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In mechanical fault diagnosis, it is impossible to collect massive labeled samples with the same distribution in real industry.
Transfer learning, a promising method, is usually used to address the critical problem. However, as the number of samples
increases, the interdomain distribution discrepancy measurement of the existing method has a higher computational complexity,
which may make the generalization ability of the method worse. To solve the problem, we propose a deep transfer learning method
based on 1D-CNN for rolling bearing fault diagnosis. First, 1-dimension convolutional neural network (1D-CNN), as the basic
framework, is used to extract features from vibration signal. The CORrelation ALignment (CORAL) is employed to minimize
marginal distribution discrepancy between the source domain and target domain. Then, the cross-entropy loss function and
Adam optimizer are used to minimize the classification errors and the second-order statistics of feature distance between the
source domain and target domain, respectively. Finally, based on the bearing datasets of Case Western Reserve University and
Jiangnan University, seven transfer fault diagnosis comparison experiments are carried out. The results show that our method has

better performance.

1. Introduction

As an essential component of mechanical system, bearing
was widely used in rotating machinery. Once the bearing
fails, it will cause the mechanical system failure resulting in
rotating machinery shutdown and even causing casualties.
Therefore, bearing fault diagnosis is of great significance to
the health and safe operation of machinery and has attracted
more and more attention in scholars and manufacturing
industries [1-3].

In the last decade, with the increasingly complex
structure of mechanical equipment structure and rapid
development of sensor technology, the acquisition of vi-
bration signal has become easy and has brought new per-
spectives and challenges to the traditional intelligent fault
diagnosis of rotating machinery [4, 5]. Zhang et al. presented
a fault diagnosis and location method based on artificial
neural networks (ANNs) [6], and support vector machine
(SVM) method can obtain a higher accuracy rate in

classification for machine diagnosis used in [7]. Random
forest (RF) classifier was used for roll bearing fault diagnosis
published in [8], and Li et al. [9] used the variational mode
decomposition (VMD) and kernel extreme machine
learning (EML) for bearing fault diagnosis. Shi et al. pro-
posed an intelligent fault diagnosis method based on deep
learning and particle swarm optimization support vectors
machine [10]. He et al. reported an intelligent bearing fault
diagnosis method based on sparse autoencoder [11]. In [12],
authors proposed a CNN model based on dislocation time
series for fault diagnosis. ANN was used to model and
identify fault signals [13]. Although these traditional intel-
ligent fault diagnosis methods mentioned above can achieve
good results, they are all based on the following two as-
sumptions: (1) a large number of labeled fault information
samples are available and (2) the training and testing
samples are shared with the same probability marginal
distribution. However, in actual engineering, it is a luxury to
collect massive labeled fault information samples, and the
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collected data from unknown operation condition are not
drawn from the same probability marginal distribution [14].

In order to satisfy the actual needs of bearing fault di-
agnosis in practical application engineering, transfer
learning, a novel classification method by using the learned
knowledge from sources domain to unknown target domain,
has attracted more and more attentions in fault diagnosis
[15, 16]. Li et al. used the multilayer domain adaptation
method to estimate the discrepancy of source domain and
target domain for fault diagnosis [17]. A transfer learning
method based on hierarchical deep domain adaptation was
proposed for fault diagnosis [18]. An instance transfer
learning method based on the long-term memory recurrent
neural network model was proposed to solve the problem of
difficulty in obtaining a large number of labeled fault data
[19]. In order to overcome the problem of sparse feature
space and few unlabeled fault data problem of some modes,
in [20], Hao et al. proposed a multimodel transfer learning
method for chemical process fault diagnosis. An and Ai
proposed a fault diagnosis method based on end-to-end
unsupervised domain adaptive Riemann CORrelation
ALlignment metric [21]. Xu et al. presented a transfer
component analysis (TCA) method trying to learn some
transfer components across domains aiming to alleviate
insufficient data conditions [22].

