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Abstract— Machine (deep) learning-enabled accurate traffic
modeling and prediction is an indispensable part for future
big data-driven intelligent cellular networks, since it can help
autonomic network control and management as well as service
provisioning. Along this line, this paper proposes a novel deep
learning architecture, namely Spatial–Temporal Cross-domain
neural Network (STCNet), to effectively capture the complex
patterns hidden in cellular data. By adopting a convolutional long
short-term memory network as its subcomponent, STCNet has
a strong ability in modeling spatial–temporal dependencies. Be-
sides, three kinds of cross-domain datasets are actively collected
and modeled by STCNet to capture the external factors that
affect traffic generation. As diversity and similarity coexist among
cellular traffic from different city functional zones, a clustering
algorithm is put forward to segment city areas into different
groups, and consequently, a successive inter-cluster transfer
learning strategy is designed to enhance knowledge reuse. In ad-
dition, the knowledge transferring among different kinds of
cellular traffic is also explored with the proposed STCNet model.
The effectiveness of STCNet is validated through real-world
cellular traffic datasets using three kinds of evaluation metrics.
The experimental results demonstrate that STCNet outperforms
the state-of-the-art algorithms. In particular, the transfer learning
based on STCNet brings about 4%∼13% extra performance
improvements.

Index Terms— Cellular traffic prediction, big data, deep learn-
ing, intelligent traffic management.

I. INTRODUCTION

AS TECHNOLOGICAL innovations gather pace,

the smart phone evolution in the past decade has

accelerated data generation and explosion, which has sped

the era of big data [1]–[4]. Among all the data sources,
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mobile traffic [5], [6] will represent 20 percent of the total

Internet traffic by 2021 and particularly, data traffic produced

by smartphones will surpass 86 percent of all the mobile

data traffic as the emergence of various mobile applications

such as live streaming, virtual reality and Internet of

vehicles [7]. To meet the diverse requirements of the mobile

users, an emerging consensus on the adoption of machine

(deep) learning and artificial intelligence (AI) [8]–[10]

to the fifth-generation mobile networks (5G) and beyond

has been intensively investigated [11]–[14]. In particular,

the International Telecommunication Union (ITU) has recently

launched a new focus group to assist AI and machine learning

in contributing to the efficiency of the emerging 5G systems.

The introduction of AI will enable wireless networks to

self-optimize, improve efficiency, and deliver optimal user

experiences, and consequently, lead to more stable network

connections for individual users and for businesses [15].

On the way to AI-enhanced fully automated network man-

agement, one of the essential problems lies in the accurate

traffic prediction [11] because many tasks in wireless com-

munications require real-time or non-real time traffic analysis

and prediction capabilities. For instance, the efficiency of

the demand-aware resource allocation is largely benefited

from the accurate prediction of future wireless traffic [16].

Besides, the functional base station (BS) sleeping mechanism

also relies heavily on the knowledge of the predicted traffic

of specific BSs or areas to achieve the purposes of green

communications and critical user requirements [17]. How-

ever, it is a very challenging task to simultaneously predict

cellular traffic network-widely due to the following reasons.

Firstly, mobile users have various needs at different time in

different places and this makes the traffic hard to predict.

Secondly, user mobility introduces spatial dependencies into

cellular traffic among geographically distributed cells [18].

Finally, cellular traffic is influenced by many external factors

such as the number of BSs. These factors further complicate

the spatiotemporal dependencies among cellular traffic of

different BSs.

Researchers in recent years have made great efforts to

solve the above mentioned challenges. Inherently, cellular

traffic prediction can be treated as a time series forecasting

problem. According to the solving methods, existing works

can be roughly divided into two categories, i.e., statistical-

based methods and machine learning-based methods. For the

first category, the cellular traffic is modeled and predicted
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based on the statistics or probabilistic distributions, including

α-stable distribution [19], AutoRegressive Integrated Moving

Average (ARIMA) [20]–[22], covariance function [23] and

entropy theory [24]. These works have made a comprehensive

exploration and characterization on the patterns and character-

istics of cellular traffic. It has been demonstrated that the traffic

is temporally self-similar and spatially inhomogeneous but

also correlated to each other. In prediction, the spatial and/or

temporal dependencies are modeled to improve performance.

Generally, most of these methods are linear statistical methods.

However, it becomes increasingly clear that linear models are

not adapted to many real applications [25]. Though several

nonlinear models were proposed such as generalized autore-

gressive conditional heteroskedasticity, the analytical study of

nonlinear forecasting method is still in its infancy compared

to linear models.

For the second category, with the accumulation of massive

cellular traffic data and the advances in machine learning

and AI techniques [26]–[29], data-driven machine learning-

based traffic prediction methods have established themselves

as strong competitors to classical statistical models and

obtained tremendous attentions in wireless communication

domain [30]–[33]. In the beginning, several shallow learning

methods such as linear regression [34] and support vector

regression (SVR) [35], are utilized for traffic prediction. With

the fast development and widespread penetration of deep

learning [10], how to make an accurate traffic prediction for

cellular networks by leveraging the powerful deep learning

techniques has become a hot topic. Nie et al. [30] proposed a

deep learning-based prediction method in which the temporal

dependence is captured by the low-pass component of discrete

wavelet transform. To further capture the spatial dependence

of wireless traffic among geographically distributed cell tow-

ers, [31] designed a hybrid deep learning model for spatiotem-

poral prediction, in which the spatial dependence is modeled

by autoencoders and the temporal dependence is captured

by Long Short-Term Memory networks (LSTM). Instead of

using all neighboring traffic information, the most correlated

neighbors that have the highest correlation coefficients with

the target BS are selected to provide the spatio-temporal

information [36]. In order to simultaneously capture the spatial

and temporal dependencies of traffic and predict the traffic

in citywide scale, the convolutional neural networks (CNN)

are leveraged in [32] and [33]. Specifically, Zhang et al. [32]

proposed a novel framework by fusing different kinds of

temporal dependencies, i.e., closeness and period, using a

parametric-matrix-based fusion strategy, then densely con-

nected CNN [37] is introduced to learn spatial dependence

and enhance feature propagation. While in [33], the authors

proposed a multi-step prediction framework based on convolu-

tional LSTM (ConvLSTM), which has the ability of modeling

temporal and long-distance spatial dependencies.

