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Abstract

Snapshot compressive imaging (SCI) systems have been

developed to capture high-dimensional (≥ 3) signals using

low-dimensional off-the-shelf sensors, i.e., mapping multi-

ple video frames into a single measurement frame. One key

module of a SCI system is an accurate decoder that recovers

the original video frames. However, existing model-based

decoding algorithms require exhaustive parameter tuning

with prior knowledge and cannot support practical applica-

tions due to the extremely long running time. In this paper,

we propose a deep tensor ADMM-Net for video SCI systems

that provides high-quality decoding in seconds. Firstly, we

start with a standard tensor ADMM algorithm, unfold its

inference iterations into a layer-wise structure, and design a

deep neural network based on tensor operations. Secondly,

instead of relying on a pre-specified sparse representation

domain, the network learns the domain of low-rank ten-

sor through stochastic gradient descent. It is worth noting

that the proposed deep tensor ADMM-Net has potentially

mathematical interpretations. On public video data, the

simulation results show the proposed method achieves av-

erage 0.8 ∼ 2.5 dB improvement in PSNR and 0.07 ∼ 0.1
in SSIM, and 1500× ∼ 3600× speedups over the state-of-

the-art methods. On real data captured by SCI cameras, the

experimental results show comparable visual results with the

state-of-the-art methods but in much shorter running time.

1. Introduction

Inspired by compressive sensing [4, 6, 7], various compu-

tational imaging systems [1] have been built, which employ

low-dimensional sensors to capture high-dimensional signals

by generating compressed measurements. One important

branch of computational imaging with promising applica-

tions is the snapshot compressive imaging (SCI) [19, 25],

which utilized a two-dimensional camera to capture the 3D

video or spectral data. Different from conventional cam-

eras, such imaging systems adopt sampling on a set of con-

†Equal contribution. The code is available at https://github.

com/Phoenix-V/tensor-admm-net-sci.

Figure 1. Overview of the deep tensor ADMM-Net for SCI sys-

tems. The measurement by the video SCI camera [19] is modeled

as linear measurements with prior known sensing matrices. We use

video samples to train a neural net as a decoder.

secutive images–from sequenced temporal channels (i.e.,

CACTI [19, 34]) or with multiple spectral variations (i.e.,

CASSI [26])–in accordance with the sensing matrix and sum-

ming up those sampled signals along time or spectrum to

obtain the compressed measurements. With this technique,

SCI systems [8, 11, 22, 25, 26, 34] can capture the high-

speed motion and high-resolution spectral information but

with low memory footprints.

In this paper, we focus on the video SCI systems (Fig. 1).

Different from other available high-speed cameras that are

suffering from great expense and bandwidth cost [23], the

video SCI systems [19, 34] enable high-resolution shooting,
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e.g., NBA slow motion in sports and vehicle crash test in

manufacturing with low cost and low bandwidth. Besides,

these systems enable the long-time shooting, e.g., aerial

photography in topographic survey whose filming duration

is greatly limited by the memory size, and traffic monitoring

in road networks for which a deluge of video data (e.g., 5

TB per sensor per day) are generated.

In addition to the hardware design, one key module of

a SCI system is an accurate decoder, usually called “recon-

struction algorithm”, that recovers the original video frames.

The prior knowledge of desired videos, e.g., sparsity [20],

low total variance [33] and low rank, is employed as a reg-

ularizer in most of the state-of-the-art video decoding al-

gorithms. However, these decoding algorithms model the

videos as a set of matrices and relies on the pre-set knowl-

edge, making it hard to fully exploit the spatial-temporal

correlations in video data. The most recently proposed De-

SCI algorithm [18] extends the idea of rank minimization by

integrating weighted nuclear norm minimization [9] with the

alternating direction method of multipliers (ADMM) frame-

work [2] to achieve state-of-the-art results on both video

and spectral SCI. Even though the joint models like DeSCI

are developed, redundant patch extraction always leads to

exhausted processing time.