Based on the abovementioned literature analysis,
transfer learning has made a great breakthrough in the field
of insufficient training data and data collected in varying
condition. However, the existing transfer learning-based
methods mainly focus on how to measure the interdomain
feature marginal distribution discrepancy in domain ad-
aptation. MMD (maximum mean discrepancy), a well-
known domain adaptation method for distance metric, has
been widely adopted in marginal distribution optimization
and has achieved better performance [23-25]. Nevertheless,
the limitation of MMD in the domain adaptation is that as
the number of samples increases, the computation cost will
increase exponentially, resulting in poor generalization
ability. Thus, it is difficult to meet the requirements of real-
time and generalization for fault diagnosis methods in real-
world industries.

Motivated by the analysis abovementioned, this paper
proposes an intelligent bearing fault diagnosis method based
on deep transfer learning with CORAL loss metric, which is
used to measure interdomain marginal distribution dis-
crepancy. First, as a basic feature representation-learning
framework, CNN is used to obtain the robust feature space
from vibration signals. To estimate the marginal distribution
discrepancy between source domain and target domain, the
nonlinear transformed CORAL domain adaption is
exploited to minimize marginal distribution discrepancy
and at same time to constrain the CNN parameters aiming to
obtain more robust feature representation learned by CNN
also. Then, two objectives need to be optimized, respectively.
One optimization objective is a conditional classifier based
on CNN, using the cross-entropy loss function to minimize
classification error. The other is the second-order statistics of
features between the optimal features of source domain and
target domain, which are optimized by the Adam method.
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Finally, twelve comparative experiments based on Case
Western Reserve University bearing dataset and six com-
parative experiments based on Jiangnan University bearing
dataset are carried out to verify the effectiveness of our
method. The main contribution of our method lies in the
following aspects:

(1) One-dimensional (1-D) CNN is build to extract
representation features from the original vibration
signal, and then the domain adaptation is performed
only in the latter two layers unlike other CNN in
latter three layers, with the purpose of reducing
computation cost.

(2) A differentiable loss function is constructed for
extending CORAL metric domain adaptation to
minimize the marginal distribution discrepancy
from  cross-domain  representation  feature
covariance.

(3) Two objectives are optimized by cross-entropy loss
function and Adam optimizer, to minimize the
classification error for CNN and second-order sta-
tistics feature of source domain and target domain,
respectively.

The remainder of this paper is organized as follows. In
Section 2, the theory of TL, CNN, and CORAL is briefly
introduced. In Sections 3, our method is described in detail.
The comparison experiments for verifying the performance
of the proposed method based on bearing dataset are studied
in Section 4. Conclusions are given in Section 5.

2. Theoretical Background

In this section, we will mainly introduce the model structure
of TL and CNN, which is usually used to transfer learned
knowledge from source domain to the target and to classify
fault. In addition, we will introduce the relevant theoretical
knowledge of CORAL.

2.1. Transfer Learning. TL, an important branch of machine
learning, is usually used to tackle the problem of insufficient
data and marginal distribution inconsistency by learning
knowledge from training data to testing data. It has been
widely used in fault diagnosis [26]. Dg used to define the
source domain has massive distinguishing knowledge which
is the main object to be migrated. D, denotes the target
domain, which obtained the knowledge learned from Dy,
and transfer learning tries to apply the knowledge distin-
guished learned previously from Dg to D,. x; and X rep-
resent the feature of ith sample and the feature space of
samples, respectively. s and ¢ are used to identify the source
domain and the target domain, respectively. The class space
of the source domain and target domain can be expressed as
Y, and Y,; meanwhile, ys and y, represent the categories of
the source domain and target domain, respectively.

The classification accuracy of traditional machine
learning methods will drop sharply when source domain and
target domain did not have the same marginal distribution.
Thus, domain adaptation was used to weaken the influence



Shock and Vibration

of marginal distribution inconsistency from the two do-
mains [27]. As shown in Figure 1, the data marginal dis-
tribution of the target domain is quite different from that of
the source domain before domain adaptation. After domain
adaptive learning, the data marginal distribution difference
between the two domains is reduced to achieve the mi-
gration from the source domain to the target domain.

Given a labeled source domain D = {x{, y}'°, and an
unlabeled target domain D, = {x}"" , the marginal distri-
bution of the two domains is P (x°) and P (x*) and satisfied
P(x%) # P(x'), but their feature spaces meet 2, = Z,, and
their category spaces are the same, that is, Ys =Y,.

