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In the large amount of available data, information insensitive to faults in historical data interferes in gear fault feature extraction.
Furthermore, as most of the fault diagnosis models are learned from offline data collected under single/fixed working condition
only, this may cause unsatisfactory performance for complex working conditions (including multiple and unknown working
conditions) if not properly dealt with.*is paper proposes a transfer learning-based fault diagnosis method of gear faults to reduce
the negative effects of the abovementioned problems. In the proposed method, a cohesion evaluation method is applied to select
sensitive features to the task with a transfer learning-based sparse autoencoder to transfer the knowledge learnt under single
working condition to complex working conditions. *e experimental results on wind turbine drivetrain diagnostics simulator
show that the proposed method is effective in complex working conditions and the achieved results are better than those of
traditional algorithms.

1. Introduction

With the extensive application of technology in industrial
production, fault diagnosis is playing an increasingly im-
portant role. In production, the occurrence of abnormal
accidents can be avoided and economic losses and casualties
can be reduced through timely detection of equipment fault
[1]. Data-driven fault diagnosis has high accuracy for
practical complex system diagnosis tasks such as gear faults
in rotating machinery due to its complex structure which is
hard to carry out mathematical modeling [2, 3]. It consists of
three main directions: signal processing, statistical analysis,
and artificial intelligence-based methods [4]. In signal
processing methods, the signals are analyzed by several
techniques to extract fault features, such as wavelet filter and
singular spectrum analysis [5, 6]. Statistical analysis methods
utilize the statistical methods such as principal component
analysis and partial least square methods to analyze the
historical data [7, 8]. Artificial intelligence-based methods

apply different artificial intelligence techniques in fault di-
agnosis, such as neural network, support vector machine,
and fuzzy logic [9–11].

Among fault diagnosis methods-based on artificial in-
telligence, deep learning method has been broadly applied in
detecting abnormal situations. Deep learning methods such
as recurrent neural network and convolution neural network
are widely studied and applied in the field of fault diagnosis
in industrial systems due to their self-learning and adaptivity
[12, 13].

Sparse autoencoder (SAE) is a type of neural network
that can learn features from unlabeled data, which was
proposed based on autoencoder (AE) in 2006 [14]. AE takes
the input information as its learning target to extract features
and reduce dimensionality through encoding and decoding
[15, 16]. In fault diagnosis, AE is trained to extract the
features of input data, which is not suitable when the dis-
tribution of testing data is different from training data
[17, 18]. To fortify the adaptability and flexibility of the
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network model, the concept of transfer learning is proposed
to apply the knowledge learned in a pretrained model into
novel tasks [19, 20].

With the above literature review on artificial intelli-
gence-based fault diagnosis methods, there are still twomain
difficulties in fault diagnosis of practical complex systems
such as rotating machinery:

(1) Insensitive Information. Insensitive information can
be described as the components caused by irrelevant
variables in original signals [21, 22]. Liu combined a
1D autoencoder and convolutional neural network
in detecting faults of rotating machinery under noisy
environment [23]. Wang adopted conditional vari-
ational neural networks to extract the features of
planetary gearbox under noisy environment [24].
Zhang proposed a deep learning model based on
convolutional neural network with wide first-layer
kernels for fault diagnosis to withstand interference
information [25]. *e research works in literature
review did not consider the effect of insensitive in-
formation, such as the features that contribute little
or eventually have a negative interference fault di-
agnosis performance. *e other problem with these
approaches is that they did not consider the per-
formances of the proposed methods under different
working conditions, which is discussed afterwards.

(2) Complex Working Conditions. In the actual pro-
duction, system operational parameters give rise to
complex working conditions such as multiple
working conditions and even unknown working
conditions. *e model trained under single working
condition is not able to effectively adapt to complex
conditions on this occasion [26]. Moreover, serious
distribution discrepancy can be observed between
training data and testing data when the structures of
two data sets are different [27]. To solve this problem,
many approaches have been proposed by re-
searchers. Wang discussed domain adaptation for
different conditions in transfer learning for gearing
fault diagnosis [28]. Hasan adopted transfer learning
and convolutional neural network in bearing to
make sure that the model is adaptable in different
working conditions [29]. Qian proposed a new
transfer learning method to detect faults of rotating
machine under variant working conditions [30].
However, these previously mentioned research
works have limitations: first, there is no discussion or
analysis on both multiple working conditions and
unknown working conditions; second, the handling
of insensitive information which can affect the fault
diagnosis performance is not comprehensive.