By contrast, in this paper, intuitively, we view the

gray/color video with multiple frames as a 3D/4D tensor

and generalize the techniques in matrix to tensor such that

the video decoding task is modeled as a tensor recovery prob-

lem from random linear measurements. Inspired by [10, 24],

we unfold the algorithm, tensor nuclear norm minimization

using ADMM (TNN-ADMM), into a layer-wise deep neural

network. As depicted in Fig. 2, each iteration is mapped to a

stage of neural network and in every stage each transforma-

tion matrix (learned through network training) is regarded

as a pattern. Thus, a deep network structure is developed by

connecting multiple stages in sequence. The output of each

reconstruction layer can all be viewed as the recovered signal

and compared with the ground truth to calculate the training

loss to accelerate its convergence. Specifically, we propose

a deep tensor ADMM-Net for video SCI systems to provide

high-quality decoding within seconds. Our contributions are

summarized as follows:

(i) Motivated by the standard tensor ADMM algorithm [36],

we generalize it to our video SCI decoding task and pro-

pose a deep learning-based but potentially interpretable

tensor reconstruction scheme, termed as tensor ADMM-

Net. We unfold the inference iterations into a novel layer-

wise structure that automatically learns the sparse repre-

sentation domain through network training.

(ii) We exploit the block diagonal structure of sensing ma-

trices in SCI, resulting from the tensor product of the

transformation matrix, and deliberately propose a compu-

tationally efficient method.

(iii) We design the multi-layer loss minimization and residual

structure to capture more details in our tensor ADMM-

Net.

(iv) Extensive experiments on both simulation and real-world

SCI camera data demonstrate the effectiveness and high-

speed of our algorithm. On these simulation videos, the

proposed method achieves an average improvement of

0.8 ∼ 2.5 dB in PSNR and 0.07 ∼ 0.1 in SSIM, and

1500× ∼ 3600× speedups over DeSCI. On real-world

SCI data experiments, we achieve comparable visual re-

sults with the state-of-the-art work but in a much shorter

running time.

The remainder of the paper is organized as follows. Sec-

tion 2 presents related works on SCI. Section 3 briefly intro-

duces the video SCI system and tensor operations. Section

4 provides implementation details of the proposed Tensor

ADMM-Net. Section 5 and Section 6 presents the experi-

mental results. Section 7 concludes the paper.

2. Related Works

SCI systems have been developed to capture videos [11,

19, 22, 34], 3D spectral images [27, 28, 29, 30], dynamic

range images, depth and polarization images, etc. From

the algorithm side, in addition to the conventional sparsity

based algorithms, Gaussian Mixture Model (GMM) in [32]

exploits the sparsity of patches and assumes the pixels within

a spatial-temporal patch are drawn (at once) from a GMM.

GAP-TV model in [33] adopts the idea of total variance min-

imization under the generalized alternating projection (GAP)

framework. Sparse coding [30] has also been developed. As

mentioned before, most recently, DeSCI proposed in [18] to

reconstruct videos or hyperspectral images in SCI has led to

state-of-the-art results. However, most of these algorithms

treat video and hyperspectral images in SCI as matrices,

while these 3D/4D data indeed is a tensor. Therefore, for

the first time in the literature, we aim to exploit the tensor

based algorithm in SCI reconstruction. The TNN-ADMM

algorithm was proposed in [36] and turned to be effective for

recovering corrupted images. Nevertheless, TNN-ADMM

was only tested on corrupted images without any compres-

sive sensing.

Inspired by recent advances of deep learning on image

restoration, researchers have started using deep learning

in computational imaging. Some algorithms have been

proposed for SCI reconstruction [21]. The models in

[24] and [35] successfully unfolded the convex algorithms

(ISTA and ADMM) for MRI image reconstruction into deep

neural networks. Different from these methods, in this work,

we integrate the tensor low-rank model into ADMM-net [24]

for SCI reconstruction.
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3. Video SCI Systems and Tensor Model

We briefly summarize the underlying principle of the

video SCI system in Section 3.1. Typical tensor operations

are provided in Section 3.2, which are used for problem

formulation in Section 3.3.