MMD, a widely used distance in transfer learning for
interdomain distribution discrepancy measure, was explored
to construct as a new regularized item in loss function to
make the distribution discrepancy of the two domains as
small as possible. It can obtain the nonparametric distance
from interdomain feature distribution without calculating
the intermediate density. To measure the marginal distri-
bution discrepancy by migrating data in the reproducing
kernel Hilbert space (RKHS), the calculation formula of
MMD is defined as follows:
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where ¢ (o) is the nonlinear mapping from the original
feature space to RKHS and H indicates that the distance is
measured in RKHS. For a detailed introduction about
MMD, please refer to [28].

2.2. Convolutional Neural Network. CNN, one of the most
representative networks in the field of deep learning, was
extensively used in civil structures, mechanical structures,
and wind engineering [29, 30]. It has three layers such as
convolution layer, pooling layer, and full connection layer.

Convolution layer is the core layer of CNN, which
contains a set of trainable filters. Weight sharing is the most
important characteristic of the convolution layer. It is used
to optimize the network parameters to avoid over fitting
caused by too many parameters and to relax the computer
load, which is expressed as follows:

K= f Y kb)), (2)

IGMj

where x' denotes the Ith feature in the j layer, M and k
indicate the set of input features and the convolution kernel,
respectively, and f(e) and b are the nonlinear activation
function and the bias term, respectively. The commonly used
activation function is ReLU (rectified linear unit), which is
expressed as follows:

ReLU (x) = max(0, x). (3)

Generally speaking, the pooling layer (PL) performs the
down sampling operation. The main purpose of PL is to
reduce the parameters of the neural network while retaining
the representative features and to prevent over fitting and
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FIGURE 1: The framework of transfer learning.

improve the generalization ability of the model. The PL
operation can be carried out as follows:

1+1

X = p(), (4)

where xlj+1 is the jth feature of [+ 1 layer and p(xlj) rep-
resents pooling operation, respectively.

The full connection layer plays the role of “Classifier”
in the whole neural network. First, the output of the last
pooling layer is expanded into a one-dimensional feature
vector as the input of the fully connected layer. Then, the
inputs and outputs are fully connected, and the activation
function of the hidden layer is ReLU. Finally, the Softmax
function is used to the output layer; the calculation of full
connection layer is given as follows:

x = f(wlxl_1 + bl), (5)

where w' and V' indicate the weight and bias of the full
connection layer, respectively, and f (e) denotes the non-
linear activation function. As the [ layer was the hidden layer,
the ReLU was used as activation function usually, and when
the I + 1 layer was the output layer, the activation function
was changed to Softmax and it was given by

_p(y(i) _ llx(i); 8) b —engx(z‘) _
- - TX i)
p(y" =21x":6) L
hy(x) = = W , (6)
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where p(y@ = k|x?; ) is the probability denoted that input
feature x category  j,
0,,0,...,0, € R"™" is the parameters of the model, and
1/ Zf’:l ¢%*" is used to normalize the marginal probability
distribution so that the sum of all the probabilities is equal to 1.

ith  sample belongs to



2.3. Correlation Alignment Metric. CORAL is an effective
and simple unsupervised adaptive method which was first
proposed by [31] and widely used to measure the discrep-
ancy of source domain and target domain in model rec-
ognition such as it aligns the input feature distributions of
the source and target domains by exploring their second-
order statistics. Therefore, the only computations it needs
are computing covariance statistics in each domain. When
incorporated into a deep neural network, it can be sum-
marized as follows:

ZcoraL = 4—;2cov(Hs) - cov (H,)p, (7)
where cov(X) = XTC,X denotes the covariance matrix and
C, =1,- (1/n)1,1] denotes that the centering matrix I,, isa
n-dimensional vector with all elements being one.

Compared with MMD, the difference is that MMD-
based approaches usually apply the same transformation to
both the source and target domain. [31] And asymmetric
transformations are more flexible and often yield better
performance for domain adaptation tasks [32]. Therefore,
we use CORAL as a measure of the difference between the
two domains instead of MMD to get better results.