Based on the above literature review, there is no research
work at present that investigates the effects of both two
difficulties simultaneously. *e contributions of this paper
are listed as follows: (1) the problem with both complex
working conditions and insensitive information is investi-
gated; (2) a deep transfer learning-based fault diagnosis

method with sensitive features selection and the combina-
tion of SAE based on transfer learning is proposed for the
abovementioned problems. To reduce the difficulty of signal
analysis under complex conditions, transfer learning is
applied to adjust the accuracy of the model under such
conditions. Transfer learning refers to applying the prior
knowledge learned from one task to a different but related
task, which was first proposed at the 1995 NIPS-95 seminar
on “Learning to Learn” [31]. Transfer learning reduces the
cost of model construction and data requirement when there
is difference between source and target data, which is applied
in different fields, such as data mining, image recognition,
language translation, fault diagnosis, and fault diagnosis
[32–35].

*e rest of this paper is organized as follows. In Section
2, the proposed algorithm is introduced in detail, including
sensitive features selection, SAE, and MMD. In Section 3,
hardware experiments are conducted on wind turbine
drivetrain diagnostics simulator to show the effectiveness of
the proposed method for five fault types of gear. Conclusion
is made in Section 4.

2. The Proposed Method

In order to increase the accuracy of fault diagnosis under
complex working conditions, a transfer learning-based fault
diagnosis method using sensitive features selection is pro-
posed in this section. *e relevant methods and algorithm
details are explained in the following four subsections.

2.1. SensitiveFeatures Selection. *e signal properties in time
and frequency domain including amplitude, probability
distribution, and energy change when the fault occurs. In
rotating machinery, usually 11 time domain and 13 fre-
quency domain characteristic parameters are analyzed for
fault diagnosis [36]. However, the large number of char-
acteristic parameters incurs the following two problems: (1)
fault features may not be accurately extracted due to the
random components in the signal; (2) large dimension data
enhance the modeling difficulty [37]. In this paper, cohesion
evaluation is applied to select the sensitive features, which
can reserve sensitive features and remove insensitive features
by evaluating the cohesion of each feature [38].

Suppose that there is a feature set containing H cate-
gories, with qm,h,j denoting j-th feature ofm-th sample in the
h categories as shown in

qm,h,j, m � 1, 2, . . . ,Mh; h � 1, 2, . . .H; j � 1, 2, . . . , J{ },
(1)

where Mh represents the number of samples h and J is the
number of features in each category. Table 1 lists the steps to
compute the cohesion factor cj, which reflects feature
sensitivity from the intercategory and intracategory cohe-
sion. Cohesion indicates the relationship among categories
based on standard deviation, which reflects the details of the
difference in the overall data distribution. In Table 1, dif-
ference of intracategory distance and difference of inter-
category distance are computed based on the average
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distance from step 1 to step 6. Distance factor of every
category is computed by intercategory and intracategory
ratios using step 7 and step 8. Average intracategory stan-
dard deviation is calculated to gain the difference from step 9
to step 11. Next, average intercategory cohesion difference is
defined and computed from step 12 to step 16. Finally, in
order to obtain cohesion factor, a weighting factor is defined
in step 17 to measure cohesion difference which is similar to
the distance factor. It is used to evaluate the cohesion of each
category, which can be distinguished if the cohesion dif-
ference between intracategory and intercategory is large.

*ere are two problems mainly causing the difficulty in
accurate sensitive feature extraction: (1) large intracategory
distance: in this situation, sensitive features sorted by dis-
tance evaluation factor αj only are not accurate and some
sensitive features can be discarded as insensitive features
since large intracategory distance dinnerj reduces the priority
of sensitive features; (2) large intracategory cohesion

difference: in this premise, there is an overlap between
categories if the intercategory cohesion difference is small,
resulting in inaccurate selection of sensitive features. *e
two problems mentioned above can be solved by combining
distance and cohesion evaluations, which prevents one of
them from producing excessive effect on the result.