3.1. Snapshot Compressing Imaging System

In the video SCI system (e.g., CACTI) depicted in Fig. 1,

consider that a B-frame video X ∈ R
n1×n2×B is mod-

ulated and compressed by B sensing matrices (masks)

C ∈ R
n1×n2×B , and the measurement frame Y ∈ R

n1×n2

can be expressed as [19, 34]

Y =

B∑

b=1

C(b) ⊙X (b) +N , (1)

where N ∈ R
n1×n2 denotes the noise; the frontal slices

C(b) = C(:, :, b) and X (b) = X (:, :, b) ∈ R
n1×n2 represent

the b-th sensing matrix and the corresponding video frame,

and ⊙ denotes the Hadamard (element-wise) product.

Mathematically, the measurement in (1) can be expressed

by the following linear equation:

y = Φx+ n, (2)

where y = Vec(Y ) ∈ R
n1n2 and n = Vec(N) ∈ R

n1n2 .

Correspondingly, the video signal x ∈ R
n1n2B is

x = Vec(X ) = [Vec(X (1))⊤, ...,Vec(X (B))⊤]⊤. (3)

Unlike traditional compressive sensing [4, 5, 7], the sens-

ing matrix Φ ∈ R
n1n2×n1n2B in video SCI is sparse and

exhibits a block diagonal structure as follows

Φ = [diag(Vec(C(1))), ..., diag(Vec(C(B)))]. (4)

Consequently, the sampling rate here is equal to 1/B. It has

been proved recently in [13] that the reconstruction error of

SCI is bounded even when B > 1.

As video is a sequence of frames along time, it is intu-

itively suitable to represent a video as a 3D/4D array (tensor)

and treat the video SCI decoding tasks as reconstructing a

third-order tensor from random linear measurements.

3.2. Tensor Operations

Aiming at reconstructing tensor X ∈ R
n1×n2×B , our SCI

decoder rests on the following definition of Tensor Nuclear-

Norm in Def. 1, and the details of basic tensor operations

for drawing TNN are provided in the Supplementary Ma-

terials (SM). A 3D tensor X can be basically viewed as an

n1 × n2 matrix of tubes lying in the third-dimension. We

denote tensor X̃ as the frequency domain representation of

X , obtained by taking Fourier transform on each tube, i.e.,

X̃ (i, j, :) = fft(X (i, j, :)).

Definition 1. Tensor Nuclear-Norm (TNN) [15, 14, 36].

The tensor nuclear norm of a tensor T is defined as

‖T ‖TNN = ‖T ‖∗, where ‖ · ‖∗ denotes the matrix nuclear

norm, i.e., the sum of singular values of all the frontal slices

T̃ (b) for b ∈ {1, . . . , B}, and T denotes the diagonal block

form of the third-order tensor T̃ ,

T ,




T̃ (1)

T̃ (2)

. . .

T̃ (B)


 ∈ C

n1B×n2B . (5)

It has been proved that the TNN is the tightest convex

relaxation to the ℓ1-norm of the tensor multi-rank [36]. By

generalizing the Fourier transform to other full-rank time-

frequency domain transformation, we denote ‖T ‖Λ,TNN =
‖T ‖Λ,∗ as the TNN of T under the transformation Λ [17].