The domain adaptation is achieved by minimizing the
difference between the feature space of the source domain
and the target domain, and the CORAL method is used. By
taking the coral loss into the optimization objective, the
similarity of the feature space learned in the source domain
and the target domain is maximized so as to make up for the
deficiency of CNN’s insufficient learning of domain in-
variant feature space.

3. Proposed Method

This section is divided into subheadings. It should provide a
concise and precise description of the experimental results,
their interpretation as well as the experimental conclusions
that can be drawn.

3.1. Condition Classifier Based on CNN. The condition
classifier based on CNN consists of 10 layers of one-di-
mensional CNN, including one input layer, four convolution
layers, two pooling layers, two fully connected layers, and
one output layer. In 10 layers of CNN, the first seven layers
are called feature extractors, which are used to extract the
conditional representative feature from vibration signals.
Meanwhile, the last layer is regarded as the condition
classifiers for judging the condition of the test sample. The
input layer is constructed by one-dimensional vibration
signal with the length of 784. In the convolution layer,
convolution kernels are used for the local region of the input
signal and generate corresponding features as shown in
Figure 2.

In order to reduce the dimension of convolution features
and preserve representatively features as much as possible, a
pooling layer is connected after the first convolution layer
and last convolution layers. Through four convolution layers
and two pooling layers operation, the input features will
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become flat in the first fully connected layer F1. And then, in
the two fully connected layers, the distribution discrepancy
of interdomain is estimated by CORAL metric. Finally, the
category of input sample is recognized by Softmax classifier.
Feature extraction is mainly composed of one-dimensional
CNN, and its structure and parameters are given in Table 1.

3.2. Domain Adaptation Based on CORAL. Domain adap-
tation is an important means to transfer knowledge from
source domain to target domain when data marginal dis-
tribution is inconsistent between source domain and target
domain, which determines the efficiency of knowledge
transfer. The common MMD domain adaptation criteria
have high computational complexity and low generalization
ability with the increase in data volume. In order to effec-
tively measure the data marginal distribution difference
between the source domain and the target domain, we use a
differentiable loss function to minimize the similarity
comparison of the marginal distribution differences between
the source domain and the target domain [31]. As shown in
Figure 2, we introduce the domain adaptive learning module
in FC1 and FC2 of the full connection layer to calculate the
covariance distance between the features at FC1 and FC2 of
the source and the target domains and define it as CORAL
loss. The calculation formula is as follows:

1
CORALloss = @|CS - CT|12;, (8)

where | - I% is the Frobenius norm of the matrix and Cg and
C are the covariance matrices of the source domain and
target domain. Their calculation formulas are as follows:

1 T L o T/ T
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= (RO 0TRY 07R)) i
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where 1 is the column vector with elements of 1, Fy is the
output data of the source domain passing through the full
connection layer FC, F; is the output data of the target
domain passing through the full connection layer FC, and ng
and ny are the number of samples of the source domain and
the target domain, respectively. Their gradient calculation is
as follows:
ij

aeCORAL 1 {( T 1 T T T)T )
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aeCORAL 1 [( T Lo s T T)T >U
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(10)

3.3. Optimization Objective. In this subsection, we will
concern the optimization objectives of the proposed method
in detail. There are two objectives need to be optimized: (1)
minimize conditional classification errors on the source
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TABLE 1: Structure and parameters of CNN. Lo
2
Layers Parameters Activation function Leorar = /\lzl Elcs h CT|F’ (12)
Input — — !
Convl  Kernels: 1x64x16, stride: 16 ReLU where [, and [, are 7-th layer and 8-th layer, respectively,
Pooll Tride: 2, max pOOh,ng - which means that the network adaptation is carried out from
Conv2 Kernels: 1 x 3 x 32, stride: 1 ReLU
. layer 7 to layer 8, and the former layers are not employed

