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Abstract 

Purpose: The detection of pleural effusion in chest radiography is crucial for doctors to make timely treatment deci-
sions for patients with chronic obstructive pulmonary disease. We used the MIMIC-CXR database to develop a deep 
learning model to quantify pleural effusion severity in chest radiographs.

Methods: The Medical Information Mart for Intensive Care Chest X-ray (MIMIC-CXR) dataset was divided into patients 
‘with’ or ‘without’ chronic obstructive pulmonary disease (COPD). The label of pleural effusion severity was obtained 
from the extracted COPD radiology reports and classified into four categories: no effusion, small effusion, moder-
ate effusion, and large effusion. A total of 200 datasets were randomly sampled to manually check each item and 
determine whether the tags are correct. A professional doctor re-tagged these items as a verification cohort with-
out knowing their previous tags. The learning models include eight common network structures including Resnet, 
DenseNet, and GoogleNET. Three data processing methods (no sampling, downsampling, and upsampling) and two 
loss algorithms (focal loss and cross-entropy loss) were used for unbalanced data. The Neural Network Intelligence 
tool was applied to train the model. Receiver operating characteristic curves, Area under the curve, and confusion 
matrix were employed to evaluate the model results. Grad-CAM was used for model interpretation.

Results: Among the 8533 patients, 15,620 chest X-rays with clearly marked pleural effusion severity were obtained 
(no effusion, 5685; small effusion, 4877; moderate effusion, 3657; and large effusion, 1401). The error rate of the 
manual check label was 6.5%, and the error rate of the doctor’s relabeling was 11.0%. The highest accuracy rate of the 
optimized model was 73.07. The micro-average AUCs of the testing and validation cohorts was 0.89 and 0.90, respec-
tively, and their macro-average AUCs were 0.86 and 0.89, respectively. The AUC of the distinguishing results of each 
class and the other three classes were 0.95 and 0.94, 0.76 and 0.83, 0.85 and 0.83, and 0.87 and 0.93.

Conclusion: The deep transfer learning model can grade the severity of pleural effusion.
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Introduction
Pleural effusion is a common clinical symptom charac-
terized by pathological fluid accumulation in the pleural 
cavity [1, 2] and is related to more than 50 causes [3]. 
Congestive heart failure, pneumonia, pleural lung cancer, 
connective tissue disease, acute pancreatitis, and trauma 
may all cause an increase in pleural effusion [4, 5]. In 
the ICUs, the diagnosis of pleural effusion relies mostly 
on the anteroposterior chest radiograph obtained at the 
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bedside while the patient is in the supine position [6]. 
Severe pleural effusion in critically ill patients may con-
tribute to hypoxemia under mechanical ventilation [7] or 
lead to tamponade physiology [8]. Quantitatively assess-
ing pleural effusion volume is essential to help identify 
critically ill patients for thoracentesis [9].

Deep learning is a type of artificial intelligence that 
allows computers to learn without being explicitly pro-
grammed for a given task. More and more applications 
in medical imaging. Using deep transfer learning algo-
rithms can build efficient, objective, and accurate disease 
diagnosis and identification models [10–12]. Diamant 
et  al. [13] used transfer learning for pathological clas-
sification of chest radiographs and achieved high AUC 
results, demonstrating the strength and robustness of 
CNN extraction features. Niehues et  al. [14] developed 
and evaluated a deep learning model for identifying clini-
cally relevant abnormalities in bedside CXR, demonstrat-
ing that a bedside CXR-specific built based on a deep 
learning model showed similar performance to radiolo-
gists. However, these existing works all detect multiple 
different diseases, such as the presence of cardiac conges-
tion, pleural effusion, air cavity opacity, pneumothorax 
and other diseases, ignoring the judgment of the sever-
ity of the disease. The automated and accurate detection 
of pleural effusion severity is conducive to clinicians’ 
rapid and reliable diagnosis of patient condition and 
relieves radiologists’ work pressure. This study focuses 
on patients with COPD, but the quantification of pleural 
effusion on chest radiographs is useful throughout clini-
cal medicine.