All the above works mainly focus on the cellular traf-

fic dataset itself, and various external factors such as BSs

information and POIs distribution, are hardly ever considered.

However, it is well understood that these influential factors

are directly correlated to the generation of cellular traffic [5],

[6]. Besides, current works on network-wide traffic prediction

failed to capture the pattern diversity of different city func-

tional zones and the traffic similarity of various services.

Motivated by the aforementioned problems, this work

focuses itself on deep learning-based accurate traffic

prediction in cellular networks under the scenario of cross-

domain big data. In order to make a full characterization on

external factors that influence cellular traffic volume, three

kinds of cross-domain datasets, i.e., BSs information, POIs

distribution and social activity level, are actively collected

in this paper. The correlations between these datasets and

different kinds of cellular traffic are investigated and analyzed

in detail to facilitate cellular traffic prediction. The citywide

cellular traffic data are then clustered into several groups

to model pattern diversity of different functional zones.

After the clustering operation, a novel traffic prediction

framework, namely, Spatial-Temporal Cross-domain neural

Network (STCNet), is designed and a successive inter-cluster

transfer learning strategy is put forward to enhance prediction

performance. To further exploit the similarities of different

kinds of cellular traffic, the model-based transfer learning is

also explored in this work. Specifically, the main contributions

of this paper can be summarized as follows.
• Three kinds of cross-domain datasets are actively col-

lected and their correlations with different types of cel-

lular traffic are investigated in detail. Although it is

a preliminary analysis on these datasets, it is of great

importance in designing prediction model.

• A novel deep learning based traffic prediction architecture

is proposed and it can effectively fuse the cross-domain

datasets into a unified representation. The spatial, tem-

poral and various external factors that influence traffic

generation can be well captured by ConvLSTM and

CNN. The dense connectivity pattern is introduced in the

feature learning process and it can enhance the feature

propagation and reuse for traffic prediction.

• To capture the pattern diversity and similarity of cellular

traffic of different city functional zones, a clustering

algorithm is put forward to segment city areas into

different clusters. Then, a successive inter-cluster transfer

learning strategy is proposed to capture the regional

differences and similarities from spatial and temporal

domain, respectively.

• The model-based deep transfer learning is also explored

to fully utilize the spatiotemporal similarities of different

kinds of cellular traffic, thus further improve prediction

performance.

Our findings show that the cross-domain datasets have a

high correlation with the cellular traffic and the introduction

of these datasets greatly benefits the prediction performance.

To demonstrate the superiority of the proposed deep learning-

based traffic prediction architecture, it is validated on three

kinds of real world cellular traffic datasets. The experimental

results show that the proposed prediction architecture outper-

forms baseline methods greatly and the model-based transfer

learning can indeed improve prediction performance.

The rest of this paper is organized as follows. Section II

gives a detailed description of the cellular traffic dataset and a

preliminary analysis associated with the main observations on
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Fig. 1. The spatial and temporal dynamics of cellular traffic.

the dataset. Then Section III introduces the overall prediction

framework based on deep learning including spatiotemporal

and external factors modeling of cellular traffic. The detailed

experiment setup and results analysis are shown in Section IV.

Finally Section V concludes the work.

II. DATASET DESCRIPTION AND

PRELIMINARY ANALYSIS

In this section, detailed cellular traffic dataset considered in

this work is introduced. The traffic dynamics along with the

spatiotemporal dependencies are displayed from spatial and

temporal domain, respectively. In addition, the cross-domain

datasets that model the external factors to cellular traffic are

described and their correlations with different kinds of cellular

traffic are also represented.

A. Big Traffic Data From Cellular Networks

The cellular traffic dataset analyzed in this paper comes

from a large telephony services provider in Europe, Telecom

Italia, as part of the “Big Data Challenge” [38]. The dataset

is collected from 11/01/2013 to 01/01/2014 with a temporal

interval of 10 minutes over the whole city of Milan (62 days,

300 million records, about 19 GB). The area of Milan is

divided into a grid overlay of H × W (100 × 100) squares

and the size of each square is about 235 × 235 meters and we

refer to it as a cell.1 In each cell, three kinds of cellular traffic

are recorded by the service provider, that is, short message

service (SMS), call service and Internet service. For a specific

service type s ∈ {SMS, Call, Internet}, the city wide cellular

traffic can be denoted as a spatiotemporal sequence of data

points Ds = {Ds,t |t = 1, 2, · · · , T }, where T is the total

number of time intervals. Ds,t is the traffic matrix at the t-th

time interval in a geographical area represented as H × W

cells and it can be written as

Ds,t =

⎡

⎢

⎢

⎢

⎢

⎣

d
(1,1)
s,t d

(1,2)
s,t · · · d

(1,W )
s,t

d
(2,1)
s,t d

(2,2)
s,t · · · d

(2,W )
s,t

...
...

. . .
...

d
(H,1)
s,t d

(H,2)
s,t · · · d

(H,W )
s,t

⎤

⎥

⎥

⎥

⎥

⎦

, (1)

where d
(h,w)
s,t measures the cellular traffic volume in a cell

with coordinates (h, w) and the sequence can be regarded as a

1This is actually the best coverage approximation of a cellular tower from
publicly available dataset in such a large scale and fine granularity.

tensor Ds ∈ R
T ×H×W . Note that the next preliminary analysis

from spatial and temporal domain is suitable to any kinds

of cellular traffic. Thus, for ease of readability, the notation

of service type is omitted in the following, that is, Ds,t =

Dt and d
(h,w)
s,t = d

(h,w)
t , unless otherwise specified. After

carefully exploring the cellular traffic dataset, the spatial and

temporal dynamics and the corresponding correlation analysis

are demonstrated in Fig.1.