Conv3 Kernels: 1 x5 x 64, stride: 1 ReLU d . daotati Theref the 1 functi £
Conv4 Kernels: 1 x 5x128, stride: 1 ReLU omain adaptation. theretore, the foss tunction of our
Pool2 Tride:2, max pooling _ method is constructed as follows:
FC1 Weights: 5000 ReLU L=L +\L 13
FC2 Weights: 1000 ReLU ¢ 7 TCORAL (13)
Output Weights: 10 Softmax

domain dataset given as in Figure 2 and (2) minimize the
second-order statistics (covariance) of the source and target
features between the source domain and the target domain.
For the first optimization goal, we aim to minimize the
condition classification errors of health condition category
on the source domain data set by reducing the cross-entropy
loss function. The specific calculation formula is expressed as
follows:

6l x @
. e’
i = J]log k. 0x0 |
1=1€

(11)

where m is the batch size of training samples, j is the fault
category, and I[e] is the index function. The second opti-
mization object is the covariance distance between FC1S/
FCIT and FC2S/FC2T in the fully connected layer. The
covariance distance is written as follows:

Let 6, and 0. be defined as parameters of feature ex-
tractor and condition classifier, respectively. Therefore, the
loss function is rewritten as follows:

L(Gf, ec) = Lc(ef, ec) + ALCORAL(Gf).

Based on equation (14) and the stochastic gradient de-
scent algorithm [33], the parameters 6 and 6, are updated
as follows:

(14)

aLc aLCORAL
(15)
oL,
6C<_06 -1 a_ec’

where 7 is the learning rate; the marginal distribution dis-
crepancy between the source domain and the target domain
can be minimized by domain adaptation, and the unlabeled
samples in the target domain can be classified correctly by
the condition classifier.



3.4. Overview of This Proposed Method. In the training
process of the proposed method, the Adam optimization
algorithm is used for objective optimization [34], which can
effectively accelerate the training process and solve the
optimal problems for a large number of parameters. First, we
divide the bearing data from different domains into training
set (source domain) and testing set (target domain). In the
feature extraction process, the forward propagation method
was used to extend samples from source domain and target
domain into the CNN to facilitate the feature extraction by
the CNN. Then, in the domain adaptation process, the
multilevel covariance distance of features between two
domains is calculated to increase the similarity between the
two domains as much as possible. Finally, we optimize the
loss function by iterative to constrain the parameters of
CNN and train the conditional classifiers in the optimization
process until the end of the iterative. After the training, the
obtained conditional classifier will be used to classify
samples in the target domain. The specific training process is
shown in Figure 3.

4. Experiment and Result Analysis

In order to test the performance of the proposed intelligent
fault diagnosis method and verify its effectiveness, we
conducted experiments using two bearing datasets. Com-
parative experiments are also carried out to compare the
classification accuracy with existing methods including
traditional CNN without transfer learning, TCA-based [22]
method, handcrafted feature-based CORAL [31] method,
Wasserstein distance-based deep transfer learning (WD-
DTL) [35] method, DDC [36] method, and DAN [37]
method.

4.1. Description of Dataset

4.1.1. CWRU Bearing Dataset. The data for Experiment 1 of
this method come from the Bearing Data Center of Case
Western Reserve University [38], and the original vibration
signal for carrying out experiment collected from the
standard platform is shown in Figure 4.

The vibration signal is collected by the bearing test
platform which consists of a motor (left), a dynamometer
(right), and a control circuit, and the experiment data are
arranged on the bearing (SKF6205). We divide the experi-
mental datasets into four categories. Each class has 10 groups
data, including one category of general data and nine cat-
egories of fault data, namely, normal (N), inner-race fault
(IF), outer-race fault (OF), and ball fault (BF). Each fault
type has different degrees of fault severity (0.007 inch, 0.014
inch, and 0.021 inch fault diameters). So, there are 9 fault
conditions and 1 health condition. More details are given in
Table 2.

In our experiment process, we select the original vi-
bration signal with the sampling being 12kHz, and four
different motor speeds (1797 rpm, 1772 rpm, 1750 rpm, and
1730 rpm) are applied to the bearing. We regard them as
four different operating conditions (named A, B, C, and D),
and each operating condition contains 1500 samples
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(including 9 classes of fault, each class has 150 samples,
respectively, and 150 samples with health condition). The
waveforms of various categories of original vibration signal
for experiment are illustrated in Figure 5. Assuming that the
source domain is workload 0 and the target domain is
workload 1, we treat the transfer task from 0 to 1 as A — B.

