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Object detection is being widely used in many fields, and therefore, the demand for more accurate and fast methods for object
detection is also increasing. In this paper, we propose a method for object detection in digital images that is more accurate and
faster. )e proposed model is based on Single-Stage Multibox Detector (SSD) architecture. )is method creates many anchor
boxes of various aspect ratios based on the backbone network and multiscale feature network and calculates the classes and
balances of the anchor boxes to detect objects at various scales. Instead of the VGG16-based deep transfer learning model in SSD,
we have used a more efficient base network, i.e., EfficientNet. Detection of objects of different sizes is still an inspiring task. We
have used Multiway Feature Pyramid Network (MFPN) to solve this problem. )e input to the base network is given to MFPN,
and then, the fused features are given to bounding box prediction and class prediction networks. Softer-NMS is applied instead of
NMS in SSD to reduce the number of bounding boxes gently. )e proposed method is validated on MSCOCO 2017, PASCAL
VOC 2007, and PASCAL VOC 2012 datasets and compared to existing state-of-the-art techniques. Our method shows better
detection quality in terms of mean Average Precision (mAP).

1. Introduction

Object detection is flouted into an extensive room of
enterprises, with uses ranging from security to efficacy in
the working environments. One very simple application
can be locating the lost keys in a messy room. Other
applications are surveillance, unmanned vehicles,
counting the number of people in a scene, filtering, sa-
lacious images on the Internet, detecting abnormalities in
scenes such as bombs, real-time vehicle detection in
metro cities, machine investigation, image retrieval, face
detection, pedestrian detection, activity recognition,
human-computer interaction, service robots, and many
more [1]. )e beginning of the last decade was very lucky
for deep learning due to the increased computational
speed of GPU and the availability of extremely large
datasets that contain millions of labeled data. )ese two
proved booms to deep learning and object detection, and

a series of object detection and localization methods
started [2]. Overfeat [3] was proposed by Sermanet et al.
in 2014. It used a single convolution neural network to
perform classification, detection, and localization of
objects in images. It also emphasizes on the concept that
avoiding the training of background allows the network
to focus on positive classes merely. However, in this
method, they were not backpropagating through the
whole network. R-CNN (Region with CNN features) [4]
was proposed by Girshick et al. in 2014. It was an excellent
achievement in the field of object detection. It combined
the concept of region proposal with CNN. Selective
search was used to extract 2000 regions from the image,
and these regions were called region proposals. Support
Vector Machine (SVM) was used for detection of objects.
It gave 30 percent better performance over the existing
methods. However, still this algorithm takes a large
amount of time to train the network. Erhan et al. in 2014
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proposed a saliency-based CNN for object detection that
could handle the detection of multiple instances of the
same object [5]. Spatial Pooling Pyramid network
(SPPnet) [6] designed by He et al. speeded up R- CNN by
avoiding repeated computation of convolution features.
It also eliminated the requirement of the fixed size input
image for CNN. Fast R-CNN [7], proposed by the same
author of R-CNN in 2015, tried to solve some of the
limitations of R-CNN. It is fast in the sense that instead of
feeding 2000 region proposals to CNN every time, only
one convolution operation is done once for each image to
produce a feature map from it. Although Fast R-CNN and
SPPnet made the detection networks faster but still the
region proposal was a bottleneck. Faster R-CNN [8] was
introduced by Ren et al. in 2015. )is method replaced the
slow selective search procedure for region proposal with a
new concept called Region Proposal Network (RPN).
Faster R-CNN was dramatically faster than its previous
versions, so it could be used for object detection in real
time. All previous object detection methods look into
high probability regions of the images that may contain
objects, and the training is a two-stage process, but You
Look Only Once (YOLO) [9] uses a single CNN to
generate class probabilities and bounding box predictions
direct from the input image in only one pass making it
faster than all previous methods. However, one major
drawback of YOLO is that it fails to detect small-scale
objects due to its spatial restrictions. Shrivastava et al. in
2016 proposed an online hard example mining (OHEM)
[10] method for training region-based CNN for object
detection. OHEM automatically selects difficult examples
and excludes numerous heuristics and hyperparameters
to streamline the training process of R-CNN. Liu et al. in
2016 proposed the Single-Shot Multibox detector (SSD)
[11] that speeds up the system by removing the necessity
of the region proposal network. It performs both de-
tection and localization using small convolution filters. It
achieves a better balance between speed and accuracy.
Dai et al. in 2016 introduced Region-based Fully Con-
volutional Networks (R-FCN) [12]. )is detector is fully
convolutional with nearly all calculations shared with the
whole input image. Recently, transfer learning models
have been adopted to increase the efficiency of CNN
models. All fully CNN image classifier-based networks
such as Resnet [7, 13] and VGG net could be adopted by
R-FCN for object detection automatically. YOLOv2 [14]
was published by Redmon and Farhadi in 2017, intro-
ducing some improvements in YOLOv1. When compared
to F-RCNN, it was noticed that YOLOv1 made many
noticeable localization errors. )erefore, they applied
batch normalization to all convolution layers. )e
method also increases the image resolution for object
detection. )ey used anchor boxes instead of fully con-
nected layers to predict bounding boxes. However, there
is a little reduction in accuracy with the use of anchor
boxes. YOLOv2 can work with a variety of sizes, attaining
a good balance between speed and accuracy. RetinaNet
[15] was proposed by Lin et al. in 2017. )e model ad-
dresses the issue of the foreground-background class