Fig.1a shows the temporal dynamics of different kinds of

cellular traffic in different cells. The x-axis denotes the time

interval index (in hour scale) and y-axis the number of events

of a specific cellular traffic. The upper sub-figure shows the

SMS traffic dynamics, the middle one is the CALL and the

bottom one shows the Internet. It can be clearly seen from

Fig.1a that: 1) The cellular traffic, no matter which type they

belong to, show strong daily patterns in all the three different

cells; 2) The daily patterns of different cellular traffic are not

the same. For example, the Internet service has shorter peak

traffic hours compared with SMS service and Call service;

3) For a specific service, the traffic patterns of different cells

have considerable differences. Taking the cell Navigli as an

example, there is a significant delay in the arriving of the

peak traffic hours compared with the other two cells. Fig.1b

displays the autocorrelation of SMS in a specific cell.2 The

autocorrelation coefficient [32] at cell (h, w) is computed as

follows:

rk =

∑T −k
t=1 (d

(h,w)
t − d̄(h,w))(d

(h,w)
t+k − d̄(h,w))

∑T
t=1(d

(h,w)
t − d̄(h,w))2

, 0 � k � T,

(2)

where d̄(h,w) represents the mean value of the cell over time

domain. As depicted in Fig.1b, the cellular traffic exhibits

non-zero autocorrelations in time domain and this indicates

the future traffic volume can be predicted through historical

observations.

Fig.1c shows the spatial distribution of SMS traffic at

a specific time interval. We can see from this figure that

the traffic are distributed unevenly among the whole city.

Accordingly, Fig.1d shows the spatial correlation in terms of

Pearson correlation coefficient ρ, which is a widely adopted

metric for measuring spatial correlations [31], [32] and its

2The other traffic of different cells show similar results and we only take
SMS traffic for demonstration purpose and omit the other autocorrelation
results.
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definition is expressed as

ρ =
cov(d(h,w), d(h′,w′))

σd(h,w)σd(h′,w′)

, (3)

where cov(·) denotes the covariance operator and σ is the

standard deviation. It can be clearly told that the spatial

correlation indeed exists among different cells. The degree of

spatial correlation depends, to a certain extent, not only on

the distance between any two cells. For example, though cell

(3, 5) and cell (5, 5) are with the same distance to the target

cell (4, 4), their correlation values, which are 0.62 and 0.92,

respectively, are not the same.

B. Cross-Domain Datasets Description

The cellular traffic volume is influenced not only by the

spatiotemporal factors, but also by other external factors such

as the number of BSs and POIs of a cell. For example,

the number of BSs of a cell decides how much traffic load can

be carried. When the traffic load reaches its peak, the observed

traffic volume is fixed no matter how many extra users

enter this cell. In order to achieve accurate cellular traffic

prediction, multiple influencing factors must be considered

based on cross-domain datasets, since different datasets can

characterize the cellular traffic from different perspectives.

Intuitively, the number of BSs and POIs as well as social

activities of a cell can directly reflect user’s requesting

ability for telecommunication services, therefore three kinds

of cross-domain datasets are considered in this work,3 i.e.,

the BSs information, the POIs distribution and the social

activity level.

The dataset about BSs information is obtained from Open-

CellID [39], which is an open-source project collecting data

about mobile cells all over the world. This dataset con-

tains many types of information about the BS such as

the location (longitude and latitude), the mobile country

code and the estimated coverage range of each BS. With

the geolocation information of each cell, we can map the

location of each BS to the cell which the BS is located

in after simple preprocessing. Then the number of BSs of

each cell d
(h,w)
BS can be calculated. This BSs information is

denoted as

DBS =

⎡

⎢

⎢

⎢

⎢

⎣

d
(1,1)
BS d

(1,2)
BS · · · d

(1,W )
BS

d
(2,1)
BS d

(2,2)
BS · · · d

(2,W )
BS

...
...

. . .
...

d
(H,1)
BS d

(H,2)
BS · · · d

(H,W )
BS

⎤

⎥

⎥

⎥

⎥

⎦

. (4)

For the POIs distribution information, which can be crawled

using Google Places API [40]. Specifically, 13 kinds of POIs

are collected including subway station, store, restaurant, etc.

The detailed description on each category is displayed in

Table.I. The number of each category is added together to

form the final representation. The matrix generated through

3The cellular traffic may also influenced by other factors, but they are not
considered in this work due to the availability of datasets.

TABLE I

DETAILED STATISTICS OF THE DATASETS

POI dataset is expressed as

DPOI =

⎡

⎢

⎢

⎢

⎢

⎣

d
(1,1)
POI d

(1,2)
POI · · · d

(1,W )
POI

d
(2,1)
POI d

(2,2)
POI · · · d

(2,W )
POI

...
...

. . .
...

d
(H,1)
POI d

(H,2)
POI · · · d

(H,W )
POI

⎤

⎥

⎥

⎥

⎥

⎦

. (5)

The social activities of a cell reflect the overall user demand

degree for network services. The dataset on social activity level

is obtained through Dandelion API [41]. The obtained data

contains the information a user generated when using twit-

ter, such as the location and keywords. After preprocessing,

the social activity level can be obtained and we denote this

matrix as

DSocial =

⎡

⎢

⎢

⎢

⎢

⎣

d
(1,1)
Social d

(1,2)
Social · · · d

(1,W )
Social

d
(2,1)
Social d

(2,2)
Social · · · d

(2,W )
Social

...
...

