71.0 70.4 67.8 83.0

Deep-TEN (ours) 80.6 80.2±0.9 84.3±1.9 82.0±3.3 81.7±1.0 71.3 85.3

Table 3: The table compares the recognition results of Deep-TEN with off-the-shelf encoding approaches, including Fisher

Vector encoding of dense SIFT features (FV-SIFT) and pre-trained CNN activations (FV-CNN) on different datasets using

single-size training. Top-1 test accuracy mean±std % is reported and the best result for each dataset is marked bold. (The

results of Deep-TEN for FMD, GTOS, KTH datasets are based on 5-time statistics, and the results for MINC-2500, MIT-Indoor and

Caltech-101 datasets are averaged over 2 runs. The baseline approaches are based on 1-time run.)

MINC-2500 FMD GTOS KTH 4D-Light MIT-Indoor

FV-CNN (VGG-VD) multi 63.1 74.0 79.2 77.8 76.5 67.0

FV-CNN (ResNet) multi 69.3 78.2 77.1 78.3 77.6 76.1

Deep-TEN (ours) 80.6 80.2±0.9 84.3±1.9 82.0±3.3 81.7±1.0 71.3

Deep-TEN (ours) multi 81.3 78.8±0.8 84.5±2.9 84.5±3.5 81.4±2.6 76.2

Table 4: Comparison of single-size and multi-size training.

and Deep-TEN. FV-SIFT, a non-CNN approach, is consid-

ered due to its similar encoding representations. SIFT fea-

tures of 128 dimensions are extracted from input images

and a GMM of 128 Gaussian components is built, resulting

in a 32K Fisher Vector encoding. For FV-CNN encoding,

the CNN features of input images are extracted using pre-

trained 16-layer VGG-VD model [38]. The feature maps

of conv5 (after ReLU) are used, with the dimensionality of

14×14×512. Then a GMM of 32 Gaussian components is

built and resulting in a 32K FV-CNN encoding. To improve

the results further, we build a stronger baseline using pre-

trained 50-layers ResNet [20] features. The feature maps

of the last residual unit are used. The extracted features

are projected into 512 dimension using PCA, from the large

channel numbers of 2048 in ResNet. Then we follow the

same encoding approach of standard FV-CNN to build with

ResNet features. For comparison with multi-size training

Deep-TEN, multi-size FV-CNN (VD) is used, the CNN fea-

tures are extracted from two different sizes of input image,

352×352 and 320×320 (sizes determined empirically). All

the baseline encoding representations are reduced to 4096

dimension using PCA and L2-normalized. For classifica-

tion, linear one-vs-all Support Vector Machines (SVM) are

built using the off-the-shelf representations. The learning

hyper-parameter is set to Csvm = 1, since the features

are L2-normalized. The trained SVM classifiers are recal-

ibrated as in prior work [5, 28], by scaling the weights and

biases such that the median prediction score of positive and

negative samples are at +1 and −1.

Deep-TEN Details We build Deep-TEN with the archi-

tecture of an Encoding Layer on top of 50-layer pre-trained

ResNet (as shown in Table 2). Due to high-dimensionality

of ResNet feature maps on Res4, a 1×1 convolutional layer

is used for reducing number of channels (2048⇒128). Then

an Encoding Layer with 32 codewords is added on top,

followed by L2-normalization and FC layer. The weights

(codewords C and smoothing factor s) are randomly initial-

ized with uniform distribution ± 1
√

K
. For data augmenta-

tion, the input images are resized to 400 along the short-

edge with the per-pixel mean subtracted. For in-the-wild

image database, the images are randomly cropped to 9%
to 100% of the image areas, keeping the aspect ratio be-

tween 3/4 and 4/3. For the material database with in-lab or

controlled conditions (KTH or GTOS), we keep the origi-

nal image scale. The resulting images are then resized into

352×352 for single-size training (and 320×320 for multi-

size training), with 50% chance horizontal flips. Standard

color augmentation is used as in [25]. We use SGD with

a mini-batch size of 64. For fine-tuning, the learning rate

starts from 0.01 and divided by 10 when the error plateaus.

We use a weight decay of 0.0001 and a momentum of 0.9.

In testing, we adopt standard 10-crops [25].

