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ABSTRACT Tone-mapping operator (TMO) is intended to convert high dynamic range (HDR) content into 
a lower dynamic range so that it can be displayed on a standard dynamic range (SDR) device. The tone-
mapped result of HDR content is usually stored as SDR image. For different HDR scenes, traditional TMOs 
are able to obtain a satisfying SDR image only under manually fine-tuned parameters. In this paper, we 
address this problem by proposing a learning-based TMO using deep convolutional neural network (CNN). 
We explore different CNN structure and adopt multi-scale and multi-branch fully convolutional design. When 
training deep CNN, we introduce image quality assessments (IQA), specifically, tone-mapped image quality 
assessment, and implement it as semi-supervised loss terms. We discuss and prove the effectiveness of semi-
supervised loss terms, CNN structure, data pre-processing, etc. by several experiments. Finally, we 
demonstrate that our approach can produce appealing results under diversified HDR scenes. 

INDEX TERMS High Dynamic Range, Tone-mapping, Convolutional Neural Network, Semi-supervised 
Learning, Image Quality Assessment 

I. INTRODUCTION 
Dynamic range of scene is defined as the ratio of maximum 
luminance to the minimum. Real scenes have a wide range 
of luminance ranging from 10-4 to 105 cd/m2, thus the 
dynamic range of specific scene can be up to 109, which is 
far beyond the capture and display capability of standard 
dynamic range (SDR) devices. High dynamic range (HDR) 
image can record real-world luminance in a photometrically 
linear [1] and scene-referred manner, and store it in 32-bit 
float-point data encapsulated in .hdr or .exr format, in most 
cases. However, display devices capable of rendering HDR 
image are still costly. Thus, tone mapping operator (TMO) 
capable of approximate the appearance of HDR content in 
traditional SDR displays has become the prerequisite under 
most circumstances. 

The aim of TMO is reproducing a perception that matches 
real-world scene as possible [1], in other words, selectively 
maintaining some features from the original HDR scene and 
producing a reduced-information version [3] of it. But most 
traditional TMOs are parametric dependent to yield a 
visually plausible results due to the diversity of HDR scenes. 
Artifacts like over-enhancement, over-stylization, halo effect 

and blurring are common in tone-mapped SDR images 
produced by traditional TMO with improper parameters. 

This naturally raises the idea of scene-adaptive TMO 
which can generate high quality tone-mapped images under 
diversified HDR scenes. With the emergence of deep 
learning and its success on image transformation tasks, we 
are able to learn a deep convolutional neural network (CNN) 
based scene-adaptive TMO using easily available HDR data. 

Unlike other tasks such as classification, object detection 
and style transfer etc., high-level semantic features undergo 
nearly no change during tone-mapping. Hence, for tone 
mapping, fully convolutional layers (where tensor’s height 
and width undergo no change) is enough, and U-net [4] 
(encoder-decoder) architecture becomes improper especially 
when dealing high-resolution images [5]. Although fully 
convolutional architecture has an exclusive advantage in 
arbitrary input size, it does suffer from the shortcoming of 
insufficient global comprehension brought by limited 
receptive field. To overcome this, different approaches have 
been proposed by several related works. Based on insight and 
experiments, our fully convolutional network decomposes 
input into 2 components with different scales, and send them 
into separate task-specific CNN branches and assign another
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CNN to polish the merged output. 
Training, i.e., optimizing CNN’s parameters, is another 

predominant aspect in deep learning. Accustomed to the 
routine of previous works on image transformation, almost 
every related work uses supervised training, i.e., calculating 
loss function between output and label images (both in SDR, 
in the case of tone-mapping). When it comes to image quality 
assessment (IQA), specifically, tone-mapped image quality 
assessment where objective score is calculated between 
output and input images (SDR vs. HDR), there comes a 
natural idea whether we can directly optimize the quality 
score. Inspired by this, 2 terms in our loss function are 
calculated in a IQA way, i.e., output vs. input (without label, 
unsupervised). Our training can be broadly termed semi-
supervised because both supervised and unsupervised loss 
terms are involved. Since supervised losses require paired 
label images, we collect a training set containing high quality 
label SDR images in a unique and elaborate way. 

We systematically study the CNN structure, training 
method, etc. of all HDR related deep CNNs before designing 
our method. Based on this, several other improvements such 
as multi-pass [8] or multi-group [9] convolution and instance 
normalization [10] were also applied. 

In a nutshell, our works are: 
1) Proposing a learning-based TMO using CNN. 
2) To the best of our knowledge, we first introduce IQA 

inspired semi-supervised training in HDR related deep 
CNN. We made a small step bridging the gap between 
perceptual quality and HDR related CNN. 

3) In semantic-free task, we explore a distinctive low-cost 
and flexible way to strengthen the global comprehension 
of CNN, i.e., multi-scale decomposing and multi-group 
convolution on fully convolutional layers. 

The rest of this paper is organized as follows. Section II 
reviews related works. Section III details the network 
structure and training of proposed method. Ablation studies 
on semi-supervised loss terms etc., extra experiments, and 
comparison with other methods are presented in Section IV. 
Finally, Section V remarks the present and future work. 

II. RELATED WORK 

A. TRADITIONAL TONE-MAPPING OPETATOR 
A considerable amount of traditional TMOs have been 
proposed in last 2 decades. They can be mathematically 
explicitly defined, and can be classified into 4 categories 
namely global, local, frequency/gradient and segmentation 
[2]. Global approach such as Ward94 [11], Larson97 [12], 
Pattanaik00. [13], Drago03 [14], Mantiuk06 [15] and 
iCAM06 [16] apply same operation to all pixels in HDR 
image. Local approach like Reinhard02 [17] process pixel 
value based on its neighbors. Frequency approach Durand02 
[18] use bilateral filter to decompose input image into base 
and detail frequency components, and process them 
separately. Gradient approach Fattal02 [19] process pixels in 
gradient domain. Segmentation method Krawczyk05 [20] 
apply different operations on segmented image regions. 

More diversified TMOs have sprung up in last decade. Li 
et al. [21] combine tone-mapping with visual saliency. Some 
TMOs are designed for application scenarios other than 
human perception. Yang et al. [22] is for object detection, 
and Rana et al. [23] is for image matching. Despite artifacts 
like over-enhancement, over-stylization, halo effect and 
blurring etc. brought by traditional TMOs, some of their 
ideas such as decomposing in [18] are still affecting deep 
CNN based TMOs. 

B. DEEP CNN BASED TONE-MAPPING OPETATOR 
So far, there are 5 deep CNN based TMOs. Patel et al. [24] 
proposed a generative adversarial network [28] (GAN) based 
TMO whose generator is a 14-layers encoder-decoder 
similar to U-net [4]. They trained their network with 957 
HDR-SDR (label) image pairs. These labels were generated 
by the traditional TMO who gives the best TMQI [6] over 
others (TMQI is an objective tone-mapped images quality 
assessment method, see §II.D for details). This label 
generation is referred to as “best TMQI” in Table I. 

CNN in Yang et al. [25]’s method only contains fully 
convolutional layers: 2 same 5-layers branches to process 
different component and a 10-layers CNN to polish the 
merged output. Single-channel luminance of HDR image 
was transferred into logarithm domain and then decomposed 
into base/detail component in different scales by Laplacian 
pyramid. Their training set was fine-tuned, evaluated and 
selected by photographers and volunteers (denoted as 
“manually fine-tuned” in Table I).  

Zhang et al. [26] applied multi-scale 2-branch CNN 
similar to [25]. Their 9-layer large-scale branch with dilated 
convolution [55] is responsible for processing details, 5-
layer small-scale encoder branch is for global information, 
and 2-layer “tail” is for merging the output of 2 branches. 
Their loss function contains variants of l1 norm (on gradient 
magnitude map/Gaussian filtered image, measuring local/ 
global detail) and other customized terms for their binocular 
vision task i.e., producing 2 tone-mapped images with their 
own emphasis. 

Rana et al. [27] proposed a method named DeepTMO, 
based on conditional generative adversarial network [29] 
(cGAN). They tried 4 combinations of generator and 
discriminator, and applied the best generator containing a 
small-scale branch with 15-layer U-net and a large-scale 
branch with 7 fully convolutional layer. Besides cGAN term, 
their loss function also contains l1 norm and perceptual loss 
extracted form Siamese pre-trained 19-layer VGG-Net [30] 
(denoted “VGG” in Table I). 