. . .
...

d
(H,1)
Social d

(H,2)
Social · · · d

(H,W )
Social

⎤

⎥

⎥

⎥

⎥

⎦

, (6)

where d
(h,w)
social represents the number of social activities of cell

(h, w).

The complexity of obtaining the above three kinds of cross-

domain datasets is relatively low as there exists standard

APIs for these data. These datasets are treated as static in

our work, this is because they will not frequently change

over a period of time. So once obtained, these datasets can

be used in model training. The heatmaps generated by the

above three kinds of cross-domain datasets along with the city

topology and cell partition of Milan are displayed in Fig.2,

which contains 5 layers. From the bottom layer to the top

one, these 5 layers are city topology of Milan, illustration

of different cells, BSs distribution, social activity level and

POIs distribution. It can be seen from this figure and Fig.1c

that the cross-domain datasets have similar spatial distribution

compared with cellular traffic of different services. The city

center has more facilities than rural areas, thus more traffic is

generated in these places.
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Fig. 2. Heatmap of cross-domain datasets along with the city topology and
cell division of Milan.

Fig. 3. Correlation analysis between different kinds of cellular traffic and
external datasets.

To further quantify the spatial correlations between cross-

domain datasets and cellular traffic, the Pearson correlation

coefficients are calculated and shown in Fig.3. From this

figure, several important observations can be concluded in the

following. 1) The spatial correlations, which can be calculated

using equation (3), among three kinds of cellular traffic are the

highest. This indicates that different kinds of cellular traffic

have a certain similarity, thus the pattern knowledge learned

from one type of traffic data can be transferred to another type

of traffic data. 2) The BSs distribution is most correlated to

cellular traffic compared with the other datasets. This shows

that the number of BSs in a cell indeed influences the traffic

generation thus it can be used as features to facilitate traffic

prediction. 3) In terms of POI categories, social gathering

places like cafe, bar and restaurant have high correlation

Fig. 4. STCNet framework.

coefficients with cellular traffic. This indicates that the number

of POIs of a cell can influence the number of users, thus

further influence the traffic volume. 4) The social activity level,

along with the other kinds of POIs have a less correlation with

cellular traffic, but the values are also non-zeros.

Based on analysis of the above spatial correlations, it can be

concluded that the cross-domain datasets considered, i.e., BSs

information, POIs distribution and social activity level, have

high correlation coefficients with different kinds of cellular

traffic. They should be considered in the design of cellular

traffic prediction model.

III. CELLULAR TRAFFIC PREDICTION

FRAMEWORK: STCNET

In this section, the proposed deep learning prediction archi-

tecture, STCNet, is introduced and the diagram is displayed

in Fig.4. Specifically, a comprehensive description on the

main body of STCNet is given first. To segment city areas

into different functional zones, the clustering algorithm is

designed. Then, a successive inter-cluster transfer learning

strategy is put forward to enhance knowledge reuse and

prediction performance.

A. Prediction Model

There are three inputs for the proposed STCNet. As shown

in Fig.4, the first input (Dt−1, · · · , Dt−p , p ∈ N ) is a sequence

of data traffic matrix before the target time interval. The second

input (m) refers to the metadata of datetime corresponding to

the time interval, such as day of week and hour of day. The

third input represents the cross-domain datasets including BSs

information (DBS), POIs distribution (DPOI) and social activity

(DSocial). To handle these three different inputs according to

their data format and characteristics, three kinds of neural

networks are designed as follows.

1) Spatiotemporal Modeling: The first input can be seen

as a video-like data which has p frames4 and each frame is

a one-channel image. It is well know that CNN has strong

abilities to model spatial dependence as it can effectively fuse

local area information and automatically extract features for

specific tasks. But time sequence information is not precisely

4A frame denotes a traffic snapshot at one time interval.
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captured by CNN. While LSTM networks can well model the

sequences information of cellular traffic. Thus by combining

CNN and LSTM, a two-layer ConvLSTM network is designed

to simultaneously model the spatial-temporal dependencies

and the sequence information, as shown in Fig.4.

Each unit in the ConvLSTM layer has one memory cell

C to accumulate state information. This memory cell can

be accessed and modified through three self-parameterized

controlling “gates”, i.e., input gate ig , forget gate fg and

output gate og . Specifically, whenever a new input comes to the

ConvLSTM unit, the information it carries can be stored to C if

the input gate ig is activated. Similarly, the past cell status can

also be forgotten in this process if the forget gate fg is on. The

final hidden state H is controlled by the output gate og , which

decides whether the cell output C should be propagated to the

final state or not. We specify the key operations of ConvLSTM

unit on the frame Dt−n in below, where n ∈ {1, 2, · · · , p}.

σ(·) denotes the activation function, ∗ denotes the convolution

operation and ⊙ is the Hadamard product:

i τ
g = σ(Wdi ∗ Dτ + Whi ∗ Hτ−1 + Wci ⊙ Cτ−1 + bi ),

f τ
g = σ(Wd f ∗ Dτ + Wh f ∗ Hτ−1 + Wc f ⊙ Cτ−1 + b f ),

Cτ = f τ
g ⊙ Cτ−1+i τ

g ⊙ tanh(Wdc ∗ Dτ +Whc ∗ Hτ−1+bc),

oτ
g = σ(Wdo ∗ Dτ + Who ∗ Hτ−1 + Wco ⊙ Cτ + bo),

Hτ = oτ
g ⊙ tanh(Cτ ). (7)

In the above equation, W(·) and b(·) are the weights and

biases to be learned, respectively. Besides, tanh(·) refers to

the hyperbolic tangent function which acts as nonlinear trans-

formation of input. Note that the i τ
g , f τ

g , oτ
g , Cτ and Hτ in the

ConvLSTM unit are all three-dimensional tensors. The output

of ConvLSTM network is denoted as Ost ∈ R
F×H×W , where

F is the number of feature maps.