4.1.2. JNU Bearing Dataset. The second bearing data come
from the centrifugal fan system for rolling bearing fault
diagnosis testbed of JiangNan University [39]. The bearings
under test are single-row spherical roller bearings. The faults
were artificially induced into bearings with a wire-cutting
machine. Vibration signals of four categories of bearings
include normal, outer-race defect, inner-race defect, and
roller element defect. It contains three operating conditions,
and the rotation speed is divided into 600, 800, and
1000 rpm, and the sampling frequency is 50 kHz. In the
process of the experiment, we divided it into three different
operating conditions: E, F, and G. Each operating condition
contains 600 samples (including three types of faults, 150
samples, and 150 health samples, respectively). Figure 6
shows the waveforms of all kinds of original vibration
signals used in the experiment.

4.2. Results Comparative Analysis

4.2.1. Experimental Results of CWRU Bearing Dataset. In
order to present a comprehensive evaluation for our
method, we first carry out the fault diagnosis experiment
from source domain to source domain and from source
domain transfer to target domain. Various condition clas-
sification accuracies of the proposed method are shown in
Table 3. It can be found that our method achieves 100%
classification accuracy for source domain to source domain
and obtains 97.85% average test accuracy for source domain
transfer to target domain. In addition, it can be seen from
Table 3 that the classification accuracy of the target domain is
slightly lower than that of the source domain due to the
distribution inconsistency between different domains, but it
is not very serious.

Furthermore, to analyze the classification accuracy of
each category in more detail, the widely used confusion
matrix is used to obtain the performance of compared
methods. In this proposal, we choose the task A— B to
calculate the confusion matrix randomly. The detailed re-
sults are illustrated in Figure 7, with rows denoting actual
health category and columns representing predicted health
category.

From Figure 7, we can find that our method achieves
average classification accuracy of 98.5% for each condition
and the recognition differences for ten conditions are very
small. However, the other comparison approaches (CNN,
DDC, and DAN) have a lot of confusion across different
fault conditions than the proposed, which illustrates the
superiority of the proposed method.

In this proposed method, in order to conduct a detailed
comparative experiment, we divide the comparison algo-
rithm according to the feature extraction into four
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FIGURE 4: Bearing testbed used for experiment.

categories, when the feature extraction is the same, and then
classify according to the transfer manner. The details of
various methods are introduced in Table 4, and the com-
parative experiment by category is carried out as follows.

(1) Comparison with CNN (without Domain Adaptation). To
be fairer, the framework of CNN used for comparison with
our method is consistent with our feature extraction
framework. The only difference is that the CNN method
does not add a domain adaptation layer and is only trained
by the source domain. It can be seen from Table 5 that the
average classification accuracy of CNN in the target domain
is 90.24%, which is better than that of the handcrafted
feature method TCA and CORAL, respectively. However,
the classification accuracy of our method is 7.61% higher
than that of CNN on average. From the comparative ex-
periments in the field of unlabeled fault diagnosis, it is
necessary to perform domain adaptation and learned fea-
tures to improve the classification accuracy.

(2) Compared with TCA and CORAL. Contrasted with the
deep learning method, the main difference of traditional
transfer learning is that they rely on the handcrafted features
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TaBLE 2: Experimental data description.

Dataset Condition description Samples Operation conditions

O N P s

S O U T

O U T

p L N W B om o N o O X e e

directly used in the classifiers. In this paper, we use 21
features, including the mean, RMS (root mean square),
maximum 2-order tol0-order central moment, and 9 peaks
obtained by fast Fourier transform and combine with the
KNN algorithm for fault diagnosis experiments.

In the TCA method, the MMD was used to calculate the
distribution discrepancy of two domains, and then Gaussian
kernel function was employed to minimize the MMD. The
CORAL method aims to minimize the domain offset with
aligning the second-order statistics (alignment of mean and
covariance matrices) by linear transformation, respectively.
The details of classification accuracy of various transfer tasks
are shown in Table 5; the classification accuracy of TCA and
CORAL is lower than that of our method by 25.06% and
30.25%, respectively. The main reason for this result is that
the feature extraction manner of TCA and CORAL is
handcrafted feature. We can know that it is a very helpful
thing to replace the manual feature extract with deep feature
learning.