Large-scale and general-purpose medical datasets are 
the catalyst for deep learning [15, 16]. The release of 
X-ray chest radiograph datasets [17–19] has greatly pro-
moted the realization of deep learning-based chest dis-
ease recognition [20–22] and lesion detection on chest 
radiographs [3]. However, existing deep learning classifi-
cation methods have not yet been verified on the multi-
layered recognition of pleural effusion. MIMIC-CXR [17] 
is a large publicly available X-ray film data set with free-
text radiology reports, and MIMIC-CXR-JPG [23] con-
verts its DICOM format chest film to JPG format. This 
work extracts the severity label of pleural effusion from 
radiology reports and develops a universal and clinically 
significant deep learning recognition model that auto-
matically and accurately judges the severity of pleural 
effusion on chest radiographs.

Methods
Data source
This historical cohort study used data from the free and 
open-access medical imaging database (MIMIC-CXR 
[17] and MIMIC-CXR-JPG [23] database version 2.0.0), 

which contains 227,835 data from 2011 to 2016 at the 
Beth Israel Deaconess Medical Center in Boston, Mas-
sachusetts. The dataset was de-identified to meet the 
requirements of the US Health Insurance Portability and 
Accountability Act of Safe Harbor of 1996 [24]. Protected 
health information was also deleted. The correspond-
ing access agreement was signed, the dataset was down-
loaded, and the preprocessing was performed using data 
mining methods [25]. This research was conducted in 
accordance with the Declaration of Helsinki [26] describ-
ing the ethical principles of medical research involving 
human subjects.

Data extraction and utilization
As shown in Fig.  1, we identified 9112 COPD patients 
from MIMIC-IV based on ICD 3 and ICD 4 diagnosis. 
Combined with imaging reports in MIMIC-CXR that 
were clearly expressed as with or without pleural effu-
sion after processing by Negbi [27] and Chexpert [18]. 
According to the ID correspondence, 80,260 imaging 
reports of 8533 COPD patients were obtained. Note that 
each patient may have multiple admissions due to the dis-
ease, and multiple X-rays may be taken per admission to 
track patient status. We retrieved image reports from it 
using explicit text representations (as shown in Table 1), 
which were grouped into four attributes: No, Small, 
Moderate, Large of pleural effusion. Finally, data of 8533 
patients diagnosed with COPD (mean age 65.40  years, 
47.47% women) were extracted. Each patient may have 

MIMIC-IV

ICD: '49120', '49121',
'49122', 'J44', 'J440',

'J441', 'J449'

9112 COPD patients,
18,052 times of
hospitalization

MIMIC-CXR

8,533 COPD patients with
80,260 reports related to

pleural effusion

Negbio + Chexpert
[Johnson et al. 2019]

27,072 Preliminary
confirmation of no
pleural effusion

53,188 Preliminary
confirmation of
pleural effusion

5,685
no pleural
effusion

4,877
small
pleural
effusion

3,657
moderate
pleural
effusion

1,401
large
pleural
effusion

Confirm Confirm

Fig. 1 Data flow diagram



Page 3 of 11Huang et al. BMC Medical Imaging          (2022) 22:100  

multiple hospital admissions or multiple examinations. 
The entire dataset was split according to the patient’s 
independent ID, and randomly divided into training 
cohort, validation cohort and test cohort according to the 
ratio of 6:1:3. This ensures that the same patient will not 
be split into different sets. Since the splitting process is 
completely randomized and only 1–2 frontal lobe x-rays 
are taken per patient, bias in the dataset can be avoided. 
The NNI tool [28] in this paper provided the results of 
the verification cohort, and the other evaluations were 
completed on the testing cohort to ensure the reliability 
of the model.

Label extraction and validation
From the structured labels of MIMIC-CXR-JPG [23], we 
identified a batch of X-rays images that were clearly diag-
nosed as ‘with’ or ‘without’ pleural effusion. Referring to 
the method of Wang et al. [29], four severity level labels 
were obtained according to keywords matching rule and 
marked as follows: 0, no pleural effusion; 1, small pleural 
effusion; 2, moderate pleural effusion; and 3, large pleural 
effusion.