imbalance problem faced during the training process of
single-short detectors. Single-short detectors are less
accurate than two-stage detectors due to this problem.
RetinaNet solves this problem by using a loss function
named as focal loss which castigates simply classified
examples, i.e., background examples.

)e main contributions of this paper are as follows:

(a) In this paper, we propose a method for object de-
tection in digital images based on Single-Stage
Multibox Detector (SSD) architecture.

(b) )is proposed model creates many anchor boxes of
various aspect ratios based on the backbone network
and proposed multidirectional feature pyramid
network (MFPN) and calculates the classes and
balances of the anchor boxes to detect objects at
various scales.

(c) Instead of the VGG16-based deep transfer learning
model in SSD, we have used a more efficient base
network, i.e., EfficientNet. Softer-NMS is applied
instead of NMS in SSD to reduce the number of
bounding boxes gently.

)e remaining paper is organized as follows. Section 2
discusses the related work. )e proposed model is presented
in Section 3. Experimental results are presented in Section 4.
Section 5 concludes the paper.

2. Related Work

Modern object detectors can be classified as one-stage de-
tectors and two-stage detectors. YOLO and SSD are state-of-
the-art one-stage object detectors. )e most promising two-
stage detector is Faster R-CNN. Two-stage detectors are
more accurate than single-stage detectors in terms of mean
Average Precision (mAP). However, one-stage detectors are
fast enough to make real-time object detection possible.

Figure 1 depicts the common architecture of modern
object detectors. )e base network plays an important role
both in one-stage and two-stage detectors. 80% of the total
time is consumed on the base network of SSD, concluding
that, with a faster and more precise base network, SSD can
perform better. Some new base networks like ResNet [16]
and ResNeXt [17] have shown better performance and
replaced Alex Net [18] and VGG Net [19] in recent object
detection models. Every new BaseNet is increasing the
number of layers to get better results. However, the problem
of vanishing gradients [20] hinders the improvement in the
performance. Moreover, the networks with a larger number
of layers are difficult to train. Going deeper is not the only
solution. Scaling can be done along the dimensions. Effi-
cientNet [21] has solved this problem by introducing the
concept of compound scaling. To get better accuracy, scaling
is required along the dimensions, i.e., width, depth, and
resolution. In EfficientNet, the resolution is scaled by 15%,
depth by 20%, and width by 10%. )e architecture of
EfficientNet is described in Table 1 given below.