Zhang et al. [34]’s method converts HDR image into HSV 
color space. S and V channels are processed by CNN while 
H is preserved to avoid hue shift during tone-mapping. Their 
training was supervised by loss terms including SSIM [35], 
using photographer-fine-tuned label images. 

There are 3 works where tone-mapping was implemented 
in part of their CNN. Sheth et al. [31] processed HDR images 
by a simple 4-layer convolution separately on 4 channels in 
Lab color space. Hou et al. [3] processed luminance channel 
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of HDR image using 4-layer convolution, note that this was 
the only HDR related CNN involving unsupervised training. 
Yang et al. [33] used a 12-layer U-net to transfer their 
intermediate-stage HDR image into enhanced tone-mapped 
image. 

Comparison of deep CNN based TMOs (“deep TMOs” for 
short) is listed in Table I. Here, “conv5” represents 5 fully 
convolutional layers, and “Unet14” means encoder-decoder 
structure of totally 14 convolutional layers, etc. In 6th column, 
“reg” means regularization term to prevent over-fitting, “GAN” 
is the loss terms of specific GAN. 

From the 3rd column we know that some deep TMOs ([25], 
[26], [27]) were influenced by traditional Durand02 TMO [18] 
in that they assigned separate CNN branches to handle 
different frequency components. Specifically, they use CNN 
with large receptive filed to handle global/low-frequency 
component, and CNN with small receptive filed to deal with 
local/high-frequency component. C=1 in 5th column mean that 
only luminance channel is processed by CNN (except [31]), 
and the color of output was reconstructed form the ratio of 
original HDR image using one of the methods in [32], which 
is a common practice in traditional TMOs. 

C. OTHER HDR RELATED DEEP CNN 
Other HDR related deep CNNs including reverse tone 
mapping operator (rTMO, single SDR to HDR) are listed in 
Table I as well, since there are innovations worth learning. 

Here, “simulated exposure” means shooting linear-light HDR 
image with simulated camera response functions (CRFs) to get 
non-linear SDR image, “EV0 in MEF stack” will be detailed 
in §III.B.2. 

In HDR related CNN, decomposing was first applied by 
Eilertsen et al. [36]. However, their illuminance/reflectance 
(I/R) [37] decomposing was implemented in loss function 
(different weight for I/R component, same as [46]) rather than 
network structure. Later work Marnerides et al [39] first 
applied multi-branch structure by assigning different kernel 
size in each branch to focus on global/local features. Later, 
decomposing and multi-branch had become more popular, as 
they were used by [31], [25], [26], [27], [34], [40], [41], [42], 
[45], [5] and [47]. Moreover, Wang et al. [42] first tackled 
denoising, while Xu et al. [46] first introduced 3D convolution 
considering temporal information of HDR videos. 

Latest works [5], [47] and [56] combined HDR (rTMO) 
with super resolution (SR). It was in multi-task exploration 
(rTMO + SR) that they found U-net structure no longer proper, 
the conclusion which is stated in §I. Several other mechanisms 
which are frequently used in other computer vision (CV) tasks 
were introduced to HDR related CNN (MEF) too. Yan et al. 
first introduced spatial attention (mask) in [50], and multi-pass 
convolution in [8], to gain a better comprehension of global 
information for CNN in both works. 

 

TABLE I 
COMPARISON OF HDR RELATED DEPP CNNS. HERE, B AND C REPRESENT THE NUMBER OF BRANCHES AND CHANNELS, RESPECTIVELY. 

Type Method B CNN structure C Domain Loss function Dataset size SDR generating 

TM
O

 (our task) 

Sheth et al. [31] 4 4×conv4 1 - - 958 best TMQI 
Patel et al. [24] 1 Unet14 3 - l-1reg, l-2, GAN 958 best TMQI 
Hou et al. [3] 1 conv4 1 logarithm VGG19 unsupervised - 

Yang et al. [33] 1 Unet12 3 logarithm l-2 not in HDR - 
Yang et al.[25] 2 2×conv5+conv10 1 logarithm l-2, l-2reg, VGG16 2100 manually fine-tune 

Zhang et al. [26] 2 conv9+encoder5 1 logarithm variants of l-1, etc. 3620 Durand02 [18] TMO 
Rana et al. [27] 2 conv7+Unet15+conv2 1 - l-1reg, cGAN, VGG19 698 best TMQI 
Zhang et al. [34] 2 conv2+Unet12 2 logarithm l-2, SSIM, wGAN 1000 manually fine-tune 

rTM
O

 
Eilertsen et 

al.[36] 1 Unet27 3 logarithm weighted l-2 1211 simulated exposure 

Zhang et al. [38] 1 Unet10 3 nonlinear l-1 50000 simultaneous shot 
Marnerides et al. 

[39] 3 conv+encoder 3 - l-1, ccosine-similarity 1013 random traditional TMO 

Jang et al. [40] 2 2×Unet31 3&1 - l-2, ΔE76 8156 EV0 SDR image in 
MEF stack 

Kinoshita et al. 
[41] 2 Unet with 2 encoder 3 - nonlinear l-1, cosine-

similarity 336 simulated exposure 

Wang et al. [42] 2 2×conv8+Unet16 3 logarithm l-1, VGG, weighted l-2, 
LS-GAN 3000 simulated exposure 

Santos et al. [43] 1 Unet14 3 logarithm l-1, gram matrix [44], 
VGG 2000 simulated exposure 

Kim et al. [45] 2 conv12 3 - 1-2, l-2reg 7268 YouTube 
Xu et al. [46] 1 3D-Unet 3 logarithm weighted l-2, VGG 360videos traditional TMOs 

rTM
O

+
SR 

Kim et al. [5] 2 conv+spacial mask 3 - l-2 59818 YouTube 
Kim et al. [47] 3 3×(dynamic)conv11 3 - l-2, RaHingeGAN 59818 YouTube 
Zeng et al. [56] 1 (multi-group)conv17 1 YUV l-1, ESR-GAN 23229 Reinhard02 [17] TMO 
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There were also several training innovations. Marnerides et 
al [39] first considered color information in training by 
introducing cosine-similarity loss term along different RGB 
channels. Jang et al. [40] introduced ΔE76 color difference 
formula in their loss function, which was the first human 
perception related loss term in HDR related CNN. Santos et al. 
[43] first introduced gram matrix [44] to measure style loss, 
and feature masking to emphasize global difference. 

Currently, the only simultaneously-shot HDR-SDR pair 
was proposed by Zhang et al [38]. However, its low-resolution 
(64*128) has limited their application in future works because 
only global feature is contained. Note that, different from 
linear HDR usually applied in photography, image-based 
rendering and medicine, HDR images/videos in [40], [45] , 
[46], [5], [47] and [56] were non-linear transformed by PQ [48] 
/ HLG [49] optic-electronic transfer function (OETF) which is 
used in consumer grade HDR television and HDR films. Kim 
et al. found that traditional TMOs designed for linear-light 
HDR images perform poorly on OETF transferred non-linear 
HDR content, thus they decided to collect SDR counterpart 
using YouTube default method ([45], [5] and [47]). 

D. TONE-MAPPED IMAGE QUALITY ASSESSMENT 
As a branch of IQA, tone-mapped image quality assessment 
treats HDR as original image while SDR as distorted one. The 
quality of tone-mapped image can be measured in a full-
reference (FR) way i.e., comparing HDR with SDR images, or 
in a non-reference (NR) way i.e., only assessing tone-mapped 
SDR image [51]. 

To be implemented in deep learning as loss function, IQA 
method need to be mathematically explicit and differentiable 
to suit the chain derivation rule in backpropagation. TMQI [6] 
(tone-mapped image quality index) assesses the quality of 
tone-mapped images from 2 aspects: FR structure fidelity 
between HDR and SDR image, and NR statistical naturalness 
of tone-mapped SDR image. The latter is non-differentiable, 
thus excluded from our work. While the former local structure 
fidelity term of the former is improved from SSIM [35]: 

SFlocal(x,y)= 2σx
' σy

' +C1

σx
'2+σy

'2+C1
· σxy+C2

σxσy+C2
 (1) 

where σx , σy  and σxy  are the local standard deviations and 
cross correlation between corresponding patches in HDR and 
SDR images, respectively. Here, stabilizing constants are set 
to default C1=0.01 and C2=10. Superscript of σx

' , σy
'  represent 

a non-linear normalization using a cumulative distribution 
function (CDF) of normal distribution, σx

'  and σy
'  are to replace 

the original luminance term using mean value μ which will 
definitely change dramatically in tone-mapping. Structure 
fidelity SF(X,Y) between 2 images is derived from averaging 
the SFlocal(x,y) of all 11*11 sliding patch. Finally, SF(X,Y) of 
all different scales are calculated into structure fidelity part of 
TMQI using same coefficients as MS-SSIM [52]. 