In order to verify the validity of the labels extracted 
from the radiology report, we randomly selected 200 
X-ray images. A radiologist checks the radiology reports 
one by one, obtains artificial labels, and compares them 
with labels obtained based on matching rules to verify 
the accuracy of the rule labels.

In addition, three senior attending physicians marked 
these 200 X-rays as an additional verification cohort. It is 
used to verify the accuracy and reliability of the model’s 
prediction results. The three physicians did not know 
the labels we got from the radiology report in advance, 
but only marked which of the four severity levels for the 
image.

Model development
Judging disease severity in medical images is a multi-
classification problem of unbalanced distribution data. 
This paper had tried eight common deep learning net-
work structures (DenseNet [30], DenseNet121 [30], 
GoogLeNet [31], Inception_V3 [32], MobileNetV2 
[33], ResNet18 [34], ResNet50 [34], and AlexNet [35]) 
to build our model, and all of the structures have been 

Table 1 Explicit text representation for precise extraction of labels

No pleural effusion Small pleural effusion

No pleural effusion Tiny bilateral pleural effusions

Effusions have resolved Tiny left pleural effusions

Without vascular congestion or pleural effusion Tiny right pleural effusions

No vascular congestion, pleural effusion Small bilateral pleural effusions

No pneumothorax, effusion Small left pleural effusions

No appreciable pleural effusion Small right pleural effusions

Pleural effusions are small

Small right fissural pleural effusion

Small pleural effusion

Tiny bilateral effusion

Tiny left effusion

Tiny right effusion

Moderate pleural effusion Large pleural effusion

Moderate left pleural effusion Large pleural effusion

Moderate pleural effusion Large left pleural effusion

Moderate right pleural effusion Large right pleural effusion

Moderate effusion Large effusion

Moderate left effusion Large left effusion

Moderate right effusion Large right effusion

Severe pleural effusion

Severe left pleural effusion

Severe right pleural effusion

Large amount of loculated pleural fluid

Large amount of pleural fluid

Large amount of fluid
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proven effective in classification results on other data-
sets. We only fixed the parameters of the first two layers 
of the model. And the last output layer of the structure 
was modified to make it available for four classifications. 
In general, the last linear classification layer of the origi-
nal network structure outputs a probability value for 
being a positive class in a two-class classification prob-
lem. In the four-class classification problem, the output 
was increased to four probability values representing the 
probability that the current data belongs to one of the 
four categories. The position with the largest probability 
value was designated as the classification result.

Three data processing methods (no processing, down 
sampling, and up sampling) and two loss algorithms 
(cross entropy and focal loss [36]) were used for category 
imbalance data. Five optimizers (SGD [37], Adadelta 
[38], Adagrad, Adam [39], and Adamax [39]) and three 
learning rates (0.005, 0.001, and 0.0005) were also added. 
During training, random image translation, rotation and 
normalization for data enhancement were performed to 
improve the robustness of the model. The Neural Net-
work Intelligence (NNI) [28] tool was employed to opti-
mize the model parameters.

Statistical analysis
For the labeled dataset, the model with the best perfor-
mance was selected after adjusting the parameters of the 
NNI [28] for further verification. For the testing cohort 
and verification cohort, the receiver operating charac-
teristic curve (ROC) was drawn. We calculated the AUC 
classification results of a certain category and the other 
three categories, also each pairwise comparison. And 
drawn the corresponding confusion matrix. Grad-CAM 
[40] was used to generate a heat map to visualize the 
information area in the radiograph for the assessment of 
pleural effusion severity to explain the model prediction.

Results
Data analysis
The pleural effusion data group had 432 more male 
patients than females (male: 4477, 52.53% and female: 
4045, 47.47%) with an average age of 72  years (upper 
and lower quartile [55, 79]). The youngest age is 18 years 
old and the biggest is 91  years old. Each patient (8522 
patients) had one or more radiographic studies and 
obtained 15,620 positive X-rays image data. As shown 
in Fig. 2, these data were divided into four groups: 5685 
(36.4%) had no pleural effusion, 4877 (31.2%) had small 
pleural effusion, 3657 (23.4%) had moderate pleural effu-
sion, and 1401 (9.0%) had severe pleural effusion. Figure 3 

shows the randomly selected samples of pleural effusion 
with different severities.