3.3. Problem Formulation

In this work, we model the reconstruction task in video

SCI system as a tensor recovery problem, and we use the

TNN minimization under multiple transform domains as

a constraint. It is worth noting that rather than imposing

the low-rank property on non-local similar patch groups as

in [18], we impose the low-rank property on the entire video

(tensor) but in different transform domains [17]. Towards

this end, the problem of video SCI reconstruction is formu-

lated as a weighted convex optimization problem in multiple

transform domains,

argmin
X∈Rn1×n2×B

F∑

f=1

wf‖X‖Λf ,TNN

s.t. y = Φx+ n,

(6)

where wf denotes the weight corresponding to the transfor-

mation Λf for f ∈ {1, ..., F}. Here, in total, we have F
transforms. By adopting the general form of transformation

matrices, the optimization problem in (6) is equivalent to

argmin
X∈Rn1×n2×B

F∑

f=1

wf‖Xf‖Λf ,∗ + ✶y=Φx+n, (7)

where Λ = [Λ1, . . . ,ΛF ] denotes the transform matrices, X

is constructed from X̃f [17] (which is further constructed

from X ) as in (5) and ✶ denotes the indicator function.

For video SCI decoding, we may derive the iterative al-

gorithm for problem (7) and run it dozens of iterations to

get a satisfactory reconstruction. However, setting the hy-

per parameters, e.g., transformation matrix Λf and related

weight wf , is challenging and tuning these parameters for

different scenarios is nontrivial. To exploit the learning abil-

ity of neural networks, as depicted in Fig. 2, we develop a
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Figure 2. Data flow graph of our proposed Tensor ADMM-Net: (a) The general framework is constructed by connecting each Stage in a

sequence order. In each Stage, multiple transformation Patterns are processed in parallel. (b) Details of each Pattern. The dashed line

denotes the data flow between two consecutive stages while the solid line denotes the data flow inside the same stage.

layer-wise structure based mechanism inside each iteration

(stage). Instead of relying on a pre-specified sparse repre-

sentation domain knowledge, we untie the model parameters

across layers to obtain a novel network structure and train

the model using the stochastic gradient descent method. In

this way, the transformations and weights can be learned in

a discriminate manner.

4. Deep Tensor ADMM-Net

We first derive the basic formulation of the TNN-ADMM

algorithm in Section 4.1 to solve the optimization problem

in (7). Then the structure details of our deep tensor ADMM-

Net is presented in Section 4.2.

4.1. TNNADMM Algorithm

By using the ADMM framework [2, 3] and introducing

auxiliary variables Z̃ = [Z̃1, ..., Z̃f ], (7) can be written as :

argmin
X , Z̃

1

2
‖y −Φx‖22 +

F∑

f=1

wf‖Zf‖Λf ,∗

s.t. X̃f = Z̃f , (8)

where Z is constructed from Z̃ similar to X . This problem

can be solved by the following subproblems

X k = argmin
X

{
F∑

f=1

〈
Ũk−1
f , X̃f − Z̃k−1

f

〉

+
1

2
‖y −Φx‖2F +

F∑

f=1

ρf
2
‖X̃f − Z̃k−1

f ‖2F

}
, (9)

Z̃k
f = argmin

Z̃f

{〈
Ũk−1
f , X̃ k

f − Z̃f

〉
+ wf‖Zf‖∗

+
ρf
2
‖X̃ k

f − Z̃f‖
2
F

}
, (10)

Ũk
f = Ũk−1

f + ηf (X̃
k
f − Z̃k

f ), (11)

where Ũ = [Ũ1, ..., ŨF ] and ρ = [ρ1, ..., ρF ] denote the mul-

tipliers and the coefficients of Lagrange expansion in the

ADMM framework, respectively, and ηf is a constant to

determine the step size. Since the transformation matrices

are set independently, the updates in (10)-(11) for different

transform domain can be processed in parallel and indepen-

dently in the same iteration. The detailed solutions for (9)

to (11) are provided in the SM. As mentioned before, this

optimization based algorithm, though may lead to good re-

sults, will cost a long time due to the large computational

workload. In the following, we employ a deep network to

solve this problem, dubbed deep tensor ADMM-Net.

4.2. Pipeline Design for Tensor ADMMNet

Derived from (9) to (11), Fig. 2 shows the stage-wise deep

model structure. In each stage, we first aggregate the outputs

from previous stage by the Linear Projection module and

then feed the output to another parallel Patterns for further

processing.