Multi-size Training Deep-TEN ideally can accept arbi-

trarily input image sizes (larger than a constant). In order to

learn the network without modifying the standard optimiza-

tion solver, we train the network with a pre-defined size in

each epoch and iteratively change the input image size for

every epoch as in [19]. A full evaluation of combinatorics of

different size pairs have not yet been explored. Empirically,

we consider two different sizes 352×352 and 320×320 dur-

ing the training and only use single image size in testing for

simplicity (352×352). The two input sizes result in 11×11
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MINC-2500 FMD GTOS KTH 4D-Light

Deep-TEN* (ours) 81.3 80.2±0.9 84.5±2.9 84.5±3.5 81.7±1.0

State-of-the-Art 76.0±0.2 [2] 82.4±1.4 [5] N/A 81.1±1.5 [4] 77.0±1.1 [44]

Table 5: Comparison with state-of-the-art on four material/textures dataset (GTOS is a new dataset, so SoA is not available).

Deep-TEN* denotes the best model of Deep Ten and Deep Ten multi.

and 10×10 feature map sizes before feeding into the Encod-

ing Layer. Our goal is to evaluate how multi-size training

affects the network optimization and how the multi-scale

features affect texture recognition.

4.1. Recognition Results

We evaluate the performance of Deep-TEN, FV-SIFT

and FV-CNN on aforementioned golden-standard material

and texture datasets, such as MINC-2500, FMD, KTH and

two new material datasets: 4D-Light and GTOS. Addi-

tionally, two general recognition datasets MIT-Indoor and

Caltech-101 are also considered. Table 3 shows overall ex-

perimental results using single-size training,

Comparing with Baselines As shown in Table 3, Deep-

TEN and FV-CNN always outperform FV-SIFT, which

shows that pre-trained CNN features are typically more

discriminant than hand-engineered SIFT features. FV-

CNN usually achieves reasonably good results on different

datasets without fine-tuning pre-trained features. We can

observe that the performance of FV-CNN is often improved

by employing ResNet features comparing with VGG-VD

as shown in Table 4. Deep-TEN outperforms FV-CNN un-

der the same settings, which shows that the Encoding Layer

gives the advantage of transferring pre-trained features to

material recognition by removing domain-specific informa-

tion as described in Section 3. The Encoding Layer’s prop-

erty of representing feature distributions is especially good

for texture understanding and segmented material recogni-

tion. Therefore, Deep-TEN works well on GTOS and KTH

datasets. For the small-scale dataset FMD with less train-

ing sample variety, Deep-TEN still outperforms the baseline

approaches that use an SVM classifier. For MINC-2500, a

relatively large-scale dataset, the end-to-end framework of

Deep TEN shows its distinct advantage of optimizing CNN

features and consequently, the recognition results are signif-

icantly improved (61.8%⇒80.6% and 69.3%⇒81.3, com-

pared with off-the-shelf representation of FV-CNN). For

the MIT-Indoor dataset, the Encoding Layer works well on

scene categorization due to the need for a certain level of

orderless and invariance. The best performance of these

methods for Caltech-101 is achieved by FV-CNN(VD) multi

(85.7% omitted from the table). The CNN models VGG-

VD and ResNet are pre-trained on ImageNet, which is also

an object classification dataset like Caltech-101. The pre-

trained features are discriminant to target datasets. There-

fore, Deep-TEN performance is only slightly better than the

off-the-shelf representation FV-CNN.

Impact of Multi-size For in-the-wild datasets, such as

MINC-2500 and MIT-Indoor, the performance of all the ap-

proaches are improved by adopting multi-size as expected.

Remarkably, as shown in Table 4, Deep-TEN shows a per-

formance boost of 4.9% using multi-size training and out-

performs the best baseline by 7.4% on MIT-Indoor dataset.

For some datasets such as FMD and GTOS, the perfor-

mance decreases slighltly by adopting multi-size training

due to lack of variety in the training data. Figure 3 compares

the single-size training and multi-size (two-size) training for

Deep-TEN on MIT-Indoor and MINC-2500 dataset. The

experiments show that multi-size training helps the opti-

mization of the network (converging faster) and the learned

multi-scale features are useful for the recognition.