2) Meta-Data Embedding: As the date and time information

of the cellular traffic is recorded when mobile users asking

for services, we extract the meta data and treat them as

features. For example, if the datetime of t-th time interval

is 13:00:00 11/19/2014, then four kinds of meta data are

extracted, i.e., Day_of_Week (Tuesday), Hour_of_Day (13),

is_Weekday (Yes), is_Weekend (No), and form a feature vector

m. This feature vector is fed into a two-layer neural network,

in which the dimensionality of m is increased from 4 to

F × H × W . The mathematical expression of ometa is denoted

as

ometa = σ(w2
metaσ(w1

metam + b1
meta) + b2

meta), (8)

where wl
meta and bl

meta are learnable parameters at l-th layer,

l ∈ {1, 2}. Then after a reshape operation, the output of this

component, Ometa, can be obtained.

Ometa = Reshape(ometa), (9)

where ometa ∈ R
F H W×1 and Ometa ∈ R

F×H×W .

3) Cross-Domain Data Modeling: To model external influ-

encing factors of traffic generation and learn feature repre-

sentations contained in the cross-domain datasets, a two-layer

CNN architecture is designed. In this architecture, the datasets

DBS, DPOI and DSocial are processed into a tensor Dcross

through concatenation operation. After performing nonlinear

transformation on Dcross, the initial feature representations of

cross-domain datasets Ocross can be obtained and written as

Ocross = f (Wcross ∗ Dcross), (10)

Dcross = DBS ⊕ DPOI ⊕ DSocial, (11)

where ⊕ is the concatenation operation and similarly, Wcross

is the weights that will be learned through optimization.

f (·) represents a composite function that implements the

Batch Normalization (BN),5 rectified linear units (ReLU) and

convolution operation (Conv) sequentially.

4) Feature Learning With Dense Convolutional Network:

The three outputs are fused together by the concatenation

operation which can be expressed as

O = Ost ⊕ Ometa ⊕ Ocross, (12)

where O refers to the overall representation of the initial

feature map and is also the input to the dense convolutional

network. Note that the addition operation is not recommended

in this process since it mixes different kinds of information

together and does not benefit the effective feature learning.

This component consists of L layers and each layer imple-

ments a composite function fl(·), which is the same as the

one in cross-domain data modeling, that is, fl (·) = f (·) except

that l indexes the layer.

In order to fully capture the spatial-temporal dependencies

and many other external influencing factors that affect cellular

traffic volume, the dense connectivity pattern is designed in

this component. This kind of connectivity denotes that there

exist direct connections from any layer to all subsequent layers

and the resulting layout of this component is illustrated in

Fig.4. Consequently, the l-th layer receives the feature maps

of all preceding layers, O0, O1, · · · , Ol−1, as input:

Ol = fl (O0 ⊕ · · · ⊕ Ol−1), (13)

where O0 = O. The output at the last layer of this compo-

nent can be expressed as OL ∈ R
H×W . After an activation

operation, the final prediction is obtained.

Ŷ = σ(OL). (14)

Thus the objective function of STCNet is to minimize the

Frobenius norm of error matrix between prediction and ground

truth over all cells. It can be expressed as

L(θ) = arg min
θ

‖Ŷ − Y‖F , (15)

where θ refers to the parameters of STCNet and can be easily

trained through optimization techniques.

5BN is used to accelerate deep neural network training by reducing internal
covariate shift. Training a deep network model is complicated by the fact
that the distribution of each layers inputs changes during training, as the
parameters of the previous layers change. This slows down the training by
requiring lower learning rates and careful parameter initialization, and makes
it hard to train models with saturating nonlinearities
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Fig. 5. Transfer learning strategy for traffic prediction.

B. Successive Inter-Cluster Transfer Learning

The pattern of cellular traffic for different areas of cellu-

lar networks is very complex since diversity and similarity

coexist. These coupled influence factors will lead to serious

performance degradation of prediction methods, if they are not

properly captured and modeled. Hence, aiming to capture the

pattern diversity and similarity of different areas in generating

cellular traffic, a clustering algorithm and a transfer learning

strategy are proposed in this work, as shown in Fig.5a.

For the clustering algorithm, by incorporating cellular traffic

dataset Ds and cross-domain datasets DBS, DPOI and DSocial,

the overall feature representation D is first formed. Then a

graph can be obtained, in which vertices are the cells and

edges denote the adjacency information of different cells, that

is, if two cells are horizontally or vertically adjacent, then

they form an edge in the graph. Based on the descriptions

of vertices and edges, the corresponding adjacency matrix A

can be calculated whose weights are the gradients of D. Next,

the Laplacian matrix can be constructed as

L = P−1/2AP−1/2, (16)

where P is a diagonal matrix whose (i, i)-element is the

sum of A’s i -th row. After that, the k largest eigenvectors

of L, x1, x2, · · · , xk , can be achieved and form the matrix

X = [x1x2 · · · xk] ∈ R
n×k by stacking the eigenvectors in

columns. Note that the rows of X should be renormalized to

have unit length. The rows of X can be treated as features

of cells, then we perform K-Means algorithm on X and thus

k clusters are found. Finally, the cluster label of each cell is

obtained.

On the basis of clustering results, an inter-cluster transfer

learning strategy is designed to learn the pattern similarity

of different areas. This kind of similarity indicates that the

traffic pattern knowledge learned from one cluster could be

transferred to other clusters. Transfer learning can make the

prediction model avoid learning from scratch thus accelerate

the optimization process. As shown in Fig.5a, the strategy is

described as follows: the dataset of the first cluster is trained

through STCNet and the parameters can be learned. Then

these learned parameters are treated as prior knowledge of

the second cluster (parameters’ initialization) and continually

trained using the dataset of the second cluster. This operation is

repeated on all the clusters and we can get all the models. The

obtained models can well capture both the pattern diversity and

similarity of different areas, since the operation of successive

transferring of knowledge.