*e sensitive factor ηj is computed in the following
equation, which is combined with distance evaluation factor
and cohesion factor:

ηj � βj
cltouterj + coe∗douterj

cltinnerj + coe∗dinnerj

, (2)

where coe is a coefficient to modulate the proportion of
distance and cohesion evaluation and βj is the sensitivity
weighting coefficient. According to the distance evaluation
factor αj of step 8 and cohesion factor cj of step 18 in Table 1,
the sensitivity weighting coefficient βj is represented in

βj �
1

finner
j /max finner

j( )( ) + fouter
j /max fouter

j( )( ) + einnerj /max einnerj( )( ) + eouterj /max eouterj( )( ). (3)

*e sensitive factor ηj reflects the influence degree of
different features in categories.*e sensitivities of features are
sorted from large to small according to the value of ηj.
*rough sensitivity factor, features that are sensitive to
classification are retained, while the insensitive information is
discarded without figuring out the type of the features. *is
preprocessing reduces the complexity of subsequent com-
putation and can help improve the classification accuracy.

2.2. Transfer Learning. Transfer learning is type of a learning
mode applying prior knowledge learnt in a task in solving
related but different tasks. *e prior knowledge including

data features and labels can assist the analysis of a related
task when it is difficult to process directly due to data
collection difficulty, high modeling cost, and long training
time. In transfer learning, a domain refers to a data set and
its probability distribution. Particularly, the domain con-
taining prior knowledge is called source domain, and the
domain containing unknown knowledge is called target
domain [39]. *e aim of transfer learning is to learn the
target task with the help of the knowledge of source task,
such as features, parameters, and labels.

Transfer learning is effective when there is connection
between the source domain and the target domain. So far,

Table 1: Cohesion evaluation.

Step Process parameter Equation

1 Intracategory distance dh,j � ((∑Mh
m,r�1 |qm,h,j − qr,m,j|)/(Mh(Mh − 1)))

2 Average intracategory distance dinnerj � (1/H)∑HH�1 dH,j
3 Difference of intracategory distance einnerj � (max(dh,j)/min(dc,j))
4 Average of each feature uh,j � (1/Mh)∑Mh

m�1 qm,h,j
5 Average intercategory distance douterj � ((∑Sh,c�1 |uh,j − uc,j|)/H(H − 1))
6 Difference between categories eouterj � (max(|uh,j − uc,j|)/min(|uk,j − uz,j|))
7 Distance weighting factor dwj � (1/((e

inner
j /max(einnerj )) + (eouterj /max(eouterj ))))

8 Distance evaluation factor αj � (dwjd
outer
j /dinnerj )

9 Intracategory standard deviation σh,j �
�������������������������
(∑Mh

m�1 (qm,h,j − uh,j)
2/Mh − 1)

√
10 Average intracategory standard deviation cltinnerj � (1/H)∑Hh�1 σh,j
11 Difference of intracategory standard deviation finner

j � (max(clth,j)/min(cltc,j))
12 Distance of each feature cdn,r,s,j � |qn,s,j − qr,s,j|
13 Quadratic sum of feature distance qs � ∑Ms

m,r�1 (cdm,r,h,j − dh,j)
2

14 Standard deviation of feature distance (intracategory cohesion) stch,j �
��������������������
(qs/(Mh(Mh − 1) − 2))
√

15 Average intercategory cohesion difference cltouterj � ((∑Hh,c�1 |stch,j − stcc,j|)/H(H − 1))
16 Imparity measure of intercategory cohesion difference fouter

j � (max(|stch,j − stcc,j|)/min(|stck,j − stcz,j|))
17 Cohesion weighting factor cwj � (1/((f

inner
j /max(finner

j )) + (fouter
j /max(fouter

j ))))

18 Cohesion factor cj � (cwjclt
outer
j /cltinnerj )
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the most studied scenario in transfer learning is to reduce the
difference between source data and the target data with the
same tasks [40]. In this case, transfer learning maintains the
reusability of the model by reducing the distribution dif-
ferences between data sets. With the deep research of
transfer learning, a few studies start to work on the scenario
that the tasks of source and target domain are different with
the same data set [41]. In this paper, the data collected in
single working condition and complex working conditions
are shown as source data and target data, respectively.
Transfer learning reserves the reusability of the model
trained by data of single working condition through mea-
suring and reducing the distribution difference between the
source data and target data.