Comparison with State-of-the-Art As shown in Table 5,

Deep-TEN outperforms the state-of-the-art on four mate-

rial/texture recognition datasets: MINC-2500, KTH, GTOS

and 4D-Light. Deep-TEN also performs well on two

general recognition datasets. Notably, the prior state-of-

the-art approaches either (1) relies on assembling features

(such as FV-SIFT & CNNs) and/or (2) adopts an addi-

tional SVM classifier for classification. Deep-TEN as an

end-to-end framework neither concatenates any additional

hand-engineered features nor employs SVM for classifica-

tion. For the small-scale datasets such as FMD and MIT-

Indoor (subset), the proposed Deep-TEN gets compatible

results with state-of-the-art approaches (FMD within 2%,

MIT-indoor within 4%). For the large-scale datasets such

as MINC-2500, Deep-TEN outperforms the prior work and

baselines by a large margin demonstrating its great ad-

vantage of end-to-end learning and the ability of transfer-

ring pre-trained CNNs. We expect that the performance

of Deep-TEN can scale better than traditional approaches

when adding more training data.

4.2. Joint Encoding from Scratch

We test joint training on two small datasets CIFAR-

10 [24] and STL-10 [6] as a litmus test of Joint Encoding

from scratch. We expect the convolutional features learned
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STL-10 CIFAR-10

Deep-TEN (Individual) 76.29 91.5

Deep-TEN (Joint) 87.11 91.8

State-of-the-Art 74.33 [51] -

Table 6: Joint Encoding on CIFAR-10 and STL-10 datasets.

Top-1 test accuracy %. When joint training with CIFAR-10,

the recognition result on STL-10 is significantly improved.

(Note that traditional network architecture does not allow joint

training with different image sizes.)

with Encoding Layer are easier to transfer, and can improve

the recognition on both datasets.

CIFAR-10 contains 60,000 tiny images with the size

32×32 belonging to 10 classes (50,000 for training and

10,000 for test), which is a subset of tiny images database.

STL-10 is a dataset acquired from ImageNet [12] and origi-

nally designed for unsupervised feature learning, which has

5,000 labeled images for training and 8,000 for test with the

size of 96×96. For the STL-10 dataset only the labeled im-

ages are used for training. Therefore, learning CNN from

scratch is not supposed to work well due to the limited

training data. We make a very simple network architecture,

by simply replacing the 8 × 8 Avg pooling layer of pre-

Activation ResNet-20 [21] with Encoding-Layer (16 code-

words). We then build a network with shared convolutional

layers and separate encoding layers that is jointly trained

on two datasets. Note that the traditional CNN architecture

is not applicable due to different image sizes from this two

datasets. The training loss is computed as the sum of the

two classification losses, and the gradient of the convolu-

tional layers are accumulated together. For data augmen-

tation in the training: 4 pixels are padded on each side for

CIFAR-10 and 12 pixels for STL-10, and then randomly

crop the padded images or its horizontal flip into original

sizes 32×32 for CIFAR-10 and 96×96 for STL-10. For

testing, we only evaluate the single view of the original im-

ages. The model is trained with a mini batch of 128 for each

dataset. We start with a learning rate of 0.1 and divide it by

10 and 100 at 80th and 120th epoch.

The experimental results show that the recognition result

of STL-10 dataset is significantly improved by joint train-

ing the Deep TEN with CIFAR-10 dataset. Our approach

achieves the recognition rate of 87.11%, which outperforms

previous the state of the art 74.33% [51] and 72.8% [13] by

a large margin.

5. Conclusion

In summary, we developed an Encoding Layer and built

the network Deep-TEN and demonstrated the effectiveness

on various material and texture recognition datasets. we

developed an Encoding Layer which bridges the gap be-

tween classic computer vision approaches and the CNN ar-

chitecture. This layer has two main advantages: (1) the

resulting deep learning framework is more flexible by al-

lowing arbitrary input image size, and (2) the learned con-

volutional features are easier to transfer since the Encod-

ing Layer is likely to carry domain-specific information.

The Encoding Layer shows superior performance in trans-

ferring pre-trained CNN features. Deep-TEN outperforms

traditional off-the-shelf methods and achieves state-of-the-

art results on MINC-2500, KTH and two recent material

datasets: GTOS and 4D-Lightfield.

The Encoding Layer is efficient using GPU computa-

tions and our Torch [7] implementation of 50-layer Deep-

Ten (as shown in Table 2) takes the input images of

size 352×352, runs at 55 frame/sec for training and 290

frame/sec for inference on 4 Titan X Maxwell GPUs.
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A. Encoding Layer Implementations

We provide the explicit expression for the gradients of

the loss ℓ with respect to (w.r.t) the layer input and the pa-

rameters for implementing Encoding Layer in [50].
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