Nafchi et al. proposed a FR method FSITM [7] (feature 
similarity index for tone-mapped images) measuring the phase 
congruency between HDR and SDR images via locally-
weighted mean phase angle. Apart from above, latest NR 
methods like BTMQI [73] and BLIQUE-TMI [70] involving 
more comprehensive feature extraction and regression reached 
better performance (higher correlation with subjective score), 
but they’re either non-differentiable or too complex to be 
implemented as loss function in CNN. More about tone-
mapped image quality assessment can be found in survey [53]. 

III. PROPOSED METHOD 

A. NETWORK STRUCTURE 
As is illustrated in Fig. 1, CNN in our method consists of 3 
sub-networks namely Full-scale Local Branch (NL), Small-
scale Global Branch (NG) and Polishing Network (NP). Input 
HDR image (H) in 3 RGB channels is first decomposed into 
full-scale detail component (HD) and small-scale base 
component (HB), and sent to NL and NG respectively to yield 
intermediate SD and SB. Then, SD and up-scaled SB (SB_F) are 
pixel-wise added, thus recomposed as the input of NP. Finally, 
output tone-mapped SDR image (S) is given by NP. 

The Full-scale Local Branch (NL) consists of 5 fully 
convolutional layers (blue box in Fig. 1), it is responsible for 
processing detail information thus not responsible for handling 
global information. Under this guideline, we add 2 skip-
connections in order to maintain image’s structure, and apply 
only 3×3 convolutional kernels of relatively small receptive 
filed to focus on detail information. 

Co
nv

. 3
×

3
lR

eL
U

+ 
IN

Co
nv

. 3
×

3
lR

eL
U

+ 
IN

Co
nv

. 3
×

3
lR

eL
U

+ 
IN

Co
nv

. 3
×

3
lR

eL
U

+ 
IN

Co
nv

. 3
×

3
Si

gm
oi

d

3-24 24

Co
nv

. 3
×

3
lR

eL
U

+ 
BN

Co
nv

. 3
×

3
lR

eL
U

+ 
BN

Co
nv

. 3
×

3
lR

eL
U

+ 
BN

Co
nv

. 3
×

3
Si

gm
oi

d

M
G

RB

Full-scale Local Branch NL

Small-scale Global Branch NG

Up
-sc

al
e

D
ec

om
po

se

Co
nv

. 3
×

3
lR

eL
U

+ 
IN

Co
nv

. 3
×

3
lR

eL
U

+ 
IN

Sp
lit

Co
nv

. 3
×

3
lR

eL
U+

 IN
Co

nv
. 5
×

5
lR

eL
U+

 IN
Co

nv
. 1
×

1
lR

eL
U+

 IN

Co
nc

at
en

at
e

Co
nv

. 3
×

3
lR

eL
U

+ 
IN

Multi-Group 
Residual Block 

(MGRB)

Co
nv

. 3
×

3
lR

eL
U

+ 
IN

Co
nv

. 3
×

3
Si

gm
oi

d

Polishing
Network NP

HDR Image

H

Detail
Component

Base
Component

SDR Image

M
G

RB

24 24 24-3

HD

HB SB

SD

SB_F

S

3-24 24 24 24-3

3-24 24

8

8

8

24 24 24-3

 
FIGURE 1.  Overview of our multi-scale and multi-branch CNN structure. Here, HDR image (H) is linear mapped for display.



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3080331, IEEE

Access

 

9 VOLUME XX, 2017 

The Small-scale Global Branch (NG) contains a Multi-
Group Residual Block (MGRB, orange box in Fig. 1) and 4 
convolutional layers before and after. The MGRB aims for 
enhancing global comprehension by enlarging receptive filed, 
it will be detailed in §III.A.2. 

The Polishing Network (NP) consists of 2 MGRBs and 4 
convolutional layers (totally 8-layers). Among related works 
where filter decomposing and branch network structure were 
adopted ([31], [25], [42], [45], [5] and [47]), polishing network 
is used by 4 of them ([25], [45], [5] and [47]). We took the 
same design, and an experiment was later conducted to prove 
its necessity. 

In Fig. 2, the number below blue box (e.g., 24-3) represents 
“number of input-output channel” of current layer, a single 
number for short if the above two are same. While the number 
of channels changes, tensor/image’s size keep unchanged 
because our CNN involves no encoder-decoder structure (no 
deconvolution layer), and strides for all fully convolutional 
layers are set to 1 (with symmetric padding). 

All neurons excluding those in the last layers of NL, NG and 
NP are activated by leaky rectified linear unit (lReLU) with a 
slope of 0.2 to accelerate computing and avoid vanishing 
gradient. Sigmoid activations are applied after 3 last layers to 
increase network’s non-linearity. Front layers are followed by 
normalization, we applied batch normalization [58] (BN, 
green box in Fig. 1) for NG where image size is small thus large 
batch-size can be applied when training. Since instance 
normalization [10] was proven helpful for small batch-size by 
[27], we used it (IN, gray box) for NL and NP where batch-size 
is limited by images size. 

 
1) DECOMPOSING STRATEGY 
Our decomposing strategy is designed based on the following 
considerations. As can be concluded from related works, there 
are 3 types of multi-branch strategies. First, resizing i.e., 
processing full-size input image with local/detail/large-scale 
branch while sending down-sampled image into global/small-
scale branch ([26], [27], [39] and [41]). Second, filtering i.e., 
decomposing image into base and detail components using 
filter (usually edge-preserving filter like bilateral filter) and 
respectively sending them into global and local/detail 
branches ([31], [42], [45], [5] and [47]). Third, “decomposing” 
by color channel ([31], [34] and [40]). We considered the 2nd 
idea feasible because task-specific branches can focus on 
different image components using customized structure. 

Distinctively, Yang et al. [25] combined resizing and 
filtering using Laplacian pyramid. Here, specific level is the 
residual between corresponding level in Gaussian pyramid 
and its up-sampled blurred next level. The lowest level of a 4-
level Laplacian pyramid is chosen as the input of global branch, 
while rest levels are reformulated as the input of local/detail 
branch [54]. In this case, their global branch receives a 1/16 
down-scaled condensed image, thus the computational cost is 
significantly reduced. 

Hence, we decided to combine image pyramid with our idea 
of decomposing. First, we found that the 1/16 scale of the 
lowest level of 4-level pyramid in [25] is too small and thus 
too blurry when recomposing, therefore we use a 3-level 
pyramid {l0, l1, l2, l3} thus the base component (HB) is of 1/8 
scale. Second, we replace the Gaussian filter on the first level 
of “Gaussian” pyramid {g0} with an edge-preserving bilateral 
filter, and directly subtract levels in “Gaussian” pyramid {g0, 
g1, g2} with its filtered image so that the highest level in our 
“Laplacian” pyramid {l0} is exactly the same as the detail 
component of bilateral filter decomposition (same as [31]). 
Our decomposing is illustrated in right(red) part in Fig. 2. 
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FIGURE 2.  Our decomposing and recomposing method using a 
modified pyramid. li/gi represent the i th level of "Gaussian"/"Laplacian" 
pyramid, dashed lines represent parts which are unused. 

 
The prototype of our up-scale and recomposing method is 

also image pyramid, but the difference is that only the highest 
and lowest level {l0, l3} (detail and base component) are 
processed by CNN and utilized in pyramid reconstruction. We 
bypass those rest middle layers {l1, l2} since [54] found that 
the performance degradation caused by their missing is 
negligible compared with the reduction of network complexity. 
 
2) MULTI-GROUP RESIDUAL BLOCK 
As is illustrated with red box in Fig. 1, our Multi-Group 
Residual Block (MGRB) first split input image/tensor into 3 
groups with same channel number (24 to 3*8), and separately 
convolve then with 1×1, 3×3 and 5×5 kernel. Channel number 
of each group stay unchanged during convolution, so that they 
can be subsequently concatenated in the original order. Then, 
concatenated image/tensor is followed by a 3×3 convolution 
same as those outside MGRB. Finally, output is pixel-wise 
added with input residual. 