2.3. Transfer Learning-Based Sparse Autoencoder. Sparse
autoencoder is developed from autoencoder, which is an
unsupervised learning network with an encoder and a de-
coder. As shown in Figure 1, the encoder reduces the di-
mension of the input data for feature extraction purpose,
and the decoder recombines the encoded information and
restores the encoded information to the original data
[42, 43]. SAE improves the ability of feature extraction by
adding a sparsity limitation to the neurons in the hidden
layers. In this paper, a three-layer SAE is applied as the
network model, and the structure of SAE is introduced.

After the preprocessing, a m × n data set can be rep-
resented as X � xij{ }, where i � 1, 2, . . . , m and
j � 1, 2, . . . , n. m is the number of samples, and n is the
dimension of each sample. *e source features obtained by
the encoder are denoted by ξ, and the output of the decoder
X̂ is close to X. *e parameter set is represented by
θ � We, Be,Wd, Bd{ }, where We and Wd are weights of
encoder and decoder, respectively, and Be and Bd are bias of
encoder and decoder, respectively. Based on the above in-
troduction, the value of the features ξ and the output of the
decoder X̂ are shown in the following equations:

ξ � σ WeX + Be( ), (4)

X̂ � σ Wdξ + Bd( ), (5)

where σ is the activation function sigmoid, whose formula is
shown in

σ(x) �
1

1 + e−x
. (6)

To restrict the number of active nodes in hidden layer,
sparsity penalty factor Kullback–Leibler (KL) divergence is
measured. *e average activation value of k-th node in
hidden layer, ρk, is calculated in

ρk �
1

n
∑n
i�1

σ xi( ) weikxi + bek( )[ ], (7)

where weik and bek belong to We and Be. By using relative
entropy and (7), KL is represented in

KLρ ρk
 � ρ log

ρ

ρk
+(1 − ρ)log

1 − ρ

1 − ρk
, (8)

where ρ is a predefined sparse parameter. To achieve the
sparsity of the active values in hidden layer, the value of
sparsity parameter ρ should be close to 0. For this purpose, it
is necessary to adjust the value of ρk until ρ � ρk to ensure
that KL reaches its minimum value, which is close to 0.
*erefore, the cost function of SAE JSAE(θ) can be expressed
as

JSAE(θ) �∑
n

i�1

L xi, x̂i( ) + α

2
∑n
i�1

We( )2 + Wd( )2( )

+ βKL ρ ρk
( ),

(9)

where x̂i is the output, L is the loss function of SAE,We and
Wd are the weight of encoder and decoder, and α and β are
the weight parameters. *rough minimizing JSAE(θ), the
features of data obtained offline such as single working
condition can be extracted as a priori knowledge for transfer
learning.

2.4. Maximum Mean Discrepancy. Maximum mean dis-
crepancy is a distance for measuring the difference of
probability distribution between two data sets X and Y,
which is widely applied in transfer learning [44]. When the
probability distributions of X and Y are different, it is not
appropriate to apply the same classification model to achieve
satisfactory performance [45]. In the problem discussed in
this paper, large probability distribution difference leads to
the fact that the model trained with data obtained under
single working condition is not applicable to complex
working conditions. *e accuracy of the model can be
improved by minimizing MMD with a transformation
function to minimize the distance between the transformed
feature sets which are obtained in sensitive feature selection.
Suppose that the probability distribution of data sets X and
Y is p and q, respectively; the expression of MMD is as
follows:

DH(X, Y) � sup
Φ∈H

EX∼p[Φ(x)] − EY∼q[Φ(y)]( ), (10)

where H represents Reproducing Kernel Hilbert Space
(RKHS). RKHS is a complete inner product space which can
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•
•
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•
•
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•
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Figure 1: *e structure of autoencoder.
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transfer the data set that is not linearly separable to high
dimensional space via mapping [46]. Equation (10) repre-
sents the upper bound of the mapping of probability dis-
tribution between two data sets in RKHS. For the
convenience of computation, the square of MMD D̂

2

H(X, Y)
is applied, whose formula is listed in

D̂
2

H(X, Y) �
1

NX

∑NX

i�1

Φ xi( ) − 1

NY

∑NY

i�1

Φ yi( )



2

H

, (11)

whereNX andNY are the sample numbers of X and Y. *e
smaller the value of MMD is, the smaller the probability
distribution discrepancy between the two data sets is.