)e architecture consists of 7 Inverted Residual Blocks
(IRB), also called MBConv Blocks [22]. In this, 1× 1
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convolution is applied first, and then, depth-wise convo-
lution of 3× 3 is applied to decrease the number of attributes.
In the last 1× 1, convolution is applied to decrease the
number of channels. In previous works, equal importance is
given to the channels in the feature map received from the
convolution layer. However, it is not possible that all
channels are of the same importance. )erefore, to differ-
entiate the features, some weight is assigned according to
their significance. EfficientNet uses squeeze and excitation
methods to treat the channels according to their importance
by assigning some weights to them. Self-learning of weights
is done by CNN.

Second, a building block of the object detector is the
feature network that takes input features from the base
network and outputs the fused features by considering the
most salient features. Feature Pyramid Network (FPN) is
used by many object detectors for this purpose. FPN is good
at combining features at different scales. RetinaNet [15],
PANet [23], and NAS-FPN [24] used FPN for feature fusion.
)ey all simply add up the features by considering them
equally important without considering their influence [7].
)erefore, there is a need to design a FPN that can take into
consideration the multiscale features. We have tried to
improve multiscale feature fusion by proposing a different
approach that is based on the multidirectional feature
pyramid. We will explain this architecture in detail in the
next section.

Both one-stage and two-stage detectors use the concept
of anchor boxes. In the x× y feature map, for each location,
we get n anchor boxes with different aspect ratios and size. In
YOLO, we get 98 anchor boxes, and in SSD, we get 8732
bounding boxes, which is much larger in number compared
to YOLO. Out of the predicted bounding boxes by regres-
sion, which one is most appropriate and accurate in terms of
intersection over union (IoU), can be determined by
Nonmaximum Suppression (NMS). First, it chooses the
bounding box with the best probability value. In the next
step, it compares its IoU with other boxes. It eliminates the
boxes with less and finds the best one from the predicted

bounding boxes. It eliminates the bounding boxes with IoU
greater than 50 percent. )e process is repeated until there is
no further elimination. NMS avidly agrees to select the
highest-scored bounding box and eliminates all other
bounding IoU which are greater than a specified threshold
value. Nevertheless, accurate object location sometimes
cannot be determined by high classification values and can
lead to object localization disappointments. Many variations
of NMS such as Regression-NMS [25, 26], Soft-NMS
[27, 28], and Softer-NMS [29, 30] have been implemented in
literature. Soft-NMS animatedly decreases the score value on
the basis of the recently computed NMS. Whenever greater
overlap is detected, it associates a higher score and so a
greater chance of elimination. Softer-NMS tries to remove
two problems in NMS: (a) the first problem arises when all
bounding boxes for an object are imprecise in any of the
coordinates [31] and (b) the second problem arises when a
bounding box with the precise location is assigned a low
confidence score [32].

3. Proposed Method

In this section, first we will discuss the reason why we have
changed the base network of SSD. )en, we will explain the
architecture of the proposed Feature Pyramid Network, i.e.,
MFPN and the mathematics behind it. In the last, we will
explain the NMS method applied in our work. Figure 2
shows the detailed architecture of the proposed method.

3.1. Base Network. Images of size 224× 224 were used to
train early CNNs. Modern CNNs are trained on 480× 480
image size. In our proposed work, we have trained the
network with an image resolution of 1024×1024. An in-
crease in resolution allows the system to extract detailed
features. One more thing is that high resolution images must
need CNNs with more layers, i.e., depth scaling. )e reason
behind deeper networks is that bigger receptive fields can
extract alike features that include more pixels in high

Base network Feature network
Bounding box and 

category 
prediction

Features
Fused 

features

Figure 1: Architecture of the object detection model.

Table 1: Architecture of EfficientNet.