Our MGRB is designed based on following considerations. 
Similar to other methods, global branch in our multi-branch 
structure is responsible for understanding global luminance 
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distribution, thus is supposed to have a global comprehension. 
Global or small-scale branch of [26], [39], [41] and [42] 
contain encoder structures to extract global features. Dilated 
convolution [55] was further used in [26] and [39] to enlarge 
their receptive field, thus strengthen the global comprehension 
of branches other than global branch. While encoder structure 
was regarded by above methods as capable of capturing global 
features, it has several intrinsic shortcomings. First, encoder-
decoder (U-net) structure relies badly on skip-connections to 
keep structural consistency and avoid checkerboard artifacts. 
Second, encoder-decoder structure requires a fixed size input 
which is usually obtained by extra resize operation. 

To overcome the second shortcoming, our whole network 
including MGRB only contains fully convolutional layers 
which have no limit on input size. To overcome the first 
shortcoming, we decided to deprecate U-net structure. Hence, 
an extra task of strengthening the global comprehension of 
Full-scale Local Branch NL was posed. Other methods tackled 
this by introducing multi-group (in [56]) or multi-pass (in [8]) 
convolution where different kernel-size are assigned to each 
pass, using spatial attention mechanism (in [43], [50] and [5]), 
using 1-D and 2-D dynamic convolution (in [47]), and 
improving encoder-decoder structure (U-net) [57]. 

Different from methods above, we decided to strike a trade-
off between performance and complexity. Multi-group conv. 
[9] split tensor along channel dimension and send them into 
separate groups, while multi-pass conv. [8] just copy tensor 
into different passes. To reduce memory cost and the number 
of parameters, we took multi-group convolution as prototype 
of MGRB. Also, to enlarge the receptive field, we transplant 
the characteristic of different kernel-size of multi-pass 
convolution onto MGRB. 

(a) Without MGRB (b) With MGRB
 

FIGURE 3.  The effect of multi-group residual block (MGRB). As seen in 
(b), MGRB can remove halo artifacts around edges. 
 

Fig. 3 reveals the immediate effect of MGRB, i.e., the 
effective removal of ripple/halo artifacts at edges which are 
brought by limited receptive filed. Impact of MGRB will be 
further quantitatively evaluated in §IV.B.2. 

B. TRAINING 

Our CNN can be formulated as: 

S=N(H,𝜃௅,𝜃ீ,𝜃௉) (2) 

where N  is whole network, 𝜃௅ , 𝜃ீ  and 𝜃௉  represent model 
parameters in NL, NG and NP, respectively. Then, training is 
to find the 𝜃௅, 𝜃ீ and 𝜃௉ which minimize the loss function. 

We adopted 2-step training strategy. Step 1 is the pre-
training of NL and NG, i.e., 𝜃௅ and 𝜃ீ were first optimized and 𝜃௉  were frozen. As shown in Fig. 4, in Step 1, label SDR 
image (SL) were decomposed into detail component (SLD) 
and base component (SLB) using the same method applied to 
input HDR image. Then, supervised loss terms were 
separately calculated on label vs. output i.e., SLB vs. SB, and 
SLD vs. SD. Meanwhile, unsupervised loss terms were 
separately calculated on inputs vs. outputs i.e., HB vs. SB, and 
HD vs. SD. Step 2 is the end-to-end synchronous training of 
whole network, i.e., both  𝜃௅ , 𝜃ீ  and 𝜃௉  were optimized. 
Here, supervised loss terms were calculated on SL vs. S, while 
unsupervised loss terms were calculated on H vs. S. 
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FIGURE 4.  Semi-supervised two-step training. Yellow line and box 
denote the calculation of supervised loss terms, while green box and 
line denote unsupervised ones. 

 
Similar to [25], [42], [45], [5] and [47] where decomposing, 

multi-branch and multi-step training were also applied, our 2-
step training share the same intention of simplifying training 
and making network more interpretable. The motivation and 
implementation details of supervised and unsupervised loss 
terms are introduced below. 

 
1) SEMI-SUPERVISED LOSS FUNCTION 
Rather than using both labeled and unlabeled data, semi-
supervised training here means simultaneously applying both 
supervised and unsupervised loss term on labeled data. There 
are 2 IQA inspired unsupervised terms (lTMQI and lH), 2 IQA 
inspired supervised terms (lC and lSSIM), and 2 conventional 
losses (lP and lMAE): 
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TMQI loss (unsupervised). The TMQI (upper bound by 1) 
of output tone-mapped SDR image was optimized (maximized) 
by minimizing TMQI loss (lTMQI) which consists of the 
differentiable structural fidelity part of TMQI [6]. Take Step 2 
for example: 

lTMQI=1-∏ SF(S,H)βl5
l=1  (3) 

where βl={0.0448, 0.2856, 0.3001, 0.2363,0.1333}  are 
weights of different scales, same as MS-SSIM [52]. Other 
implementation details have been introduced in eqn. (1) and 
§II.D Note that, it’s inappropriate to apply multi-scale-
implemented lTMQI in small-scale global branch NG (of 32×32 
training patch), thus lTMQI here was calculated in single-scale 
fashion (denoted lTMQI-S): 

lTMQI-S=1-SF(SB,HB) (4) 

 
Hue shift loss (unsupervised). For most TMOs where color 
gamut mapping is not involved, color appearance 
management has long been an unsolved issue. Mantiuk et al 
[32] explored several color correction methods for tone-
mapping and found that chroma change is more acceptable 
compared with hue shift. We didn’t adopt their method 
because it’s designed for TMO processing single luminance 
channel while our method directly handles 3 channel RGB 
image. But inspired by their finding, we started to limit the hue 
shift by minimizing hue shift loss (lH). 

Since CIE 1976 L*a*b* color space and its derivative L*C*h* 
have cross-contamination around blue color [62], i.e., chroma 
(C*) around blue will change even if the hue (h*) is restricted 
during tone-mapping (L* decreasing), we turn to defined lH in 
IPT color space. To be converted into IPT color space, pixels 
in RGB value need to be converted to XYZ tristimulus value 
based on the chromaticity coordinates of its color gamut. We 
assume that the destination color gamut of all output SDR 
images is sRGB, meanwhile, the source color gamut of input 
HDR images in training set [59] and [60] (see §III.B.2) is also 
sRGB. For single pixel p in sRGB color gamut: 

൥XY
Z
൩= ൥0.4124 0.3576 0.1805

0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

൩× ൥R
G
B
൩ (5) 

for Fairchild [1] HDR dataset where the color gamut of source 
HDR capturing devise was measured: 

൥XY
Z
൩= ൥ 0.4024 0.4610 0.0871

0.1904 0.7646 0.0450
-0.0249 0.1264 0.9873

൩× ൥R
G
B
൩ (6) 

Then, XYZ tristimulus were converted into intermediate 
LMS color space: 

൥L
M
S
൩= ൥ 0.4002 0.7076 -0.0808

-0.2263 1.1653 0.0457
0 0 0.9182

൩× ൥R
G
B
൩ (7) 

The IPT was derived from non-linear L'M'S' value: 

൥ I
P
T
൩= ൥ 0.4 0.4 0.2

4.4550 -4.8510 0.3960
0.8056 0.3572 -1.1628

൩× ቎L0.43

M0.43

S0.43
቏ (8) 

Finally, the hue of specific pixel 𝑝 was defined as: 

hue(p)= tan-1(P/T) (9) 

Let s(i) denote a pixel in S, SD or SB, h(i) is a pixel in H, HD 
or HB, and hw is the total pixel number of an image. Hue shift 
loss lH is defined as the average of hue difference of all pixels 

lH= 1
hw
∑ |hue[s(i)]-hue[h(i)]|hw

i=1  (10) 

 
Color difference loss (supervised). According to Human 
Visual System (HVS) theory, human color perception changes 
accordingly with luminance, which means there will definitely 
be certain amount of color difference between corresponding 
HDR and tone-mapped SDR image. Therefore, unsupervised 
minimize of color difference between HDR and SDR images 
is meaningless and impossible. Hence, we turned to minimize 
the color difference loss (lC) between output and label SDR 
images in a supervised way. 