2.5.<eProposedAlgorithm. In this subsection, an improved
algorithm is proposed to transfer the knowledge in single
working condition to make it available in complex working
conditions, whose architecture is plotted in Figure 2. In data
collection, the data are separated into two parts: data in
single working condition (called source data) and data in
complex working conditions (called target data) which
consist of multiple and unknownworking conditions. Before
feature extraction, sensitive features are selected through
cohesion evaluation to constitute a sensitivity parameter set
as input data. In the network, after the training of source
parameter set is completed, the parameters of the SAE are
reused for learning the target labels. To apply the knowledge
learnt from source data to the target task through transfer
learning, the distance of the source features and the target
features is minimized by MMD. *e trained target features
are classified by a softmax classifier to obtain the target
labels.

*e expected effect of the proposed algorithm is
explained via illustration in Figure 3. In this figure, it is
assumed that source data and target data have large prob-
ability distribution difference and there are three fault types
in both sets: feature 1 and feature 2 are sensitive to fault 1
and fault 2, respectively, while feature 3 is insensitive to fault
1 or fault 2. *e red patterns represent the incorrectly
classified samples. *e classification result without sensitive
feature selection and transfer learning is shown in
Figure 3(a): part of sensitive features is classified incorrectly
because of large probability distribution; feature 3 is kept
and dispersed into two fault types without sensitive features
selection, which interferes with the accurate description of
the faults. Figure 3(b) shows the classification result after
insensitive feature 3 is discarded, but large probability
distribution difference results in inaccurate classification of
feature 1 and feature 2. In Figure 3(c), after minimizing the
probability distribution difference between the two data sets,
feature 1 and feature 2 are classified correctly, while feature 3
is reserved as useless information. Although the methods in
Figures 3(b) and 3(c) make improvements to some extent,
they fail to solve all the problems shown in Figure 3(a). *e
effectiveness of the proposed algorithm is shown in
Figure 3(d): insensitive feature 3 is discarded by sensitive
feature selection and feature 1 and feature 2 are correctly
classified after transfer learning. *e drawbacks of the

methods in Figures 3(b) and 3(c) motivate this proposed
method.

*e fault diagnosis process of the proposed algorithm is
divided into 7 steps, as shown in Table 2: sensitive feature
selection from step 1 to step 3, network training of source
data in step 4, and network adaptation by transfer learning
from step 5 to step 7.*e detailed information of each part is
explained as follows:

(1) Sensitive feature selection: first, training data set Ds

and testing data set Dc are collected under single and
complex working conditions of rotating machinery;
second, features are computed and sorted by cohe-
sion evaluation shown in Table 1; third, sensitive
features are chosen according to sensitive factor ηj in
(2), which are reserved to constitute sensitivity pa-
rameter set as input data.

(2) Network training of source data: the total cost
function of the proposed algorithm J(θ) that is made
up with JSAE(θ) and MMD is shown in (12) as

J(θ) �∑n
i�1

L xi, x̂i( ) + α

2
∑n
i�1

We( )2 + Wd( )2( )

+ βKL ρ ρk
( ) + τD̂

2

H Dtr, Dts( ),
(12)

where α, β, and τ are weighted parameters, the first
three terms are the cost function of SAE, and the last
term is the square of MMD. In the training of Ds

only, MMD coefficient parameter τ is set to 0, and
the network is trained to gain the updated model
parameter set θ and data features.

(3) Network adaptation by transfer learning: the per-
formance of the model obtained is validated by

Data collection

Target dataSource data

Sensitivity features selection Sensitivity features selection

MMD

Source feature Target feature

Softmax classifier

Target label

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Figure 2: *e architecture of the proposed network.
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training Dc. In the adaptation stage, to minimize the
probability distribution difference between Ds and
Dc, the value of MMD is minimized by giving co-
efficient parameter τ different values. *e model
parameters and features under complex working
conditions are obtained to classify the fault types. In
this paper, softmax classifier is chosen to solve this
multiclass task, which maps the features obtained
above to another vector of (0, 1), and the probability
closest to 1 is selected to estimate the output of
classifier.