Label verification
The labels extracted from the radiology report based on 
a fixed rule search were compared with those obtained 
from the radiologist’s itemized report inspection, and 
the deviation rate was 6.5%. As shown in Fig. 4a shown, 
no deviation was marked as no pleural effusion (label 
0). Among the X-ray chest radiographs marked as 
small pleural effusion after regular retrieval, one was 
actually described as no pleural effusion after manual 
inspection, and another was actually described as mod-
erate pleural effusion. The X-rays of moderate pleural 
effusion had many deviations in labeling; four actu-
ally showed small pleural effusion after examination, 
two were severe pleural effusion, and one was no pleu-
ral effusion. Among the X-ray films of severe effusion, 
three were actually small effusion, and one was moder-
ate effusion.

The labels extracted based on the fixed rule search 
were compared with those obtained by the doctor’s 
label, and the deviation rate was 11.0%. The specific 
comparison is shown in Fig.  4b. The main deviation 
appeared in the judgment between small and moderate 
effusion.

Model optimization
NNI optimization results revealed that the best model 
is Densenet121 with corresponding accuracy rate of 
73.07%. The data were not sampled. Adagrad optimizer 
with a learning rate of 0.005 and focal loss function was 
used to calculate the optimal network parameters. The 
top 10 results of NNI optimization accuracy are shown 

Fig. 2 The number of patients of varying severity. The more severe 
the illness, the less data volume
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in Table 2. Detailed parameters and optimized accuracy 
were also presented. The result of the parameter opti-
mization line graph is shown in Fig. 5.

ROC analysis
Figure  6a displays the ROC curve of the testing cohort 
for each category compared with that of the other three 
groups. Clear distinction was achieved between patients 
with or without pleural effusion with an AUC of 0.95. 
Small pleural effusion was poorly distinguished from 
other severity levels with an AUC of 0.76. The micro 
average was close to the macro average (0.89 and 0.86). 
Figure 6b shows the distinction between any two catego-
ries of the testing cohort. The adjacent group exhibited 
a relatively lower AUC value than the spaced group. The 
highest difference was found between patients with-
out pleural effusion and with severe pleural effusion 

(AUC = 0.99). Poor distinction was noted between mild 
and moderate cases (AUC = 0.76). The evaluation results 
of the validation cohort are shown in Fig. 6c and d, which 
exhibited the same trend as Fig. 6a and b.

Confusion matrix analysis
The confusion matrix results of the model on the test-
ing and validation cohorts were calculated and shown in 
Fig. 7. The testing cohort was distributed in a 4*4 matrix 
according to the labeled labels and the predicted results. 
Each square represents the ratio of the predicted severity 
level to the actual severity level. Total data volume and 
prediction are shown for each level. The results showed 
that the prediction accuracy of chest radiographs with-
out pleural effusion was 85.46%. Among the 14.54% 
of the prediction errors, 12.56% were predicted to be 
mild pleural effusion, and only 1.89% were predicted to 

Fig. 3 Examples of X-rays of pleural effusions of varying severity. a No effusion; b Small effusion; c Moderate effusion; d Large effusion

Fig. 4 Comparison of 200 annotated results. a The results are extracted from the report based on the rules and compared with the results of the 
radiologist’s inspection report item by item. b Comparison of the results extracted from the report based on rules and the results of the X-rays 
marked by the attending physician item by item
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be moderate or above. The prediction accuracy rates of 
small, moderate, and large effusion were 65.44%, 57.03%, 
and 59.86%, respectively. The classification of predic-
tion errors is basically in the adjacent degree category. 
Figure  7b shows the results of data verification marked 
by the doctor. The accuracy rates of no pleural effusion, 
small effusion, moderate effusion, and large effusion are 
83.95%, 74.19%, 62.16%, and 50.00%, respectively. Similar 
to that in the testing cohort, the classification of predic-
tion error is basically in the adjacent degree category.

Model interpretation
Grad-CAM [40] can visualize the main areas predicted by 
the model on X-ray chest radiographs and thus was used 
to calculate the heat map of the last convolutional layer of 
the model and superimpose it on the original image. Fig-
ure 8 shows the comparison result of the original image 
and the heat map superimposed on the four severity lev-
els. The red part that gathers inward to the blue part is 
active, indicating that the model pays particular attention 
to this area.