Level x Convolution function FX Resolution HX×WX No. of channels CX No. of layers LX

1 Convol 3× 3 224× 224 32 1
2 k3× 3, IRB1 112×112 16 1
3 k3× 3, IRB6 112×112 24 2
4 k3× 3, IRB6 56× 56 40 2
5 k3× 3, IRB6 28× 28 80 3
6 k3× 3, IRB6 14×14 112 3
7 k3× 3, IRB6 14×14 192 4
8 k3× 3, IRB6 7× 7 320 1
9 Convol 1× 1, pooling, FC 7× 7 1280 1
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resolution images. Width of a network (number of channels)
can also be increased to acquire the fine-grained features in
an image. )at is why we have replaced the traditional VGG
net with EfficientNet. EfficientNet increases system speed
and accuracy by using the concept of compound scaling
(width, depth, and resolution) as discussed in the previous
section.

3.2. Multiway Feature Pyramid Network (MFPN). In SSD,
after the feature extraction phase, we obtain a feature layer of
size x× y with n channels (8× 8 or 12×12 or larger). Fol-
lowing which a 3× 3 convolution is performed on x× y× n
feature layer to get fused features from multiple scales. We
have replaced these extrafeature layers with Multiway
Feature Pyramid Network (MFPN) that groups features at
different resolutions. MFPN allows the detected features to
flow in multiple directions to get better fused features.
Features detected at various resolutions do not always pay
the same weightage to output of the system. Extra weights
are assigned to each input layer so that the network can learn
the significance of each filter fusion process. Instead of

traditional convolutions, we have applied depth-wise de-
tachable convolution. Steps to fuse low-level features with
high-level features are given below:

(I) Nodes with one input edge do not need any feature
fusion. )erefore, such nodes are removed.

(II) If the input and output nodes are at the same level,
then an extra edge is added between them.

(III) )e two-way path is built so that it can be repeated
multiple times to get better feature fusion.

(IV) Apply weighted fusion given as follows:

O �∑
m

wm

∈ + ∑nwn · Im, (1)

where Im represents the input features at level m
and wm is the learnable weight input features at
level m. Value of ∈ is a small random value near to
and greater than zero.

(V) Integrate MFPN multiscale connections with
weighted fusion as given below:

F
n

inter � Convol
w1 · F

n

in + w2 · Resize F
n+1
in( )

w1 + w2 + ∈
 , (2)

F
n

out � Convol
w1
′ · Fnin + w2

′ · Fninter + w3
′ · Resize Fn−1out( )

w1
′ + w1
′ + w1
′ + ∈

 , (3)

where Fninter represents features at intermediate level n on the
top-down path of MFPN and Fnout represents the output
features at level n on the bottom-up path of the MFPN.

Input features from the feature layers (F2, F3, F4, F5, F6,
and F7) of EfficientNet are fed to MFPN for multiway and
multiscale feature fusion.)e output fromMFPN is given to
the classification and bounding box regression head to
eliminate the number of detected bounding boxes’ softer-
NMS [31] is used instead of normal NMS in SSD. Table 2
shows the configuration details of the proposed system. Our
work is mainly inspired by Tan et al. [33].

4. Implementation Details and Experiments

)e experiments including training are done on Ubuntu 18.04.
)e frameworks used are TensorFlow 2.0 and OpenCv 3.4.9.
Hardware used is Dell Precision T3500 Workstation with Intel
Xeon 5600 series processor, CUDA enabled TITAN XP GPU
with 12GB RAM. )e experiments are carried out on the
MSCOCO 2017 dataset. )e performance is also tested on the
PASCAL VOC 2007 test set. Stochastic Gradient Descent is
used for optimization with momentum of 0.9 and weight decay
of 4e− 5.)e learning rate is increased steadily from 0.0 to 0.12
during very first epoch of each model’s training period.

Learning rate annealing is used after that to get the adaptive
learning rate. After each convolution layer, batch normalization
is used. Batch size used for training is 128, and number of
epochs for each model is 300. )e Swish activation function is
used instead of ReLU due to its simplicity. )e results are
compared with state-of-the-art techniques on the basis of mean
Average Precision (mAP). Scaling the network along all di-
mensions-width, depth, and resolution leads to improved
performance. EfficientNet uses this concept of compound
scaling and outperforms AlexNet, VGG16, and ResNet50 for
object detection in terms of mAP, as shown in Table 3.