3. Experiment and Result Analysis

3.1. Experiment Setup. In this paper, wind turbine drive-
train diagnostics simulator (WTDS) is used to collect the
experiment data to verify the effectiveness of the proposed
scheme. WTDS consists of a planetary gearbox, a fixed
axis gearbox, a magnetic brake, a motor, and 4 sensors as
illustrated in Figure 4. Figure 5 shows the working dia-
gram of WTDS, in which the speed and load of WTDS are
controlled by computer to change the working conditions

through speed and brake controllers. Data are collected to
the computer by four sensors, including two vibration
sensors, a pressure sensor, and a torque sensor, indicated
in Figure 5.

In this research, experiments are conducted in WTDS
with five different types of gears, respectively: normal gear,

Fault 1

Fault 2

Feature 3
(insensitive to fault)

Feature 1
Feature 2

Incorrectly
Classified samples

Source data

Target data

(a)

Fault 1

Fault 2

Feature 3
(insensitive to fault)

Feature 1
Feature 2

Incorrectly
Classified samples

(b)

Fault 1

Fault 2

Feature 3
(insensitive to fault)

Feature 1
Feature 2

Incorrectly
Classified samples

(c)

Fault 2

Fault 1

Feature 3
(insensitive to fault)

Feature 1
Feature 2

Incorrectly
Classified samples

(d)

Figure 3: Fault diagnosis: (a) without sensitive features selection and transfer learning, (b) with sensitive features selection, without transfer
learning, (c) without sensitive features selection, with transfer learning, and (d) with sensitive features selection and transfer learning.

Table 2: Fault diagnosis process of the proposed algorithm.

Step Description

1
Collect the signal under single working condition as training data set Ds; collect the signal under complex working conditions as

testing data set Dc.
2 Extract feature data set of time domain and frequency domain in Table 1 as preparation.

3
Calculate sensitive factor ηj in (2) to keep these features in which the value of ηj is large. *ese parameters constitute sensitivity

parameter set as input data.
4 Let τ � 0 in (12); train network to gain suitable parameter set θ and the source features.

5
Assign τ suitable values in (12) to validate the network by target data set Dc until minimizing the cost function in (12) by comparing

the distance between the target features and source features, using θ from step 4 as initial parameters.
6 After step 5 is done, record the parameters and features of testing.
7 Send the features into classifier to gain the fault types.

1

3

5

2

4

Figure 4: Appearance of WTDS: 1-magnetic brake, 2-planetary
gearbox, 3-fixed axis gearbox, 4-motor, and 5-sensors.
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surface worn, missing tooth, chipped tooth, and root crack
as shown in Figure 6. 9 working conditions of WTDS under
different load voltages and rotating speeds are considered as
shown in Table 3.

3.2. Data Collection. Signals from four sensors are collected
with sampling frequency of 5120Hz and sampling time of
6.4 s. To ensure that the data are more effective, the original
signals are the average value of four sensors in 3 experi-
ments. After sensitive feature selection, both numbers of the
training data and the testing data in every group consist of 80
samples. Figure 7 illustrates the vibration signals in time
domain and frequency domain, respectively.

*e results under complex working conditions, con-
sisting of multiple and unknown working conditions, are
analyzed separately in this research. 9 data sets groups are set
in Table 4; each contains a training set and a testing set. *e
details of multiple and unknown working conditions are
explained: (1) multiple working conditions from group 1 to
group 6: to simulate the collection of multiple working
conditions data, the testing data are composed of five pieces,
which are from the five working conditions except the
condition in training data. *e data with load voltages of 5V
and 8V are selected as 6 training sets, and data under other
five working conditions shown in Table 3 (excluding
working conditions in training sets) are randomly mixed as
testing sets under multiple working conditions labeled from
multi-A to multi-F. For example, in group 1, the testing set
multi-A is the mixture of the data under 6Hz–8V,
10Hz–5V, 10Hz–8V, 14Hz–5V, and 14Hz–8V without
6Hz–5V, because 6Hz–5V is the condition of the training
set of group 1. (2) Unknown working conditions from group
7 to group 9: data with load voltage 8V and 3V are selected
as training sets and testing sets, respectively, labeled from
single-G to single-I. In the three groups, the working
conditions in testing sets are totally different from those in
training sets to ensure the unknown of the testing sets. To
observe the performance of transfer learning in unknown
working conditions, the two voltages with a large difference
are selected.