Discussion
Although the clinical definition of no pleural effusion 
does not exist, most people have a small amount of pleu-
ral effusion acting as a lubrication during breathing exer-
cises. This work mainly focuses on patients with COPD. 
A normal chest radiograph is defined as no pleural effu-
sion, and the costophrenic angle is clearly visible [41]. 
Figure 2 shows the statistical results for different degrees 
of effusion data. The number of chest radiographs is 
inversely proportional to the effusion severity, and this 
finding is in line with the objective situation.

Grading pleural effusion severity is an extension of pre-
vious research. Deep learning can identify pleural effu-
sions and other pathological conditions in chest X-rays 
at a level that surpasses experts [42, 43]. Whether in 
the clinical diagnosis or when the radiology department 
gives an X-ray report, the severity of the pathological 
situation will be judged. To the authors’ knowledge, no 
research has automatically and quantitatively assessed 
pleural effusion severity. The parameter tuning result 
of the NNI tool [28] showed good performance of the 
network structure model of DenseNet121 [30] with an 

Table 2 Top 10 accuracy parameters, models and results optimized by NNI

Data Sample Loss LR Optimizer Model Accuracy (%)

1 None Focal 0.005 Adagrad DenseNet121 73.07

2 None CrossEntropy 0.005 Adagrad DenseNet121 72.56

3 None CrossEntropy 0.001 Adamax resnet18 72.19

4 Over sample Focal 0.005 Adagrad DenseNet121 72.04

5 None CrossEntropy 0.005 Adagrad resnet18 71.98

6 None CrossEntropy 0.005 SGD DenseNet121 71.94

7 None Focal 0.005 Adagrad resnet18 71.83

8 None CrossEntropy 0.001 Adagrad resnet18 71.51

9 None CrossEntropy 0.005 Adagrad resnet50 71.34

10 Over sample CrossEntropy 0.001 Adagrad resnet50 71.30

Fig. 5 Hyperparameter optimization using an automated machine learning toolkit—NNI. Each line represents a trial, and the green to red color 
represents its accuracy from low to high
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accuracy rate of 0.730 (loss: Focal, Resample Way: None, 
LR: 0.005, Optimizer: Adagrad). The input of each layer 
of the DenseNet structure comes from the output of all 
previous layers. This process reduces the disappearance 
of gradients and effectively utilizes the image features. 
The 121-layer deep structure strengthens the learn-
ing ability and obtains better results than other models. 
Focal Loss [36, 44, 45] solves the model training problem 
caused by sample imbalance from the perspective of sam-
ple difficulty and easy classification. This becomes a clas-
sification problem of imbalanced samples, for example, 

due to the different number of chest radiographs of dif-
ferent severity. The problem caused by sample imbalance 
is that categories with a small number of samples are 
more difficult to classify. Therefore, from the perspective 
of sample classification difficulty, the Focal Loss function 
focuses on difficult samples, which solves the problem of 
low classification accuracy for categories with few sam-
ples. Of course, difficult samples are not limited to cat-
egories with few samples. Focal loss not only solves the 
problem of sample imbalance, but also helps to improve 
the overall performance of the model, so it is better than 

Fig. 6 Receiver operating characteristic (ROC) curves of the testing cohort and validation cohort. a ROC curve of the single category compared 
with the other three categories of the testing cohort. b ROC curves for six pairwise comparisons of the testing cohort. c ROC curve of the single 
category compared with the other three categories of the validation cohort. d ROC curves for six pairwise comparisons of the validation cohort
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cross entropy loss optimization. According to the train-
ing results of NNI, data sampling is not advisable because 
downsampling reduces the amount of data and the fitting 
ability of the model. Although oversampling increases the 
amount of data, the excessive copying of the same sample 
does not enhance the learning ability of the model. After 

Grad-CAM [40] extracted the activation state of the 
last convolutional layer, the model locates the key areas 
that must be thoroughly observed. Therefore, the model 
serves as the basis for obtaining the prediction results.