C. Transfer Learning Among Different Kinds of Cellular

Traffic

From the preliminary data analysis in Section II-B, it can

be told that there exist high similarities among datasets of

SMS, Call, and Internet, which indicate the possibility of

knowledge transferring. Thus, similar to the successive inter-

cluster knowledge reuse, we further propose a model-based

transfer learning strategy to fully exploit the similarities among

cellular traffic. The workflow of this strategy is illustrated

in Fig.5b. Specifically, a model MS can be obtained after

training STCNet using data from the source domain S. Then

MS can be transferred to the target domain T by means

of parameter initialization. The parameters of STCNet are

continually trained using data from target domain and the

model MT can be learned. Finally the prediction is carried

out on the test data of the target domain and the results can

be obtained.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, extensive experiments are conducted to

demonstrate the effectiveness of STCNet for cellular traffic

prediction. The experimental settings and key parameters

are given first. Then the performance metrics and baseline

methods which we compared with are described in detail.

Next we give the overall prediction performance of STCNet

and baseline methods on various kinds of cellular traffic and

particularly, give the predictions and ground truth comparisons

for two randomly selected cells in the city. The transfer

learning results on different kinds of cellular traffic are also

given.

A. Data Preprocessing and Experiment Settings

As traffic values of some cells at certain time intervals are

missing due to data storage error or not properly transmitted.

So data completion needs to be done before proceeding to

the next stage of cellular traffic prediction. We use a standard

way [42] to fill missing values of cell (h, w), that is, these

values are represented by the mean traffic volume values of

its surrounding cells. The operation is expressed as

d
(h,w)
t =

∑

i∈[−1,1]

∑

j∈[−1,1]

d
(h+i,w+ j )
t

8
. (17)

The granularity of the original cellular traffic is 10-minute

and we first group it into hour scale due to the following

reasons: 1) Most of the cells have traffic volume of zero
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in 10 minutes, thus the data are very sparse and not conducive

to traffic prediction. 2) Resource planning, such as cell zoom-

ing, in 10-minute level is a very challenging task for network

operators and may result in unstable networks or excessive

overhead. Then the traffic volume is scaled into range of

[0, 1] using Min-Max normalization to accelerate the training

process. When the prediction is finished and the evaluation is

performed, the value is rescaled back to its normal scale. Data

from the first seven weeks are utilized to construct training

dataset, and consequently, data from the last week are used

to construct test dataset, on which the performance of various

prediction algorithms will be tested. Both training and test

datasets are constructed using sliding window method with

window size p = 3.

The STCNet is optimized using a stochastic gradient-based

optimization technique, Adam [43] which is widely used in

current deep learning domain. Besides, the model is trained

for 500 epochs with batch size 32. An adaptive learning rate

α is adopted in this work, whose initial value is set to be

0.01 and will be divided by 10 and 100 at 50% and 75% of

the total number of training epochs accordingly.6 The initial

convolution layers have 16 filters (F = 16) with kernel

size (3 × 3) and ReLU activation function except for the

last layer, which has 1 filter with kernel size (1 × 1) and

sigmoid activation function. The values of these parameters are

determined based on experiment requirements and other values

can also be chosen, but the optimization of these parameters

are not focused in this work.

B. Evaluation Metrics and Baseline Methods

Three metrics are adopted in this work for the sake of a

comprehensive evaluation of different prediction algorithms.

The first one is Root Mean Square Error (RMSE). This

is a frequently used measure of difference between values

predicted by a model and the values of ground truth.

RMSE =

√

∑T
t=1

∑H
h=1

∑W
w=1(d̂

(h,w)
t − d

(h,w)
t )2

T × H × W
(18)

The second one is Mean Absolute Error (MAE). MAE mea-

sures the average of the absolute differences between predic-

tion and ground truth where all individual differences have

equal weight.

MAE =

∑T
t=1

∑H
h=1

∑W
w=1 |d̂

(h,w)
t − d

(h,w)
t )|

T × H × W
(19)

The last metric is R-squared (R2), which represents the

proportion of the variance in the dependent variable that is

predictable from the independent variable(s).

R2 = 1 −

∑T
t=1

∑H
h=1

∑W
w=1(d̂

(h,w)
t − d

(h,w)
t )2

∑T
t=1

∑H
h=1

∑W
w=1(d̄

(h,w) − d
(h,w)
t )2

(20)

For RMSE and MAE, the smaller the value, the better the

performance. On the contrary, for R2 metric, a larger value

implies a better fitting to the data, thus, a better performance.

6It should be noted that the choices of batch size and learning rate have
indeed great influence on the prediction performance and we follow the
choices of previous work in deep learning domain. The strategies that finding
the best values of these hyper-parameters are beyond the scope of this work.

In order to show the superiority of our proposed cellular

traffic prediction model, the performance of STCNet is com-

pared with several classical baseline methods that are widely

used in time series prediction. The reference approaches

including Linear Regression (LR) [34], Support Vector Regres-

sion (SVR) [35], LSTM networks [36] and Spatial-Temporal

Densely Connected CNN (DenseNet) [32]. The LR and SVR

are representatives of shallow machine learning methods and

they have a wide range of applications in various fields.

Different from LR and SVM, LSTM and DenseNet are two

deep learning-based prediction methods that achieve the state-

of-the-art in cellular traffic prediction.

C. Prediction Performance on Different Kinds of Traffic

The results of evaluation metrics on three different kinds of

cellular traffic are plotted in Fig.6. Among all the sub-figures,

Fig.6(a)-(c) represent the results on SMS dataset in terms of

RMSE, MAE and R2, respectively. Accordingly, Fig.6(d)-(f)

are the results on the Call dataset and Fig.6(g)-(i) the results

on the Internet dataset.