4.2.1 Linear Projection

By adopting the following equation derived from (9), our

Linear Projection module aggregates the measurement and

the outputs from all patterns of previous stage and aims to
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reconstruct the desired signal

X k = Sk(Φ⊤y +

F∑

f=1

ρk+1
f Πk

f (Z̃
k−1
f − Ũk−1

f )),

Sk = (Φ⊤
Φ+

F∑

f=1

ρkfΠ
k
fΠ

k⊤
f )−1,

Πk
f = Λk

f ⊗ In1n2
,

(12)

where In1n2
∈ R

n1n2×n1n2 denotes an identity matrix,

⊗ represents the Kronecker (tensor) product and Λk =
[Λk

1 , . . . ,Λ
k
F ] is the generalized transformation matrices in

the k-th stage, which are learned during model training as

well as the relative parameters ρk = [ρk1 , . . . , ρ
k
F ]. By setting

Z̃0 and Ũ0 as zero matrices, we define

Φ = S1
Φ

⊤, (13)

which will be used to initialize the input of our network

(please refer to the input in Fig. 2(a)). Nevertheless, Sk+1 ∈
R

n1n2B×n1n2B in each stage will occupy an astounding

amount of memory and is not applicable in the gradient cal-

culation. Inspired by the diagonal block structure of Φ in (4)

and tensor-based domain transform, we further investigate

the inner structure and reduce the processing complexity.

Rectangular Diagonal Block (RDB) structure is basi-

cally a B×B matrix of n-by-n symmetric diagonal matrices

lying on the plane to form an nB × nB rectangular matrix.

The matrix with RDB structure is supposed to be full-rank

and invertable and each symmetric diagonal matrix is termed

as a block. As shown in Fig. 3, for the matrix W with RDB

structure, the green background indicates one block. Instead

of calculating W−1 directly, the inverse matrix is calculated

according to the following steps:

(1) Split all B ×B blocks: the elements of the same posi-

tion are aggregated to build the corresponding smaller

matrices and there are in total n × n elemental ma-

trix, e.g., the elements with blue (orange) outline are

extracted to build Wdiag(1) (Wdiag(2), . . . ) individually.

(2) Calculate the inverse matrix of all these n×n elemental

matrix individually (potentially in parallel), e.g., calcu-

late W−1
diag(1) and W−1

diag(2), . . . .

(3) Assemble the n × n inverse matrices back to the

matrices of RDB structure, e.g., according the posi-

tion of Wdiag(1) (Wdiag(2), . . . ) in W , W−1
diag(1) and

W−1
diag(2), . . . are aggregated to draw out W−1.

This calculation scheme is theoretically equivalent to the

direct matrix inverse computation with detailed derivations

provided in the SM.

4 3
3 2

1 1
- 7 - 5

4 3
1 1

3 2
- 7 - 5

Spl it I nverse Assemb l e

1 - 3
5 2

- 1 4
- 7 - 3

1 - 3
- 1 4

5 2
- 7 - 3 𝟏𝒅𝒊𝒂𝒈(𝟐)𝟏

𝒅𝒊𝒂𝒈(𝟏)𝟏

𝒅𝒊𝒂𝒈(𝟐)

𝒅𝒊𝒂𝒈(𝟏)

Figure 3. Example of fast inverse calculation (The empty area

indicates zero).

According to (4), Φ⊤
Φ is of the RDB structure. As

the time-frequency transform operation is essentially an in-

vertable linear transform, the transform matrix Λk
f is in-

vertable and thus of full rank. Consequently, the product

Πk
fΠ

k⊤
f for f ∈ {1, . . . , F} are of the full-rank RDB struc-

ture. Therefore, the inverse of Sk can be efficiently cal-

culated using this framework. In practice, in case that the

summation of multiple full-rank RDB matrix is not always

full-rank, we add a scaled identity matrix as noise to avoid

the gradient explosion caused by the degenerated matrix.