Traditional color difference formulas defined in CIE 1976 
L*a*b* color space such as ΔE2000 or ΔE76 are designed for 
SDR scenario where luminance is under 100nit [48]. Hence, 
we defined color difference loss (lC) in ICtCp color space 
which is suitable for HDR luminance up to 1000nit. RGB 
values of output and label SDR images were first converted to 
XYZ tristimulus using eqn. (5) and (6), then converted to LMS 
color space using a cross-talked matrix different to eqn. (7): 

൥L
M
S
൩= ൥ 0.3592 0.6976 -0.0358

-0.1922 1.1004 0.0755
0.0070 0.0749 0.8434

൩× ൥R
G
B
൩ (11) 

Then, ICtCp was derived from non-linear L'M'S' value: 

቎ I
Ct
Cp

቏= ൥ 0.5 0.5 0
1.6137 -3.3234 1.7097
4.3780 -4.2455 -0.1325

൩× ቎L0.43

M0.43

S0.43
቏ (12) 

Suppose sl(i) is a specific pixel in SL, SLD or SLB, the color 
difference loss was defined as the average of ΔEIPT [63] color 
difference value of all pixels: 

lC= 1
hw
∑ ට∆I(i)2+[0.5∆Ct(i)]2+∆Cp(i)2hw

i=1  (13) 

where the color difference ∆ is calculated between s(i) and 
sl(i). 
 
SSIM loss (supervised). While unsupervised lTMQI ensures 
that tone-mapped SDR image will maintain abundant details 
and structure from original HDR image, it’s also worth paying 
attention to the structure consistency between output and label 
SDR images. Therefore, we decided to use loss terms SSIM 
[35] which had been proven (by [64]) effective in “perceptual-
motivated” (see §V for its definition) CNN. SSIM loss (lSSIM) 
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was calculated in single-scale fashion same as eqn. (4), but its 
local structure fidelity is different from eqn. (1): 

SFlocal(x,y)= 2μxμy+C1

μx
2+μy

2+C1
· 2σxy+C2

σxσy+C2
 (14) 

where μx , σx  and σxy are mean, standard deviation and cross 
correlation of 2 patches. Here, C1=0.0001, C2=0.0009. Note 
that, both lSSIM and lTMQI were calculated on luminance 
channel Y (row 2 of eqn. (5) or (6), depending on color gamut). 
 
Perceptual loss (supervised). Loss from another pre-trained 
network was referred to as “perceptual” loss in 6 of 20 related 
works ([3], [25], [27], [42], [43] and [46]), we decided to 
follow the same practice. 
By separately feeding S, SD or SB and SL, SLD or SLB into pre-
trained 19-layer VGG-Net [30], perceptual loss (lP) was 
calculated using the mean absolute error between same VGG 
layers with different inputs. Take step 2 for example: 

lS=∑ 1
hnwncn

‖∅n(S)-∅n(SL)‖1
5
n=1  (15) 

where ∅n(x) represent specific layer in pre-trained VGG-Net 
receiving 𝑥 as input, ‖·‖1 is l1 norm, hnwncn denote the size of 
current layer, n from 1 to 5 means that we totally utilized 5 
layers i.e., conv1_1, conv2_1, conv3_1, conv4_1 and conv5_1. 
 
MAE loss (supervised). Mean absolute error (MAE) loss is 
one of the most widely-used pixel-wise loss terms in images 
transformation tasks: 

lMAE= 1
hwc

∑ |sl(i)-s(i)|hwc
i=1  (16) 

where hwc represent the total element number of tensors. We 
chose MAE (l1 norm) rather than MSE (squared l2 norm) loss 
because [38] found that l2 loss will overestimate overexposed 
areas of HDR image even it has been converted into non-linear 
domain. 

Totally 6 loss terms were calculated, 4 of them were 
inspired IQA (lTMQI, lH, lC, and lSSIM) and 3 of them were first 
introduced in HDR related CNN (lTMQI, lH and lC). Finally, all 
loss terms were linearly added as total loss, their coefficients 
were empirically set as in Table II. 

 
TABLE II 

LINEAR COEFFICIENTS OF ALL LOSS TERMS 

Loss terms 
Unsupervised Supervised 

lTMQI(-S) lH lP lC lSSIM lMAE 
Step 1 (NG) 0.15 0.15 0.3 0.2 - 0.6 
Step 1 (NL) 0.2 - 0.3 - 0.2 0.6 

Step 2 0.1 0.15 0.3 0.2 0.1 0.6 
 
2) TRAINING SET 
A training set containing HDR-SDR (input-label) pairs is still 
indispensable for supervised loss terms. Our training set was 
obtained from Fairchild [1], Funt et al [59] and Waterloo IVC 
MEFI [60] datasets which totally contain 234 high-resolution 
diversified real-world HDR scenes, along with their source 

bracketing exposure SDR sequence. 200 of them were 
selected as training set while the rest 34 were used as part of 
our test set. For each HDR-SDR pair, 16 patches with 
512×512 size were obtained: 15 were from random cropping 
while the last one was from resizing. Finally, we got 3200 
pairs of patches. It is worth noting that target (label) SDR 
images in our training set were obtained in a distinctive way 
based on the following insights. 

The common practice to obtain training pairs is to generate 
target SDR image from its HDR counterpart using traditional 
TMOs. This was adopted by almost all deep TMOs due to the 
wide accessibility of HDR content. However, we found that 
even when target SDR images are from parameter-fine-tuned 
TMO (in [25] and [34]) or selected according to best objective 
score (in [31], [24], [26] and [27]), they still contains artifacts 
brought by traditional TMOs e.g., over-enhancement or over-
stylization. Therefore, to avoid those artifacts, we first turned 
to use simultaneously-shot real HDR-SDR pairs. 

Since the only public-available real HDR-SDR pairs [38] 
was excluded due to the reason mentioned in §II.C, we turned 
to obtain simultaneously-shot SDR counterpart from 
bracketing exposure SDR sequence (available in [1], [59] and 
[60]). We started with treating exposure-value-0 (EV0) image 
as the SDR counterpart, but we found it ending up with 
unsatisfactory results, specifically, lack of details in both 
bright and dark areas. This was caused by target SDR images 
themselves: EV0 SDR images ((a) in Fig. 5) containing 
deficient details in bright and dark areas showed good result 
for rTMO because they taught CNN to recover lost details, 
however, they taught CNN to vanish those details when it 
comes to TMO. 

(a) EV0 target SDR image (b) Fine-tuned target SDR image
 

FIGURE 5.  An example of simultaneously-shot target SDR obtained 
from different ways. Fine-tuned one (b) is obviously more vivid in dark 
(green box) and bright areas (red box). 
 

Therefore, we turned to generate better target SDR images 
by utilizing all raw information in bracketing exposure 
sequence. Some were accomplished by professional 
photographers’ fine-tuning using Adobe Photoshop on a 
calibrated sRGB color gamut monitor, the rest were by tuning 
a pre-trained multi-exposure image enhancer SICE [61]. As is 
illustrated in (b) in Fig. 5, target SDR images acquired in this 
way have more details in bright and dark areas. 

 
3) DATA PRE-PROCESSING 
Since there is a huge difference between pixel value 
distribution of linear HDR and non-linear SDR images, 
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majority of related works followed the common practice of 
converting HDR images into logarithm (log) domain ([3], [33], 
[25], [26], [34], [36], [42], [43] and [46]) or other non-linear 
domain ([38]), which made pixel value more evenly-
distributed and easier for CNN to process. While the rest of 
methods ([31], [24], [27], [39], [40], [41], [45], [5], [47] and 
[56]) just normalized HDR images without domain transfer. 

Inspired by TV production process, we proposed a domain 
consistent strategy where HDR input and SDR output of our 
CNN are in same non-linear (gamma/display) domain. Recall 
that pixel value in HDR image is photometrically linear, thus 
HDR images were converted to non-linear after normalization. 
Let ho(i) and so(i) denote original pixel value of HDR and 
SDR images, respectively. HDR pixel value was converted as: 

h(i)= ቂ ho(i)- min{h(k)}
max{h(k)}- min{h(k)}ቃ0.4545

,k∈{1,…,hwc} (17) 

where power 0.4545 was derived from approximate sRGB [65] 
non-linear (gamma2.2) curve. Meanwhile, non-linear SDR 
images were normalized without curve conversion: 

s(i)=so(i)/255 (18) 

We deprecated logarithm domain because it has no physical 
meaning, while non-linear/linear is display/scene-referred. We 
also deprecated unified linear domain (in this case, power 
0.4545 in eqn. (17) was removed, and power 2.2 was added to 
eqn. (18)) because we found it producing unnatural color in 
dark areas of output SDR images. Experiment on data pre-
processing was later conducted and demonstrated in §IV.C.2. 