As can be clearly seen from Fig.6, our proposed STCNet

achieves the best prediction results in terms of RMSE, MAE

and R2 score on all the three kinds of cellular traffic. The

reasons behind the success of our model can be attributed

into threefold. First, the spatial and temporal dependencies are

simultaneously captured by the STCNet, particularly by the

ConvLSTM component. Second, the cross-domain datasets,

such as BSs information and POIs distribution, put a spatial

constraint on the cellular traffic generation. They can be used

as features to enhance traffic prediction. Third, the traffic

pattern diversity and similarity of different areas are fully

exploited through our successive inter-cluster transfer learn-

ing strategy. Compared with prediction methods with similar

network architecture but using different inputs, ST-Net and

STM-Net,7 STCNet presents the best overall results, which

validates the benefits of including meta data and cross-domain

datasets.

As cellular traffic dynamics are highly nonlinear from both

temporal and spatial dimensions, this makes the prediction of

future traffic volume a very challenging task and beyond the

ability of linear models. Thus the LR method performs the

worst among all the methods. The SVR method, which is a

nonlinear model, can deal with the nonlinearities of cellular

traffic, thus obtains better results than LR method. For the

prediction method based on LSTM network, the performance

is not as good as STCNet since only temporal dependence is

considered and the spatial dependence of cellular traffic from

different cells is ignored. Both the spatial and temporal depen-

dencies are captured by the DenseNet-based method, hence it

improves prediction performance greatly but still inferior to

our proposed STCNet model. This is because the sequence

information of traffic frames is not modeled. In addition,

DenseNet prediction method relies only on the cellular traffic

itself and the various external factors that influencing traffic

generation are not considered.

7Specifically, ST-Net takes only cellular traffic as its input, while STM-Net

has two inputs, i.e., cellular traffic and meta-data feature.
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Fig. 6. Comparisons of prediction performance on three different kinds of cellular traffic in terms of various evaluation metrics.

TABLE II

THE IMPACTS OF EACH KIND OF CROSS-DOMAIN DATASETS

ON THE PREDICTION PERFORMANCE

Fig.6 has shown the benefits of introducing cross-domain

datasets into cellular traffic prediction, but the contribution of

each kind of data is not clear.

Thus the impacts of social, BSs, and POIs datasets on

prediction performance are further explored and summarized

in Table II. In this table, “No cross-domain” represents the case

that we do not use the cross-domain datasets when training

the model, while “+A” denotes that dataset A is incorporated

into training. For instance, “+ Social” indicates that social

activity data is considered when training prediction model.

From Table II, it is noticeable that the performance can be

considerably improved by introducing cross-domain datasets.

Different kinds of cross-domain datasets have different influ-

ences on the performance. For SMS dataset, social data brings

about 3.7% improvements in terms of RMSE, while BSs 5.5%

and POIs 8.4%. At the same time, social data brings about

16.2% improvements with respect to MAE, while BSs 11.9%

and POIs 13.6%. So each type of cross-domain datasets has

different impacts on the prediction performance. But from the

perspective of overall results, BSs and POIs data can bring

more performance gains than social data.

D. Comparisons of STCNet and Baselines

To demonstrate the prediction performance of our proposed

STCNet, the comparison between predicted values and ground

truth along with the corresponding error analysis are displayed

in Fig.7 and Fig.8. Specifically, Fig.7 shows the results of cell

(50, 60), which belongs to the area of Milan’s Duomo, a very

famous tourist attraction that is located in the city center of

Milan. Fig.8 shows the results of another totally different cell

(44, 56), which is located in the Navigli District, one of the

most famous nightlife places in Milan.

The three sub-figures on the left side of Fig.7 show the

comparisons between predicted values and real values on

datasets of SMS, Call and Internet traffic, respectively. The

x-axises denote the time interval index of the test dataset and

the y-axises are the traffic volume. We can see from these

sub-figures that our proposed STCNet model can accurately

predict the traffic values for all the three kinds of cellular

traffic. Though the scales of these traffic differ a lot, the peak

traffic volume can still be accurately predicted by STCNet.

The three sub-figures of bar plot on the middle side of Fig.7

are the corresponding prediction errors in terms of MAE for

traffic volume of each time interval. It can be observed from

the bar plot that the prediction errors are relatively small.

Several large errors appear around the time index of 145, at

which the traffic has a sudden increase for all the three kinds

of services. This time index actually corresponds to the New

Year’s Eve and the abnormal traffic volume is very hard to

predict, therefore large error occurs. The overall prediction

error can be more quantitatively measured by the cumulative

distribution function (CDF) as a function of prediction error

and the results are plotted in the sub-figures on the right

side of Fig.7. Results reflect that about 75% prediction errors
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Fig. 7. Prediction results of the first cell (50, 60), Milan’s Duomo.

Fig. 8. Prediction results of the second cell (44, 56), Navigli district.

are less than 100 for the SMS traffic. For Call and Internet

traffic, the values are 68 and 453, respectively. Based on the

comprehensive analysis of Fig.7, we can conclude that the

proposed STCNet can make a high prediction accuracy for

all the three kinds of traffic. Similar conclusions can be made

from Fig.8 and for simplicity’s sake, we omit them here. From

the above analysis, it can be concluded that our proposed

STCNet remains robust for different cells.