In this manner, both the forward and backward gradient

calculation of Sk can be broken into the calculations of

n1 × n2 small matrices Sk
diag(i) for i ∈ {1, ..., n1n2} where

each matrix can be calculated separately and in parallel. By

adopting such a strategy, the memory occupancy is decreased

from (n1n2B)2 to n1n2B
2 and the computation complex-

ity of the matrix inversion in each stage is decreased from

O(n3
1n

3
2B

3) to n1n2O(B3) where n1n2 = 65536 in our

experiment setup. This memory optimization is one of our

contribution in SCI reconstruction and can be generalized to

other algorithms.

4.2.2 Pattern

Derived from (10)-(11), we design the inner structure of

each pattern to perform the update of auxiliary variables.

According to (10), the update of Z̃k
f includes both nuclear-

norm minimization and least-square items. Thus, we will

first introduce the matrix shrinkage operator in Def. 2 with

related theorem and then the solution.

Definition 2. Singular value shrinkage operator. Given

the SVD of a rank-r matrix X = UΣV ⊤ and Σ =
diag({σi}1≤i≤r), for each τ ≥ 0, the soft-thresholding op-

erator is defined as a singular value shrinkage operator

Dτ (X) = UDτ (Σ)V ⊤, (14)

Dτ (Σ) = diag({max(σi − τ, 0)}1≤i≤r). (15)

Theorem 1. [3] For each τ ≥ 0 and M ∈ R
n1×n2 , the

singular value shrinkage operator in Def. 2 satisfies

Dτ (M) = argmin
X

{
1

2
‖X −M‖2F + τ‖X‖∗

}
. (16)
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Soft-thresholding is adopted in singular value shrinkage

operator for ℓ1-norm minimization and this theorem indi-

cates such an operation on an auxiliary matrix M is equiv-

alent to the minimization consisting of least-square and

ℓ1-norm items. The solution of (10) can be described as

Z̃k = D1/ρ(Ũ
k−1 + X̃ k). Since the TNN is defined as the

sum of singular values of all the frontal slices, the shrinkage

operator can be applied to each frontal slice individually.

Domain Transformer: As shown in Fig. 2(b), the fully

connected (FC) layer at the beginning of each pattern works

as a domain transformer. Each tube X k
f (i, j, :) ∈ R

1×B is

fed into the FC layer in parallel and individually.

Shrinkage Operator: The work in [12] declares that multi-

layer feed forward networks (FFN) are universal approxi-

mates for any vector-valued function. In addition, a shrink-

age operator is essentially a nonlinear function adopted in

each entry of the video and can be described in vector-valued

form. As the operator is adopted on images, Thus, we ap-

ply 2D Convolution layers on the frontal slices where the

number of kernels in each layer is B′ > B except for the

last layer, i.e., we treat the pixels along third-dimension as a

feature vector corresponding to each spatial unit.

Linear Aggregation: The linear aggregation of the pattern

is derived for the multiplier Ũk
f update in (11). The constant

ηf is treated as trainable variable so that the step size for

different pattern in different stages varies. Also, for the con-

venience of calculation in Section 4.2.1, we directly calculate

Ṽk
f = Z̃k

f − Ũk
f as one of the pattern’s output.

5. Performance Evaluation on Simulation Data

We first verify the performance of the proposed deep

Tensor ADMM-net on the simulation data and then apply it

to the real data captured by the SCI cameras [19, 34].

5.1. Data Sets

We evaluate the proposed deep Tensor ADMM-Net on the

simulation data including Kobe dataset [32], Aerial dataset

and Vehicle Crash dataset, respectively. We collected Aerial,

vehicle, and basketball shooting (NBA) (from YouTube) to

train the model. We resize the original images to 256× 256
through down sampling. Following the setting in [18], eight

(B = 8) consequent frames are modulated by shifting binary

masks and then collapsed to a single measurement. Each

dataset contains 32 frames and thus 4 measurements.