(3) Comparison with Transfer Learning Based on Wasser-
stein. Wasserstein was proposed to measure the discrepancy
of two probability distributions to solve the training in-
stability of GANs (generative adversarial networks) and
ensure the diversity of generated samples [40]. The ad-
vantage of Wasserstein distance over KL (Kullback-Leibler)
divergence and JS (Jensen-Shannon, JS) divergence is that it
can still calculate the discrepancy between the two distri-
butions regardless of whether the two distributions are
consistent. Although JS divergence is a constant in this case,
KL divergence may be meaningless.

Cheng et al. proposed an intelligent fault diagnosis
method based on Wasserstein distance deep transfer
learning named WD-DTL [35]. Wasserstein was used to
measure the distance from two domains and tried to reduce
the discrepancy of two domains to achieve transfer learning
fault diagnosis from different motor speed and location of
sensors. From Table 4, the WD-DTL [35] method can
achieve best classification accuracy in tasks B— C and
D — C and 95.75% average. However, the average classi-
fication accuracy is 2.1% less than that of our method.

(4) Comparison with Transfer Learning Based on MMD. As
a widely used discrepancy distribution measure in domain
adaptation, MMD estimates the distance between two
marginal distributions in Hilbert space. In this proposal,
two transfer learning methods based on MMD are

employed to comparative experiments, such as DDC [36]
and DAN [37]. In order to ensure the fairness of the ex-
periment, the CNN framework that automatically extracts
features in both methods is consistent with our method. In
the DDC method, a single kernel function is used to reduce
MMD of two domains, and the domain adaptation is only
performed in one layer of CNN. However, multiple kernel
functions are used to obtain MMD; meantime, the domain
adaptation is executed in three layers of CNN. The clas-
sification accuracy of various mentioned algorithms in the
proposed method is illustrated in Figure 8, and it can be
seen that the proposed method achieves the best classifi-
cation performance in 12 types of transfer tasks compared
with other approaches.

4.2.2. Experimental Results of INU Bearing Dataset. In order
to verify the results obtained in the previous section of the
experiment, we use another dataset to perform experiments
on each method. The experimental results obtained are
shown in Table 6, and classification accuracy of various
mentioned algorithms in the proposed method is illustrated
in Figure 9. As the difference between working conditions
increases, the accurate progress of each method is compared
with the previous experiment that has all declined, but our
method is still significantly ahead of other methods.
Therefore, the experimental conclusions obtained in the
previous section are correct.

4.2.3. Implementation Details. In this subsection, we will
give the detailed introduction about our experiments. The
software framework used is python, and the GPU is NVIDIA
GTX 1660ti. In each experiment, Adam optimizer with the
learning rate of 0.001 is set, with batch size being set to 128.
And penalty parameter lambda affects the performance of
transfer fault diagnosis. By tuning this parameter from {0.1,
0.2, 0.5, 1, 10}, best classification accuracy is acquired. As an
example, we take into account the transfer task A — B to
show the training process of its loss function. Due to Adam’s
fast characteristics, the loss value decreases rapidly in the
first 30 iterations and tends to be stable at about 50 iterations
and approaches to 0 at about 400 iterations; the detailed
process of the iteration is illustrated in Figure 10.

4.3. Feature Visualization. In order to further demonstrate
the knowledge transfer ability of our method at the feature
level, t-SNE technology is also employed to visualize learned
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TasLE 3: Classification accuracy (%) of various conditions.
Transfer condition Source domain accuracy (%) Target domain accuracy (%)
A—B 100 98.50
B—A 100 98.33
A—C 100 99.07
C—A 100 98.40
A—D 100 99.00
D—A 100 93.87
B—C 100 99.53
C—B 100 97.67
B—D 100 98.40
D—B 100 95.20
C—D 100 98.93
D—C 100 97.20
AVG 100 97.85

features for further classification accuracy analysis [41]. We
randomly select the task A— B to carry out the t-SNE
feature visualization, and the obtained results are presented
in Figure 10. It is can be seen from Table 5 that the clas-
sification accuracy obtained by TCA and CORAL is rela-
tively poor and only the visualization results of CNN, DCT,
and DAN are realized.