Speed controller

Brake controller
PC

Motor
Fixed axis
gearbox

Planetary
gearbox

Brake WindmillSensor

Four sensors

Data
collection

Working condition
control

Figure 5: Illustration of WTDS.

1 2 3 4 5

Figure 6: Five types of gears.

Table 3: 9 Working conditions.

Motor frequency (Hz) Load voltage

6 3 V
6 5 V
6 8 V
10 3 V
10 5 V
10 8 V
14 3 V
14 5 V
14 8 V
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3.3. Experimental Results. Before experimental results
analysis, the architecture of SAE is shown: the value of ηj is
set as 80 to obtain the sensitive feature set. Accordingly, the
number of input layers and output layers of SAE is 80, and
the number of hidden layers is 60 with sparsity limitation of
0.3. To observe the effects of KL divergence and transfer
learning in the cost function in (12), the values of β and τ are
varied to adjust KL and MMD terms and the value of α is
predefined as a constant (α � 0.001). *e range of KL and
MMD weight parameter τ is set by experimentation, which
affects the results positively: β is searched from 1, 2, 3, 4, 5{ }

and τ is searched from 0, 1, 5, 10, 15, 20{ } to test the per-
formance of the proposed algorithm. Particularly, τ � 0
implies no domain adaptation in cost function of (12). *e
rest of this subsection discusses the performance of transfer
learning, the classification results under multiple working

conditions and unknown working conditions, and the
performance of the proposed algorithm comparing with
other feature extraction methods.

3.3.1. Performance of Transfer Learning. To observe the
influence by transfer learning, the parameter β is fixed at 3
and only parameter τ is changed from 0 to 20. After testing
the model with different τ values, the classification accu-
racies of the six data set groups are shown in Figure 8 and the
MMD variation curve is shown in Figure 9.

From Figures 8 and 9, it is apparent that the classification
accuracies of all the nine data sets can be improved with
MMD term and the corresponding MMD values can be
reduced to be around 0.1. When τ � 0, the network trained
under single working condition has poor adaptability to
complex working conditions, with the classification accu-
racies of nine data sets fluctuating around 85% which are
represented in the blue line in Figure 8. With transfer
learning by using MMD, all the classification accuracies of
nine data sets are improved significantly with values fluc-
tuating around 96%. *is result indicates that transfer
learning has positive effect on both multiple and unknown
working conditions.

3.3.2. Classification Results. *e classification results of
multiple and unknown working conditions are illustrated in
this part, which are listed in Table 4, which are shown in
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Figure 7: Vibration signals. (a) Vibration signal in time domain. (b) Vibration signal in frequency domain.

Table 4: Data sets groups.

Group Training set Testing set

1 6Hz–5V Multi-A
2 6Hz–8V Multi-B
3 10Hz–5V Multi-C
4 10Hz–8V Multi-D
5 14Hz–5V Multi-E
6 14Hz–8V Multi-F
7 14Hz–8V Single-G (6Hz–3V)
8 6Hz–8V Single-H (10Hz–3V)
9 10Hz–8V Single-I (14Hz–3V)
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Tables 5 and 6. *e combinations of two parameters β and τ
exert an intricate effect on the result.

To observe the effect of the proposed method on ex-
perimental results when KL divergence changes, the average
results of multiple working conditions are displayed in
Table 5 with different combinations of β and τ of group 1 to
group 6. It can be observed that the highest classification
accuracy can reach 99.17% (when β � 2 and τ � 20) and the
classification accuracies are all below 90% without domain
adaptation (when τ � 0). From the analysis above, the
proposed method suggests a significant improvement under
multiple working conditions after reducing the probability
distribution difference between training and testing sets.