 
4) INPLEMENTATION DETAILS 

Parameters in our CNN were initialized by truncated normal 
distribution, and optimized using adaptive moment estimation 
(ADAM) [66] optimizer in 0.0005 learning rate for both steps. 
Batch-size for step 1 and step 2 was set to 8(NL), 32(NG) and 
4, respectively. TensorFlow implementation of our method is 
available at github.com/AndreGuo/IQATM/. 

IV. EXPERIMENTS 
Different from other tasks, tone-mapping is an information-
reducing process, which means original HDR image is more 
informative even than elaborate label SDR image. Therefore, 
objective scores are calculated between output SDR and 
original HDR, rather than between output SDR and label SDR. 

We selected TMQI [6] and FSITM [7] detailed in §II.D as 
the objective quality score. In experiments below, TMQI will 
be split into 2 parts namely FR structure fidelity (denoted as 
TMQI_S) and NR naturalness (denoted as TMQI_N). Since 
both TMQI and FSITM works in luminance channel Y (row 2 
of eqn. (5) or (6), depends on color gamut), color information 
is ignored. Hence, we appended another FR tone-mapped 
image quality assessment method [67] previously proposed by 
our quality assessment laboratory, to measure the color 
preservation from HDR to SDR images. Its objective score 
“color difference matrix index” (CDMI) is given by 

calculating a modified color difference formula between each 
pixel in HDR and SDR images. All objective scores are upper-
bound by 1 where higher means better. 

A. TEST SET 
Totally 87 HDR scenes were included in our test set: 34 from 
the rest part of training set ([1], [59] and [60], mentioned in 
§III.B.2), 15 from [6], and 38 from Laval Indoor HDR dataset 
[68]. Indoor HDR scenes from [68] were added to diversify 
our test set, thus to prove the scene-adaptability of our method. 
Since our training set is mainly composed of outdoor scenes, 
indoor scenes from [68] will also help us to further reveal the 
generalization of our trained model.  

When testing, all input HDR images H followed the same 
pre-processing as training (eqn. (17)), no post-processing was 
applied since our CNN works in unified non-linear domain. 

B. ABLATION STUDIES 
Our ablation studies were done on 2 aspects namely MGRB 
and IQA inspired semi-supervised loss terms. As shown in 
Table III, 6 combinations of innovations (①-⑥) were tested 
using 5 abovementioned objective scores. Best performances 
on each score are highlighted in bold. 
 

TABLE III 
OBJECTIVE SCORES OF DIFFERENT COMBINATIONS OF INNOVATIONS 

 ① ② ③ ④ ⑤ ⑥ 
MGRB × × √ √ √ √ 

lTMQI,lSSIM × √ × × √ √ 
lH, lC × √ × √ × √ 

TMQI 0.7144 0.7315 0.8808 0.9059 0.8959 0.9144 
TMQI_S 0.6290 0.6613 0.8680 0.8498 0.8732 0.8522 
TMQI_N 0.1140 0.1237 0.4531 0.6389 0.5400 0.6805 
FSITM 0.6718 0.6763 0.7745 0.7300 0.8173 0.8044 
CDMI 0.7475 0.7584 0.7770 0.8569 0.8313 0.8457 

 
1) ON IQA INSPIRED SEMI-SUPERVISED LOSS TERMS 
When studying the effect of IQA inspired semi-supervised 
loss terms, lMAE and lS were chosen as the baseline (column 
③). Note that 4 novel loss terms (lTMQI, lH, lC, and lSSIM) were 
divided into 2 groups based on their functionality (on structure 
or color) rather than mechanism (supervised or unsupervised). 
During ablation study, all loss terms shared same coefficients 
as Table II. 

By comparing column ④ with ③, we can find that the 
introduction of lH and lC had improved the performance of 
color-related objective score CDMI. Form column ③ and ⑤ 
we know that the introduction of lTMQI and lSSIM had boosted 
structure-related score TMQI_S and FSITM. Meanwhile, 
some scores of final model ⑥ were sightly inferior to those 
where “expertise” loss terms were added along (④ and ⑤), 
but final model ⑥ reached a more balanced score. 

The effect of color-related lH and lC is visualized in Fig. 6. 
Different from deep CNN based TMOs [25] and [27] handling 
only luminance channel, and [34] where only 2 of 3 channel 
are processed, our CNN directly handle 3 channels of RGB 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3080331, IEEE

Access

 

9 VOLUME XX, 2017 

image. Hence, severe color aberration may occur when only 
basic loss terms are used (case 2 and 3 in Fig. 6). This is caused 
by the intrinsic shortcoming of l1 (MAE) loss that 2 output 

RGB values representing different colors may share the same 
MAE value with specific label RGB value. 

 

(b) With lH and lC (④) (c) Without lH and lC
(case 1 of ③)

0

0.9

0.8

y

x

(a) Ground truth
(label SDR)

(d) Without lH and lC
(case 2 of ③)

(e) Without lH and lC
(case 3 of ③)

 
FIGURE 6.  The effect of color-related semi-supervised loss terms. Ground truth label image along with 4 output images with/without color related loss 
are illustrated. Corresponding chromaticity diagrams are listed to visualized their color difference. As seen, the introduction of color-related losses 
had made the output’s color appearance and pixel color distribution the closest to label. 

 
We addressed this by restricting pixel color using lH and lC. 

As seen in those CIE 1931 Yxy chromaticity diagrams in Fig. 
6, the introduction of supervised loss lC made the pixel color 
distribution of ④ the closest one to our elaborate label. Note 
that, there still exist several color differences between them, 
this is because unsupervised loss lH will make output SDR 
image inheriting color distribution (especially hue) form input 
HDR rather than only from label SDR. 

(2) With 
LTMQI and 
LSSIM (⑤)

(1) Without 
LTMQI and 
LSSIM (③)

(3) Tone-
mapped 
Scenes

(a) (b) (c) (d)
 

FIGURE 7.  The effect of structure-related semi-supervised loss terms. 
As seen, the introduction of structure-related losses can make edges 
more obvious. 
 

By avoiding up-sample, the deprecation of U-net’s 
deconvolution layers had prevented our method from structure 
distortion like checkerboard artifact [71]. However, poorly-
trained fully convolution layers may still vanish detail (high-
frequency texture). 

The effect of the introduction of structure-related lTMQI and 
lSSIM is illustrated in Fig. 7. As seen, there are more details in 
the output of ⑤compared with ③. Edges around bright area 
(lamp in (a) and light spot in (b)) are clearer, and high-
frequency details (hair in (d) and text in (c)) become more 
obvious. 

2) ON MULTI-GROUP RESIDUAL BLOCK 
The immediate removal of ripple/halo artifacts brought by 
MGRB has been demonstrated in Fig. 3. The impact of MGRB 
can be quantified by comparing column ① vs. ③, and ② vs. 
⑥ in Table III. As seen, MGRB’s improvement on objective 
scores mainly lies on structure fidelity related TMQI_S and 
FSITM. We attribute this to the enlarged receptive field 
brought by MGRB, since it can eliminate structure 
discontinuity at the edge of ripple/halo. 

C. OTHER EXPERIMRNTS 
1) ON NETWORK STRCTURE 
We designed 3 separate simplified networks to explore the 
effectiveness of decomposing and multi-branch strategy, and 
to prove the necessity of Polishing Network NP. As is 
illustrated in Fig. 8, simplified networks are full network 
without NL, without NP, or without both of them, separately. 
Note that, parameters of all simplified networks were 
individually trained to their best effort, rather than borrowed 
from the trained whole network. 

NG

NP

(I) Without NL (II) Without NP (III) Without NL and NP

NG

NL

NG

 
FIGURE 8.  3 different simplified networks. Red and purple circle 
represent same decomposing and up-scale in Fig. 1/2, respectively. 