Table 4 shows the various dimensions and parameters of
the proposed system and the state-of-the-art techniques.)e
number of parameters of the proposed system is less when
compared with better performance in terms of mAP.

Table 5 shows the overall proposed system’s comparison
with state-of-the-art techniques, and Figures 3 and 4 show
the visual results. Simply replacing the base network gives
7% improvement in mAP and replacing FPN with the
proposed feature fusion network gives an increase of 4%.
Using Softer-NMS gives an improvement of 3%. Applying
augmentation techniques gives 2% improvement.

Figure 4 depicts the qualitative performance evalua-
tion of the state-of-the-art techniques and the proposed
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system. )e other algorithms are not detecting all in-
stances of objects, i.e., the number of false negatives for
the three algorithms is more than the proposed

algorithm, that is a great improvement. Figures 5–10
show the precision call curves for the state-of-the-art
and proposed systems.
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Figure 2: Architecture of the proposed system.

Table 2: Configuration details of the proposed system.

Input size No. of channels (MFPN) No. of layers (MFPN) No. of layers’ bounding box and classification head Suppression method

1024 224 7 4 Softer-NMS

Table 3: Comparison of backbone networks with different feature fusion architectures on the MSCOCO test set.

Backbone network Feature fusion network mAP

AlexNet FPN 33.06
VGG16 FPN 38.41
ResNet50 FPN 44.98
EfficientNet B4 FPN 45.32

EfficientNet B4 MFPN (proposed) 49.21

Table 4: Model characteristics.

Model Backbone Image resolution Parameters (M)

SSD Mobilenet V2 224× 224 3.22
Faster -RCNN Inception_ResNet V2 600×1024 13.3
YOLOv3 Darknet 416× 416 65
Proposed EfficientNet B4 1024×1024 21

Table 5: Performance evaluation and comparison in terms of average precision (AP).

Model Backbone mAP (PASCAL VOC 2007) mAP (PASCAL VOC 2012) mAP MSCOCO

SSD Mobilenet V2 68.02 71.02 42.07
Faster-RCNN Inception_ResNet V2 70.57 73.18 46.79
YOLOv3 Darknet 71.24 68.90 50.73
YOLOv3 VGG16 62.53 64.77 50.82
YOLOv3 AlexNet 56.90 58.02 49.84
Proposed + S-NMS EfficientNet 73.13 74.85 52.62
Proposed with augmentation EfficientNet 76.01 77.43 54.01
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Figure 4: Continued.
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YOLOv3 Proposed method
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Figure 4: Continued.
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Figure 4: Continued.
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YOLOv3 Proposed method
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Figure 4: Comparison of object detection results.
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Figure 5: Precision-recall curve for SSD.
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Figure 6: Precision-recall curve for faster-RCNN.
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Figure 7: Precision-recall curve for YOLOv3.
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Figure 8: Precision-recall curve for the proposed system without augmentation.
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5. Conclusion and Future Scope

Images at higher resolution can be more helpful for the
detection of small objects. Keeping this idea in mind, an
input image of 1024 ×1024 is taken as input. EfficientNet
is used as a backbone to provide a combination of depth,
width, and resolution scaling. To fuse high-level features
with lower-level features at different scales, Multiway
Feature Pyramid Network is used with weighted fusion.
)e system is further improved with Softer-NMS. )e
quantitative results show an improvement of 4% in mean
Average Precision (mAP) on the MSCOCO dataset.
Subjective results show that the number of false negatives
in the proposed technique is less than the number of false
negatives in state-of-the-art techniques.

In the future, we will try to enhance the results by
using the ensembling of the deep transfer learning model.
Additionally, the proposed model can be tested for other
kinds of datasets.

Data Availability

Data will be made available from the corresponding author
upon request.
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