Figure 11(a) shows the result of CNN without domain
adaptation. Compared with the other three visualization
results, the features drawn by CNN are more relaxed, which
show that transfer learning can weaken the discrepancy from
data marginal distribution.

Figures 11(b) and 11(c) show the visualization results
obtained by DDC and DAN, respectively. The marginal
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FiGure 7: Confusion matrix of the prediction for task A — B: (a) CNN; (b) DDC; (c) DAN; (d) the proposed.

TABLE 4: Parameters and category of compared method.

Category Method Features Transfer manner
1 CNN Learned features No transfer
) TCA [22] Handcrafted features MMD
CORAL [31] Handcrafted features Covariances
3 WD-DTL [35] Learned features Wasserstein distance
4 DDC [36] Learned features MMD
DAN [37] Learned features MMD
5 Our method Learned features Covariances

distribution distances are calculated by MMD from source
domain to target domain. Although comparing with CNN
features, some fault features are still far apart, and a few
number of features overlap together. The visualization

results of the proposed method are shown in Figure 11(d),
and the feature aggregation is relatively concentrated. There
are only a few outliers in the same fault condition, and there
is almost no overlap in different feature domains. We can
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Figure 8: Classification accuracy of mentioned methods.
TasBLE 6: Classification accuracy of various methods.
Method E—F F—E E—G G—E F—G G—F AVG (%)
CNN 62.8+0.1% 51.4+0.43% 53.33+1.26% 62.4+2.13% 55.4+0.28% 56.67 +0.26% 57.00
TCA [22] 39.13+3.17%  37.33+2.22%  3293+1.13%  33.25+1.24%  42.80+0.71%  38.27+1.52% 37.29
CORAL ([31] 41.55+2.16% 36.33+4.22% 35.80+3.52% 36.86 +7.14% 37.53+1.93% 40.47 £2.18% 38.09
WD-DTL [35]  77.52+3.09%  74.80+2.10%  64.69+2.99%  72.86+2.61%  7535+259%  68.74+4.27% 72.23
DDC [36] 71.67+4.25%  73.60+4.43%  66.70+2.32%  69.87+4.12% = 73.80+2.58% = 72.07+2.21% 71.29
DAN [37] 72.90 £2.17% 76.33 +3.32% 67.67 £3.59% 66.40 + 4.68% 74.40 £ 3.63% 72.30 £2.22% 71.67
The proposed 75.50+3.11%  81.33+2.06%  75.07+3.52%  7540+0.46%  80.53+3.14%  71.67 £4.32% 76.58
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FiGure 9: Classification accuracy of mentioned methods.
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find that the learned features in domain adaptation obtained
by our method are not sensitive to domain variation and
have strong fault identification ability.

5. Conclusion

In this paper, a deep transfer learning method based on
CORAL metric for bearing fault diagnosis is proposed. The
key idea of this proposed method is to employ the nonlinear
transform-based CORAL loss function to estimate the
discrepancy of interdomain. As a feature extractor and
classifier, CNN is used to train the condition classifier model
with its parameters contrasted by CORAL loss function.
Eighteen types of fault of transfer tasks in two different
dataset are carried out to verify classification performance of
the proposed method, and five state-of-the-art architectures
are used to compare with our method. These results illus-
trated above demonstrate that the proposed approach can
achieve more satisfactory classification accuracy and domain
adaptation capabilities. However, in the second experiment,
the difference between the working conditions increased,
and the results obtained by our method were not satisfac-
tory. This may be due to the following two limitations of the
CORAL: (1) aligning covariance with usual Euclidean metric
is suboptimal and (2) second-order statistics have limited
expression for the non-Gaussian distribution [42]. There-
fore, in the next step, the authors will improve the proposed
method and devote themselves to the unsupervised transfer
learning fault diagnosis for different machines with greater
differences between domains.
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