 
Performances of different simplified networks are list in the 

left side of Table IV. As seen, simplified network (I) reached 
the closest performance to whole network. Also, (II) decreased 
significantly on structure related score TMQI_S and FSITM, 
while decreased slightly on other scores. Last, (III) got poor 
result on all scores. Hence, it’s acceptable to discard NL to 
further reduce network complexity at the cost of slight 
performance degradation. Also, by comparing (I) with (III) we 
know that NP is most indispensable among all sub-networks. 
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TABLE IV 
OBJECTIVE SCORES OF OTHER EXPERIMENTS 

Experime
nt Type On network structure On data pre-processing 

Network 
Structure 

(I) 
without 

NL  

(II) 
without 

NP 

(III) 
without 
NL & NP 

whole 
(linear) 

whole 
(non-linear) 

TMQI 0.8809 0.7660 0.7582 0.8763 0.9144 
TMQI_S 0.8262 0.7584 0.7232 0.8290 0.8522 
TMQI_N 0.5526 0.1127 0.1211 0.5075 0.6805 
FSITM 0.7858 0.7356 0.6710 0.8103 0.8044 
CDMI 0.8329 0.7350 0.7553 0.7622 0.8457 

 
Fig. 9 can better support above conclusion. As seen, there is 

only slight difference between (b) and (a). While the (c) is 
overall dim, and has light-spot-artifact brought by limited 
network depth thus small receptive filed. At last, (d) is 
unacceptable since blur and halo artifact occur in whole image. 

(a) Whole Network (b) Without NL (I)

(c) Without NP (II) (d) Without NL and NP (III)
 

FIGURE 9.  Result comparison of different simplified networks. 
 
2) ON DATA PRE-PROCESSING 
Besides network structure, we also explored the effect of data 
pre-processing. Here, we compared the result of non-linear 
domain (detailed in §III.B.3) against linear domain. Their 
quantitative comparison is listed in last 2 columns of Table IV. 
As seen, non-linear model outperformed linear model in all 
objective scores except FSITM. 

(a) Linear domain (b) Non-linear domain
0

0.9

0.8

y

x

 
FIGURE 10.  The effect of domain transfer in data-preprocessing. As 
seen, (a) is under-saturated, and its pixel color distribution is limited. 
 

The effect of data pre-processing is illustrated in Fig. 10. As 
seen, output SDR image from linear domain model (a) tends 
to be undersaturated, especially in dark areas. This is mainly 
due to the pixel value distribution of linear light HDR images. 

Take Fig. 10 for example, in HDR image, luminance of the 
outdoor aera is very low compared with building in high 
luminance, thus their pixel value become extremely low after 
normalization. In this case, it’s hard for CNN to recover color 
information form tiny RGB ratio, as seen in the limited pixel 
color distribution in (a). However, when it is non-linear 
transferred, pixel values of dark areas become more notable, 
thus easier for CNN to recover color information. 

D. COMPARISONS WITH OTHER METHODS 
We compared our method with 8 TMOs including 5 traditional 
ones and 3 deep TMOs. Traditional TMOs namely Drago03 
[14], Mantiuk06 [15], iCAM06 [16] and Reinhard02 [17] 
were implemented using official code/software with default 
parameters. In addition, we added a parameter-free traditional 
TMO Mai11 [72] which optimizes the global mapping-curve. 

We reproduced deep-CNN-based Yang et al. [25]’ method 
following the same data pre-processing with official model 
parameters (checkpoint). For deep TMOs Rana et al. [27] and 
Zhang et al. [34] where official checkpoint was not provided, 
we obtained their test set and corresponding official tone-
mapped SDR images form authors. Hence, data in Table V 
was calculated on the test set intersection between ours and 
theirs. (In §IV.A, images in test set were selected in a way 
which will maximize this intersection.) 

 
1) QUANTITATIVE EVALUATION 
Mean value and standard deviation of 6 objective scores are 
listed in Table V. Higher mean value indicates better overall 
performance (except BTMQI where lower is better), while 
smaller standard deviation means better stability and scene-
adaptability. Among deep TMOs, our method had got 8×1st, 
3×2ed, 1×3rd and no worst over all scores. 

Comparing with all TMOs, ours reached the best TMQI and 
TMQI_N in both mean value and standard deviation, which 
means it’s the most likely one to produce nature-looking 
results under various HDR scenes. Also, we got the best 
CDMI standard deviation and a CDMI mean value very close 
to the best one. This indicates that our method is able to scene-
adaptively generate results with good color reproduction. 

However, when it comes to TMQI_S and FSITM (both on 
structure), most deep TMOs including ours were not top-
ranked, and didn’t outperform all traditional ones. This is 
because while the output pixel value of global traditional 
TMOs (all except [17]) is not affected by its neighbors, that of 
deep TMOs may be undeservedly disturbed by its long-
distance pixel dependency established by receptive filed. 

In this section, we added an NR quality score BTMQI [73] 
assessing only tone-mapped SDR images, from its information, 
naturalness and structure. Our method got the best and second 
best BTMQI among deep and all TMOs, respectively. Since 
our results are best in naturalness and average in structure, a 
small BTMQI indicate that our results are informative. 
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TABLE V 
PERFORMANCE COMPARISON OF ALL TMOS. THE BEST AMONG ALL/DEEP TMOS ARE HIGHLIGHTED WITH BOLD/UNDERSCORE, RESPECTIVELY. 

Type Method 
Scores (Mean Value) Scores (Standard Deviation) 

TMQI(TMQI_S/TMQI_N) FSITM CDMI BTMQI TMQI(TMQI_S/TMQI_N) FSITM CDMI BTMQI 

Traditional 

Dargo03 [14] 0.8833(0.8703/0.4962) 0.8532 0.8681 3.4159 0.0550(0.0382/0.2844) 0.0392 0.0440 1.4357 
Mantiuk06 [15] 0.8660(0.8984/0.3546) 0.8575 0.8305 3.8534 0.0519(0.0548/0.2171) 0.0354 0.0631 0.9054 
iCAM06 [16] 0.8466(0.8601/0.3410) 0.7352 0.7687 4.1865 0.0679(0.0545/0.2685) 0.0476 0.0776 1.6121 

Reinhard02 [17] 0.8781(0.8756/0.4647) 0.8562 0.8702 3.4313 0.0645(0.0605/0.3354) 0.0413 0.0531 1.6220 
Mai11 [72] 0.9103(0.8776/0.6337) 0.8182 0.8956 3.2975 0.0500(0.0532/0.2648) 0.0506 0.0326 1.1349 

D
eep CN

N
 

Based 

Yang et al. [25] 0.8728(0.8267/0.5204) 0.8494 0.8363 3.8057 0.1040(0.1456/0.3222) 0.0567 0.0561 1.9299 
Rana et al. [27] 0.8805(0.8658/0.4897) 0.8624 0.7968 3.3782 0.0725(0.0918/0.2859) 0.0412 0.0358 1.2227 

Zhang et al. [34] 0.8961(0.8389/0.6057) 0.8311 0.8965 3.5193 0.0552(0.0659/0.2607) 0.0643 0.0322 1.0159 
Proposed 0.9189(0.8492/0.7221) 0.8349 0.8945 3.3643 0.0270(0.0511/0.1680) 0.0456 0.0316 0.9114 

 
2) VISUAL COMPARISON 
Overall Performance. As seen in Fig. 11, [14], [17] and [72] 
got fair result, but they lack the ability to reveal details in dark 
areas (red arrow). [15] and [16] emphasized details, but their 
results appeared over-stylized and overall-dim. As for deep 
TMOs, results of [25], [27] and [34] got strange saturation and 
are thus less nature-looking. Besides, result of [27] didn’t 
recover information in dark region (red box), while their bright 
area (green box) still tends to be over-exposed. In summary, 
our method can produce nature-looking result while 
maintaining information in both dark and bright areas. 

Due to the extra resize operation (enlarging to the same size 
as others for display) applied to the results of deep TMOs [27] 
and [34], their details appear blurry, as seen in red and green 

box of (g) and (h). Due to their fixed-size U-net CNN structure, 
original output size of [27] is 2048×1024, while that of [34] is 
limited within 512×512. Hence, our method has a practical 
advantage of arbitrary input size, thanks to the design of fully 
convolutional layer. 

In Fig. 12, we selected a hard-to-tackle indoor-outdoor-
alternating HDR scene. As seen, our method did the best 
simultaneously revealing details in both bright reflectance (red 
arrow) and dim ceiling (green arrow), meanwhile, having a 
good overall-brightness. Besides, our method got the best 
TMQI (mainly from TMQI_N) and CDMI in Fig, 12 and Fig. 
13, indicating that our method reached the best naturalness, 
and the most accurate color reproduction from HDR image. 
Similar conclusions are draw on the title of Fig. 13 and Fig. 14. 

