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Abstract

Deep networks have been successfully applied to

learn transferable features for adapting models

from a source domain to a different target domain.

In this paper, we present joint adaptation networks

(JAN), which learn a transfer network by aligning

the joint distributions of multiple domain-specific

layers across domains based on a joint maximum

mean discrepancy (JMMD) criterion. Adversarial

training strategy is adopted to maximize JMMD

such that the distributions of the source and target

domains are made more distinguishable. Learning

can be performed by stochastic gradient descent

with the gradients computed by back-propagation

in linear-time. Experiments testify that our model

yields state of the art results on standard datasets.

1. Introduction

Deep networks have significantly improved the state of the

arts for diverse machine learning problems and applications.

Unfortunately, the impressive performance gains come only

when massive amounts of labeled data are available for

supervised learning. Since manual labeling of sufficient

training data for diverse application domains on-the-fly is

often prohibitive, for a target task short of labeled data,

there is strong motivation to build effective learners that can

leverage rich labeled data from a different source domain.

However, this learning paradigm suffers from the shift in

data distributions across different domains, which poses a

major obstacle in adapting predictive models for the target

task (Quionero-Candela et al., 2009; Pan & Yang, 2010).

Learning a discriminative model in the presence of the shift

between training and test distributions is known as transfer

learning or domain adaptation (Pan & Yang, 2010). Previous
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shallow transfer learning methods bridge the source and tar-

get domains by learning invariant feature representations or

estimating instance importance without using target labels

(Huang et al., 2006; Pan et al., 2011; Gong et al., 2013). Re-

cent deep transfer learning methods leverage deep networks

to learn more transferable representations by embedding

domain adaptation in the pipeline of deep learning, which

can simultaneously disentangle the explanatory factors of

variations behind data and match the marginal distributions

across domains (Tzeng et al., 2014; 2015; Long et al., 2015;

2016; Ganin & Lempitsky, 2015; Bousmalis et al., 2016).

Transfer learning becomes more challenging when domains

may change by the joint distributions of input features and

output labels, which is a common scenario in practical ap-

plications. First, deep networks generally learn the complex

function from input features to output labels via multilayer

feature transformation and abstraction. Second, deep fea-

tures in standard CNNs eventually transition from general to

specific along the network, and the transferability of features

and classifiers decreases when the cross-domain discrepancy

increases (Yosinski et al., 2014). Consequently, after feed-

forwarding the source and target domain data through deep

networks for multilayer feature abstraction, the shifts in the

joint distributions of input features and output labels still

linger in the network activations of multiple domain-specific

higher layers. Thus we can use the joint distributions of the

activations in these domain-specific layers to approximately

reason about the original joint distributions, which should

be matched across domains to enable domain adaptation. To

date, this problem has not been addressed in deep networks.

In this paper, we present Joint Adaptation Networks (JAN)

to align the joint distributions of multiple domain-specific

layers across domains for unsupervised domain adaptation.

JAN largely extends the ability of deep adaptation networks

(Long et al., 2015) to reason about the joint distributions

as mentioned above, while keeping the training procedure

even simpler. Specifically, JAN admits a simple transfer

pipeline, which processes the source and target domain data

by convolutional neural networks (CNN) and then aligns

the joint distributions of activations in multiple task-specific

layers. To learn parameters and enable alignment, we derive

joint maximum mean discrepancy (JMMD), which measures

the Hilbert-Schmidt norm between kernel mean embedding

of empirical joint distributions of source and target data.
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Thanks to a linear-time unbiased estimate of JMMD, we can

easily draw a mini-batch of samples to estimate the JMMD

criterion, and implement it efficiently via back-propagation.

We further maximize JMMD using adversarial training strat-

egy such that the distributions of source and target domains

are made more distinguishable. Empirical study shows that

our models yield state of the art results on standard datasets.

2. Related Work

Transfer learning (Pan & Yang, 2010) aims to build learning

machines that generalize across different domains following

different probability distributions (Sugiyama et al., 2008;

Pan et al., 2011; Duan et al., 2012; Gong et al., 2013; Zhang

et al., 2013). Transfer learning finds wide applications in

computer vision (Saenko et al., 2010; Gopalan et al., 2011;

Gong et al., 2012; Hoffman et al., 2014) and natural lan-

guage processing (Collobert et al., 2011; Glorot et al., 2011).

The main technical problem of transfer learning is how

to reduce the shifts in data distributions across domains.

Most existing methods learn a shallow representation model

by which domain discrepancy is minimized, which cannot

suppress domain-specific exploratory factors of variations.

Deep networks learn abstract representations that disentan-

gle the explanatory factors of variations behind data (Bengio

et al., 2013) and extract transferable factors underlying dif-

ferent populations (Glorot et al., 2011; Oquab et al., 2013),

which can only reduce, but not remove, the cross-domain

discrepancy (Yosinski et al., 2014). Recent work on deep

domain adaptation embeds domain-adaptation modules into

deep networks to boost transfer performance (Tzeng et al.,

2014; 2015; 2017; Ganin & Lempitsky, 2015; Long et al.,

2015; 2016). These methods mainly correct the shifts in

marginal distributions, assuming conditional distributions

remain unchanged after the marginal distribution adaptation.