5.2. Compared Methods and Performance Metrics

As mentioned before, various algorithms have been pro-

posed for SCI reconstruction. Within these algorithms, GAP-

TV [33] is a good baseline to provide decent results within

several seconds and DeSCI has led to state-of-the-art re-

sults. Therefore, in the following, we compare our proposed

method with these two methods.

GAP-TV [33]: The algorithm models the reconstruction

of video SCI as a total variation minimization problem. It

solves the following problem

x̂ = argmin
x

‖TV(x)‖ s.t. y = Φx, (17)

where TV indicates the total variation of the signal.

DeSCI [18]: The Decompress SCI algorithm integrates the

mathematical model of SCI system with the idea of weighted

nuclear norm. By minimizing the nuclear norm of each patch

group, the model recovers the signal with the minimized rank.

Under the ADMM framework, DeSCI solves the following

problem

x̂ = argmin
x

∑

i

‖Zi‖w,∗ s.t. y = Φx, (18)

where ‖Zi‖w,∗ indicates the matrix nuclear norm weighted

by w and each patch group Zi is extracted from x.

We run these three algorithms on 3 simulation data sets

and real data sets captured by the video SCI system. Since

the number of measurements in each simulation data sets

varies, we use the mean value of all testing trials to evalu-

ate the reconstruction performance comprehensively. The

following three metrics are employed to compare different

methods:

• Peak Signal to Noise Ratio (PSNR);

• Structural Similarity Index (SSIM) [31];

• Running time. We measure the running time of decoding

one measurement frame.

5.3. Implementation Details

After image resizing, all of the data sets, i.e., Aerial,

Vehicle and NBA, contain 500 frames, and these frames

are split for training, validation an testing with the ratio of

85%, 7.5%, 7.5%, respectively. The model trained by NBA

is tested on Kobe directly. The performance evaluation of

the rest data sets is based on the test data respectively.

During our model training, we set the maximum running

epoch as 100 and the initial learning rate as 0.01. The rooted-

square-mean-error (RMSE) is used as the training loss which

is minimized by the Adam optimizer [16]. We implement

our model with Tensorflow and conduct experiment on a

NVIDIA Tesla V100 GPU, with 32GB device memory and

3072 CUDA cores running at 1.11GHz.

5.4. Simulation Results

Table 1. Average PSNR (dB) on different data sets

Algorithm Kobe Aerial Vehicle

Tensor ADMM-Net 30.15 26.85 23.62

GAP-TV 26.45 24.53 22.85

DeSCI 33.25 24.95 21.16

10228



Ground
Truth

DeSCI

GAP
TV

Tensor
DAMM
Net

Figure 4. Kobe: Results of Tensor ADMM-Net (second row), GAP-

TV (third row) and DeSCI (fourth row) compared with ground truth

(first row).

DeSCI

Ground
Truth

GAP
TV

Tensor
ADMM
Net

Figure 5. Aerial: Results of Tensor ADMM-Net (second row),

GAP-TV (third row) and DeSCI (fourth row) compared with ground

truth (first row).

Table 2. Average SSIM on different data sets

Algorithm Kobe Aerial Vehicle

Tensor ADMM-Net 0.89 0.86 0.78

GAP-TV 0.84 0.84 0.77

DeSCI 0.95 0.80 0.70

Table 3. Running time (seconds) on different data sets (B = 8)

Algorithm Kobe Aerial Vehicle

Tensor ADMM-Net 1.9 2.4 2.1

GAP-TV 7.9 6.9 7.2

DeSCI 6872.9 6915.8 6823.5

Figs. 4-6 show the results of the Tensor ADMM-Net on

these three datasets compared with GAP-TV and DeSCI. The

corresponding performance comparisons are given in Tables

1-3. It can be observed that though DeSCI leads to the best

DeSCI

Ground
Truth

Tensor
ADMM
Net

GAP- TV

Figure 6. Vehicle Crash: Results of Tensor ADMM-Net (second

row), GAP-TV (third row) and DeSCI (fourth row) compared with

ground truth (first row).