 

(b) Mantiuk06 [15] (c) iCAM06 [16] (d) Reinhard02 [17]

0

0.9

0.8

y

x

(a) Dargo03 [14] (e) Mai11 [72]

(f) Yang et al. [25] (g) Rana et al. [27] (h) Zhang et al. [34]
0

0.9

0.8

y

x

(j) Non-linear normalized HDR(i) Proposed

TMQI=0.9532
FSITM=0.8533
CDMI=0.8348

TMQI=0.9217
FSITM=0.8719
CDMI=0.7861

TMQI=0.8539
FSITM=0.8941
CDMI=0.7399

TMQI=0.9688
FSITM=0.8694
CDMI=0.8252

TMQI=0.9603
FSITM=0.8536
CDMI=0.8439

TMQI=0.8318
FSITM=0.8152
CDMI=0.7719

TMQI=0.9522
FSITM=0.8424
CDMI=0.7997

TMQI=0.9243
FSITM=0.8454
CDMI=0.8714

TMQI=0.9245
FSITM=0.8347
CDMI=0.8499

0 0.8x

 
FIGURE 11.  Result comparison on outdoor scene. Corresponding pixel color distribution is shown in the chromaticity diagram below the image. As 
seen, the proposed method can simultaneously reveal local details in both dark and bright areas. Note that, “(j) Non-linear normalized HDR” is 
visualized using Eqn. (17). In other words, it’s the exact input of our CNN (H).
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FIGURE 12.  Visual comparison on indoor-outdoor scene. The proposed method is able to preserve information in both bright reflectance (red box) 
and dim areas (green box) while maintaining good color appearance and satisfying overall-brightness. 
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TMQI=0.8117
FSITM=0.8394
CDMI=0.7127

TMQI=0.9135
FSITM=0.8281
CDMI=0.8049
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FSITM=0.8252
CDMI=0.8583

(b) Mantiuk06 [15] (c) iCAM06 [16] (d) Reinhard02 [17](a) Dargo03 [14] (e) Mai11 [72]

(g) Rana et al. [27] (h) Zhang et al. [34] (i) Proposed(f) Yang et al. [25] (j) Non-linear normalized HDR
 

FIGURE 13.  Visualizing results on indoor scene. Our result got highest TMQI and CMDI, i.e., the best naturalness and the most accurate color 
reconstruction form HDR image. Meanwhile, compared with others, details on the doom (green arrow) were better preserved by our method.
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(g) Rana et al. [27] (h) Zhang et al. [34] (i) Proposed(f) Yang et al. [25] (j) Non-linear normalized HDR
 

FIGURE 14.  Demonstrating results on outdoor scene. Our method didn’t do the best preserving information in most-bright area (red arrow), but 
performed well revealing details in bright-dark-alternating area (green arrow), meanwhile, having good overall color appearance. 

 

(b) Mantiuk06 [15] (f) Yang et al. [25] (g) Rana et al. [27] (i) Proposed

(2)

(e) Mai11 [72]

(1)

 
FIGURE 15.  Detailed comparison on structural preservation. As seen in (1), high-frequency details in bright region (red box) were well presented in 
both (b) and (i), while details in dark area (green box) were simultaneously preserved only by our method (i). As for scene (2), structure in bright area 
(green box) was better preserved in (b) and (i). Meanwhile, salt-and-pepper noise (red box) was amplified into a strange pattern by other deep TMOs in 
(f) and (g), while kept in (b) and (e), and suppressed by our method (i). 

 

(b) Mantiuk06 [15] (c) iCAM06 [16] (f) Yang et al. [25] (g) Rana et al. [27] (i) Proposed

(2)

(1)

(b) (c) (f) (i)

 
FIGURE 16.  Focusing on detail reconstruction around illuminant. All methods except (b) perform similarly on scene (1). As for scene (2), (g) got extra 
pattern around lamp (green box), and “dyeing” color on neon light (yellow box). Our method performs well revealing details in (1), but has halo artifact 
in some cases (red box in (2)). 
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(b) Mantiuk06 [15] (d) Reinhard02 [17](a) Dargo03 [14] (e) Mai11 [72] (f) Yang et al. [25] (i) Proposed
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FIGURE 17.  More HDR scenes are compared to show the scene-adaptability of our method. Among all scenes (1) high-contrast portrait, (2) outdoor, 
(3) high-contrast indoor and (4) high-contrast outdoor, our results (i) are obviously more colorful and vivid, and have sufficient details in both bright 
and dark region. 
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Color appearance and reproduction. In Fig. 11, 12, 13 and 
14, pixel color distribution of different results is plotted within 
the assumed sRGB gamut boundary on CIE 1931 Yxy 
chromaticity diagrams. Here, color difference can be judged 
by distance (though it’s not perceptually uniform), while hue 
is reflected in the angle from white point. 

By comparing the chromaticity diagrams of others with (j), 
especially in Fig. 12, we know that our result most accurately 
reproduced the color appearance (especially hue) from HDR 
(j). We contribute this to our unsupervised hue loss lH. 

The effect of supervised color difference loss lC (color 
consistency from label) cannot be assessed here since there’s 
no label for some image in test set. But from another angle, as 
seen in most cases except Fig. 14, other deep TMOs [25] (f), 
[27] (g) and [34] (h) tend to undeservedly extend color 
distribution, and distort the hue of their outputs. While the 
proposed method has learned a natural and traditional-TMO-
like “conservative” color appearance. 

 
Details and structure. More scenes (Fig. 15 and Fig. 16) were 
added to compare the structure preservation and detail 
revealing ability of different methods. Results of 5 methods 
are compared in each figure, including traditional Mantiuk06 
[15] TMO with the most emphasis on structure, another 
traditional TMO, and 3 deep TMOs ([34] are excluded due to 
its 512×512 low-resolution output). 

Description has been written on the title of each figure. In 
summary, in Fig. 15, our method did the best suppressing salt-
and-pepper noise while avoiding structure distortion. Our 
result maintained as much structure information as structure-
specialized Mantiuk06 [15] TMO (red box (1) and green box 
(2)), and overperformed others in simultaneously keeping 
structure in both dark (green box (1)) and bright region. 

In Fig. 16, when preserving structure and detail around 
illuminants, our result (i) surpasses other deep TMOs (f) and 
(g). However, it has halo artifact which is unseen on the output 
of traditional TMOs (b) and (c). To this end, we must admit 
one of our limitations, that while most halo artifact was 
eliminated by the introduction of MGRB, it may occur in some 
extreme cases where the luminance around neighboring pixels 
varies dramatically. 
 
Scene-adaptability. In §IV.D.1, the scene-adaptability of our 
method is reflected in the lower standard derivation on highly-
diversified test set. Here, more HDR scenes are compared in 
Fig. 17 to prove this adaptability. As seen, our result is more 
vivid and detailed among all scenes. 

 

V. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a learning-based, scene-adaptive 
and size-adaptive TMO using deep CNN. During its design, 
we explored the effect of network structure, training, and data 
pre-processing. Most importantly, we introduced IQA to 
“perceptual-motivated” deep CNN (i.e., CNN whose output is 

to be evaluated by human perception). Due to the mechanism 
of IQA, specifically, tone-mapped image quality assessment, 
it’s implemented by semi-supervised loss function. 

Our work is just a small step bridging the gap between 
modern perceptual quality models and perceptual-motivated 
CNN. While our IQA losses were mathematically defined, 
there has been several recent “perceptual-motivated” deep 
CNN whose IQA scores were from a customized loss network. 
These loss networks were trained to mimic various quality 
scores to be used in loss function. For example, Chen et al. [69] 
trained their loss network to output objective VAMF between 
label and output, Talebi et al. [74] and Yang et al. [75] applied 
NIMA [76] as their loss network to get aesthetic subjective 
score on output image. Their loss networks shared the same 
motivation of mimicking a quality score which is unable to be 
directly implemented as loss function due to its complexity or 
non-differentiability (objective scores), and unquantifiability 
(subjective scores). 

Recall that some objective scores (e.g., TMQI’s naturalness 
term, BTMQI [73] and BLIQUE-TMI [70]) were excluded 
from our loss function due abovementioned reason. Hence, in 
further work, we are looking forward to use a loss network to 
learn those scores and act as loss function. We believe that 
compared with VGG-net-based loss network used in 6 of 20 
HDR related CNN, a loss network with interpretable output 
can better represent the terminology “perceptual loss”. 
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