Fig.9 shows the comparisons of the predicted values versus

the ground truth for all involved methods and their correspond-

ing CDF of the prediction errors based on Internet dataset

of cell (44, 56). Results show that for methods of LR and

SVR, there exist relatively big gaps between the predictions

and the ground truth. So the performances of shallow learn-

ing algorithms are not so good since such algorithms have

limited parameter space in modeling complex cellular traffic

dynamics. This is because the increased parameter capacity

can help well capture the spatial and temporal dependencies

of the cellular traffic generated by geographically distributed

BSs. STCNet achieves the best overall performance especially

for peak traffic prediction, which can be intuitively seen from

Fig.9. The reasons can be attributed to the strong abilities

of STCNet in modeling both spatiotemporal dependencies

and spatial constraints of cross-domain datasets on cellular

traffic generation. To intuitionisticly show the performance

difference, we give the CDF of the prediction errors in the last

sub-figure of Fig.9. It is shown that 75% prediction errors of

TABLE III

TRANSFER LEARNING PERFORMANCE ON THREE KINDS OF DATASETS

LR, SVR, LSTM, DenseNet and STCNet are approximately

lower than 484, 458, 267, 227 and 179, respectively. For

the traffic data of this cell, STCNet achieves about 21%

improvements compared with DenseNet, which is the state-of-

the-art prediction method for cellular traffic. Compared with

methods that only consider cellular traffic itself, STCNet in-

deed introduces more parameters since the inputs of meta data

embedding and cross-domain modeling, but the performance

gains are quit significant.

E. Performance of Transfer Learning Between Various Kinds

of Cellular Traffic

As described in Fig.3, the correlation coefficients among

different kinds of cellular traffic are very high. This indicates

the possibility of transferring knowledge from one kind of

cellular traffic to another one. So, in this subsection, we report

the performance of transfer learning among different kinds

of cellular traffic and the obtained results in terms of three

evaluation metrics are summarized in Table III.

The “No Transferring” in Table III means the results are

achieved using only the single dataset. “Transferring with ⋆”

denotes that our results are obtained with the aid of knowledge
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Fig. 9. RMSE comparisons of prediction versus ground truth for all methods on Internet dataset of cell (44, 56).

Fig. 10. Impacts of model complexity on performances and the convergence
speed illustration.

transferred from the traffic of ⋆. To take the experiments on

SMS traffic dataset as an example, when ⋆ represents the Call

traffic, the results are obtained with knowledge transferred

from Call dataset. That is, the STCNet model is trained for

SMS traffic dataset but with parameters initialized by those

learned from Call dataset.

We can see from Table III that transfer learning can indeed

bring performance gains for all the three kinds of cellular

traffic. Taking the performance in terms of RMSE as an

example, the transfer learning brings about 7.45% and 4.17%

improvements when transferring with Call and Internet cellular

traffic, respectively. The improvements for Call cellular traffic

are 5.55% and 12.9% when transferring with SMS and Internet

cellular traffic. Similarly, the improvements for Internet traffic

are 9.27% and 8.91% when transferring with SMS and Call

cellular traffic. For the other two performance metrics, MAE

and R2, the gains can also clearly observed from Table III.

The results of Table III validate the effectiveness of transfer

learning when performing cellular traffic prediction.

F. Complexity and Convergence Analysis

The computational complexity of STCNet is O(
∑L

l=1(H ·W ·

K 2
l ·Fl−1 ·Fl)), where H and W are the height and width of the

input, Kl and Fl denote the kernel size and filter size of the l-th

layer. Since the depth of STCNet, L, dominates the complexity

and affects the final performance greatly, we investigate the

relationship of the parameter complexity and the prediction

performance. The results are represented in Fig.10, in which

the convergence speed of STCNet is also displayed.

Results demonstrate that with the increase of model com-

plexity (L), the RMSE and MAE get better first, and then

degrade substantially, while the R2 score performs relatively

stable. This is because the representation ability of the model

is enhanced as the complexity increases, but after a certain

degree, the model is too complex and overfits the data,

thus causes performances degradation. For convergence speed,

as shown in the last sub-figure of Fig.10, after 250 epochs,

the RMSE performance is largely improved and approaches

stable, reflecting the effectiveness of our adaptive learning

rate strategy. The RMSE performance tends to be stable after

300 epochs, indicating that STCNet can converge and the

training process is time efficient.

V. CONCLUSION

This work investigated the intelligent traffic prediction based

on deep learning techniques for future cellular networks.

To fully characterize various factors (spatial, temporal and

external) that affect cellular traffic generation, three kinds

of cross-domain datasets, i.e., BSs information, POIs dis-

tribution and social activity level, were crawled and their

correlations with the cellular traffic were comprehensively

analyzed. Based on these datasets, a novel deep neural

network architecture, STCNet, was proposed to predict the

cellular traffic. The ConvLSTM unit is incorporated into

STCNet to simultaneously capture the spatial and temporal
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dependencies of cellular traffic. Various cross-domain datasets

were processed as a multi-channel tensor and treated as spatial

constraints among different cells to capture the external influ-

encing factors. Besides, the STCNet adopted the dense con-

nectivity pattern to ensure maximum information flow between

convolution layers, that is, each layer of STCNet is connected

to every other in a feed-forward fashion. In addition, aiming

to model the pattern diversity and similarity of different city

areas, a clustering method was proposed to segment the city

into different functional zones and a successive inter-cluster

transfer learning strategy was put forward to achieve this

purpose. Transfer learning between different kinds of cellular

traffic was also explored. Experiments have been conducted

using real world cellular traffic datasets and the results have

demonstrated the effectiveness of our proposed STCNet model.

The prediction performances on various evaluation metrics

have shown the necessary of introducing of cross-domain

datasets to enhance traffic prediction. Experimental results

have also revealed that deep transfer learning can well capture

the similarities between different kinds of cellular traffic thus

has great potentials for intelligent traffic prediction.

One possible extension of this work would be exploring

other types of cross-domain datasets for cellular traffic pre-

diction and transferring knowledge between different cities.

Besides, designing more effective loss functions to deal with

the inherent drawbacks of lp loss would be an interesting

direction of future research. Furthermore, introducing noise

and sparsity to the dataset and designing robust predic-

tion algorithms based on transfer learning are also worth

exploring. The source code of this work is available at

https://github.com/zctzzy/STCNet.
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