Figure 7. Real video SCI system measurements: Wheel, Balls and

Hammer. Wheel: Different characters are attached on a fan while

the fan is preforming high-speed rotation (B = 14 and all frames

are shown in Fig. 8). Ball: Two plastic balls drop freely and hit

the ground. Then, the rotation and rebounding happen on the two

objects respectively (B = 22 and every other frame is selected and

shown in Fig.9). Hammer: A hammer, swinging like pendulum,

knock down a plastic apple (B = 22 and every other frame in

shown in Fig. 10).

results on the Kobe dataset, our proposed Tensor ADMM-

Net provides better results than DeSCI on the Aerial and

Vehicle Crash datasets. This is reasonable since DeSCI relies

on the similar patches across the video frames. However, it

is challenging to seek similar patches in the latter two videos.

Due to this same reason, DeSCI only improved a little bit on

PSNR (0.4dB) over GAP-TV for the Aerial data while the

SSIM is (0.04) lower than GAP-TV. Furthermore, the PSNR

and SSIM of DeSCI for the Vehicle Crash dataset are both

lower than those of GAP-TV. It is worth noting that GAP-TV

is used as the initialization of DeSCI. When similar patches

cannot be found in the video, DeSCI can not improve the

results no matter how long it runs. From Table 3), we see that

the proposed Tensor ADMM-Net achieves 1500× ∼ 3600×
speedups over DeSCI.

From the visualization results shown in Fig. 5-6, we can

observe that DeSCI smooths out the details in the recon-

structed video. By contrast, our algorithm provides more
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details than the other two methods. One main reason is

that our model applies the theory of tensor to capture both

the sparsity in transformation domain and the low rank in

spectral domain, and thus to capture spatial and temporal

relationship in a better way. It is worth noting that instead of

hours taken by DeSCI, after training, our Tensor ADMM-Net

can provide results within seconds.

6. Results on Real SCI Data

DeSCI

Tensor ADMM Net

GAP-TV

Figure 8. Real data Wheel: results for Tensor ADMM-Net, GAP-

TV and DeSCI.

GAP-TV

Tensor
ADMM

Net

DeSCI

Figure 9. Real data Balls: results of Tensor ADMM-Net, GAP-TV

and DeSCI.

GAP-TV

Tensor
ADMM

Net

DeSCI

Figure 10. Real data Hammer: results for Tensor ADMM-Net,

GAP-TV and DeSCI.

We now apply our proposed Tensor ADMM-Net to real

data captured by the SCI cameras [19, 34]. Since the real cap-

tured data have noise inside, the problem is more challenging.

The exposure time of the camera is 33ms and the imaging

systems capture a single compressed frame per 33ms (thus

30 fps). With this coded/compressed measurement, we can

recover 14 or 22 frames high-speed videos. These real data

of SCI system measurements are shown in Fig. 7 and the

corresponding reconstructed videos are demonstrated in Figs.

8-10. For gray scale video of Wheel, Tensor ADMM-Net

generates clear reconstruction with high efficiency and the

degree of ghosting is reduced. For color video reconstruction,

i.e., Ball and Hammer, tensor ADMM-Net provides clearer

and smoother reconstruction results while much noise exists

in the reconstruction of GAP-TV.

In general, the reconstruction quality of our Tensor

ADMM-Net is comparable with DeSCI, but the process-

ing of our algorithm is much faster. Therefore, our algorithm

is more applicable in real applications.

7. Conclusions

In this paper, we have proposed a deep tensor ADMM-

Net for snapshot compressive imaging systems that provides

high-quality decoding in seconds. We embedded the low-

rank tensor model into the ADMM framework and unfolded

the iterations into neural network stages, and thus our net-

work enjoys potential mathematical interpretations. Experi-

ments on simulation and real-world SCI camera data demon-

strate that the proposed method exhibits superior perfor-

mance and outperforms current state-of-the-art algorithms.
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