ROC curve evaluation was used for the prediction 
results of DenseNet121. The severity label was extracted 

Fig. 7 Confusion matrices from the testing cohort and validation cohort. The percentage indicates the proportion of the correct result of 
the prediction in the actual mark of the current category. The number of correct predictions and markers in the current category is shown in 
parentheses. a Confusion matrices from the testing cohort. b Confusion matrices from the validation cohort

Fig. 8 Grad-CAM heatmaps that highlight important regions for the model prediction and its source X-ray chest radiograph
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from the radiology report of MIMIC-CXR. Other chest 
radiograph datasets, such as Chexpert [18], NIHChest-
Xray [46], do not provide original radiology reports or 
similar severity labels. Hence, the predictive ability of 
the proposed model on other datasets cannot be verified. 
Although ‘no pleural effusiono’ classify with the other 
three categories is essentially two classifications, similar 
to whether pleural effusion can be detected on a chest 
radiograph. However, simple comparisons are essentially 
undesirable because of the difference on data distribution 
and model function goals. Hence, 30% of the dataset was 
used to test the performance of the model. Additional 
200 cases were randomly selected and marked by the 
clinician as an additional verification result to prove the 
superior performance of the model.

In Fig. 6, the macro average calculates the indicators of 
each class independently and then takes the mean value 
to equally treat all classes; the micro average aggregates 
the contributions of all classes to calculate the average 
indicator [47]. Similarities in the macro and micro results 
for the test and validation sets show that the model effec-
tively solves the problem of data imbalance, which is 
common in medical datasets. A model that can effectively 
solve the imbalance problem is of great help to its pro-
motion [48]. In the distinction between single category 
and the other three categories, the discrepancy between 
small pleural effusion on the testing cohort and the other 
three categories was not evident. On the basis of the 
ROC curve of the pairwise comparison, the main reason 
is the unclear distinction between levels 1 and 2. Accord-
ing to the corresponding radiology report, the language 
expression of these patients was relatively unclear. The 
main reason is that some expressions such as ‘left small, 
right moderate,’ ‘moderate relaxation,’ and other sentence 
patterns affected the labeling results. The secondary rea-
son is that the visual discrimination between levels 1 and 
2 is not as good as that between other levels, thus further 
affecting the training of the model as indicated by the val-
idation cohort results.

The predicted results and labels are summarized by cat-
egory to obtain a confusion matrix [49] for further evalu-
ation. The confusion matrix shows the prediction results 
of each sample. The model distinguishes non-adjacent 
categories well, but the accuracy needs to be improved 
when differentiating adjacent categories. The results had 
similar performance whether the labels are based on key-
word extraction or are manually annotated. The main 
reason for this result is that the severity of the definition 
of pleural effusion is determined by the size and height 
range of the shadow on the chest X-ray [50]. Sometimes 
it is difficult to clearly define whether the amount of 
pleural effusion is above or below the reference point. 
But what is certain is that the model constructed in this 

article can effectively distinguish chest radiographs of 
different severity. And from this, it can be inferred that 
chest radiographs that are incorrectly judged as adjacent 
categories are likely to be data with small visual differ-
ences and blurred boundaries.

The proposed method has its limitations. First, this 
work only used frontal chest radiographs and did not dis-
tinguish between left and right chest cavities. Accurate 
positioning will be of great help to clinical diagnosis. Sec-
ond, the constructed model faces difficulty in stratifying 
data with fuzzy boundaries. If a stepless severity score 
can be developed, then an accurate diagnosis can be 
made. Third, only the most direct transfer learning model 
was validated. Many different learning modes are avail-
able in the field of deep learning, such as semi-super-
vised learning, small-sample learning, and reinforcement 
learning. Each has its own advantages. Exploring a model 
that is suitable for grading the severity of pleural effusion 
will be the focus of future research.

Conclusions
The proposed model for the assessment of pleural effu-
sion severity can be used to upgrade or downgrade care 
and to monitor the efficacy of treatment, especially in 
the ICUs. This model can classify the pleural effusion 
grades on chest radiographs, thus allowing clinicians to 
compare CXR images using quantitative and objective 
measurements.
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