*e average results of group 7 to group 9 are shown in
Table 6, which represent the unknown working conditions. In

the first row of Table 6, although the classification accuracy
reaches 91.70% when β � 5 without domain adaptation, the
results fluctuate wildly with the lowest being 83.33%. After
domain adaptation, all the classification accuracies are higher
than 95% with the highest classification accuracy reaching
100% when β � 2 and τ � 15. *e above analysis indicates
that after reducing the probability distribution difference
between unknown data set and training data set, the trained
network is adaptable to the unknown working conditions.

3.3.3. Comparison with Different Feature Diagnosis Methods.
Data-driven fault diagnosis methods contain three main
directions: artificial intelligence-based methods, statistical
analysis, and signal processing, statistical analysis. To
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Figure 8: Effect of τ on classification accuracy.

Multi-A Multi-B Multi-C Multi-D Multi-E Multi-F Single-G Single-H Single-I

Dataset

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

V
al

u
e 

o
f 

M
M

D

τ = 0

τ = 1

τ = 5

τ = 10

τ = 15

τ = 20

Figure 9: MMD variation curve.

Shock and Vibration 9



explore the performance of the proposed method, it is
compared with the following three data-driven methods:
traditional SAE, principal component analysis (PCA), and
wavelet transform (WT), which are representative of the
three directions mentioned above. Figure 10 shows the
classification results of the nine experimental groups and the
visualization results are shown in Figure 11.

As shown in Figure 10, the average accuracies of PCA
float around 80%, the lowest of which even reaches 70% in
group 6. Both SAE and WTperform better, most fluctuating
between 80% and 90%, with the highest of traditional SAE
over 90% in group 9. In contrast, the results of the proposed
method are all over 95%, which is overall precise to other
methods in this figure.

Figure 11 displays the distribution of classification
result for five types of gears of data set multi-D (when

β � 3) of the four methods. Figure 11(a) shows the
classification result of the proposed method, where all
the five types of gears are classified and clustered with
clear boundaries and no overlap. Figure 11(b) shows the
classification result of the traditional SAE, where
the boundaries of the four faulty gear types are unclear.
*e result of PCA is shown in Figure 11(c), where the
surface worn gears are classified, but the other four types
are not separated. In Figure 11(d), the result of WTshows
that the root crack gears are classified well and the small
part of missing tooth is wrongly classified to chipped
tooth. Similar to PCA, the other three types are not
separated. From Figures 10 and 11, it is clear that
the proposed method performs better than the other
three methods in both multiple and unknown working
conditions.

Table 5: Classification accuracy for parameters combinations in multiple working conditions.

Accuracy β � 1 (%) β � 2 (%) β � 3 (%) β � 4 (%) β � 5 (%)

τ � 0 86.67 87.23 86.95 87.50 87.52
τ � 1 98.05 97.22 97.22 96.95 97.23
τ � 5 96.10 97.78 96.67 97.32 96.93
τ � 10 96.40 95.53 96.40 96.67 97.23
τ � 15 95.82 96.40 96.67 97.50 95.82
τ � 20 97.23 99.17 96.93 97.77 97.52

Table 6: Classification accuracy for parameters combinations in unknown working conditions.

Accuracy β � 1 (%) β � 2 (%) β � 3 (%) β � 4 (%) β � 5 (%)

τ � 0 87.77 83.33 87.77 89.43 91.70
τ � 1 97.23 97.80 96.70 97.80 98.90
τ � 5 97.23 97.80 97.23 97.77 98.87
τ � 10 97.77 98.90 97.80 98.33 97.23
τ � 15 97.80 100.00 96.13 98.33 97.53
τ � 20 98.33 96.70 95.57 97.53 97.80
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Figure 10: Diagnosis results of the 9 groups with 4 methods.
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4. Conclusion

In this paper, to investigate the fault diagnosis problem
under complex working conditions, a fault diagnosis
method for gearbox based on transfer learning is introduced.
*e proposed method selects sensitive features to decrease
the adverse impact of insensitive information and transfers
the knowledge learnt under single working condition to
complex working conditions through transfer learning. To
verify the performance of the model in complex working
conditions, experiments are carried out on wind turbine
drivetrain diagnostics simulator, which simulates five fault
types of gear. Results are compared with traditional SAE,
PCA, andWT, which indicate that the classification accuracy
is significantly improved after sensitive feature selection and
transfer learning. *e future work of current research can be
extended to other working conditions and data sets.
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