Transfer learning will become more challenging as domains

may change by the joint distributions P (X,Y) of input fea-

tures X and output labels Y. The distribution shifts may

stem from the marginal distributions P (X) (a.k.a. covari-

ate shift (Huang et al., 2006; Sugiyama et al., 2008)), the

conditional distributions P (Y|X) (a.k.a. conditional shift

(Zhang et al., 2013)), or both (a.k.a. dataset shift (Quionero-

Candela et al., 2009)). Another line of work (Zhang et al.,

2013; Wang & Schneider, 2014) correct both target and con-

ditional shifts based on the theory of kernel embedding of

conditional distributions (Song et al., 2009; 2010; Sriperum-

budur et al., 2010). Since the target labels are unavailable,

adaptation is performed by minimizing the discrepancy be-

tween marginal distributions instead of conditional distri-

butions. In general, the presence of conditional shift leads

to an ill-posed problem, and an additional assumption that

the conditional distribution may only change under location-

scale transformations on X is commonly imposed to make

the problem tractable (Zhang et al., 2013). As it is not easy

to justify which components of the joint distribution are

changing in practice, our work is transparent to diverse sce-

narios by directly manipulating the joint distribution without

assumptions on the marginal and conditional distributions.

Furthermore, it remains unclear how to account for the shift

in joint distributions within the regime of deep architectures.

3. Preliminary

3.1. Hilbert Space Embedding

We begin by providing an overview of Hilbert space embed-

dings of distributions, where each distribution is represented

by an element in a reproducing kernel Hilbert space (RKHS).

Denote by X a random variable with domain Ω and distribu-

tion P (X), and by x the instantiations of X. A reproducing

kernel Hilbert space (RKHS) H on Ω endowed by a kernel

k (x,x′) is a Hilbert space of functions f : Ω 7→ R with

inner product 〈·, ·〉H. Its element k (x, ·) satisfies the repro-

ducing property: 〈f (·) , k (x, ·)〉H = f (x). Alternatively,

k (x, ·) can be viewed as an (infinite-dimensional) implicit

feature map φ (x) where k (x,x′) = 〈φ (x) , φ (x′)〉H. Ker-

nel functions can be defined on vector space, graphs, time

series and structured objects to handle diverse applications.

The kernel embedding represents a probability distribution

P by an element in RKHS endowed by a kernel k (Smola

et al., 2007; Sriperumbudur et al., 2010; Gretton et al., 2012)

µX (P ) , EX [φ (X)] =

∫

Ω

φ (x) dP (x), (1)

where the distribution is mapped to the expected feature map,

i.e. to a point in the RKHS, given that EX [k (x,x′)] 6 ∞.

The mean embedding µX has the property that the expecta-

tion of any RKHS function f can be evaluated as an inner

product in H, 〈µX, f〉H , EX [f (X)] , ∀f ∈ H. This kind

of kernel mean embedding provides us a nonparametric per-

spective on manipulating distributions by drawing samples

from them. We will require a characteristic kernel k such

that the kernel embedding µX (P ) is injective, and that the

embedding of distributions into infinite-dimensional feature

spaces can preserve all of the statistical features of arbitrary

distributions, which removes the necessity of density estima-

tion of P . This technique has been widely applied in many

tasks, including feature extraction, density estimation and

two-sample test (Smola et al., 2007; Gretton et al., 2012).

While the true distribution P (X) is rarely accessible, we

can estimate its embedding using a finite sample (Gretton

et al., 2012). Given a sample DX = {x1, . . . ,xn} of size n

drawn i.i.d. from P (X), the empirical kernel embedding is

µ̂X =
1

n

n∑

i=1

φ (xi). (2)
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This empirical estimate converges to its population counter-

part in RKHS norm ‖µX − µ̂X‖H with a rate of O(n− 1

2 ).

Kernel embeddings can be readily generalized to joint distri-

butions of two or more variables using tensor product feature

spaces (Song et al., 2009; 2010; Song & Dai, 2013). A joint

distribution P of variables X1, . . . ,Xm can be embedded

into an m-th order tensor product feature space ⊗m
ℓ=1H

ℓ by

CX1:m(P ) , EX1:m

[
⊗m

ℓ=1φ
ℓ
(
Xℓ

)]

=

∫

×m
ℓ=1

Ωℓ

(
⊗m

ℓ=1φ
ℓ
(
xℓ
))

dP
(
x1, . . . ,xm

)
,

(3)

where X1:m denotes the set of m variables {X1, . . . ,Xm}
on domain ×m

ℓ=1Ω
ℓ = Ω1 × . . . × Ωm, φℓ is the feature

map endowed with kernel kℓ in RKHS Hℓ for variable Xℓ,

⊗m
ℓ=1φ

ℓ
(
xℓ
)
= φ1

(
x1

)
⊗. . .⊗φm (xm) is the feature map

in the tensor product Hilbert space, where the inner product

satisfies 〈⊗m
ℓ=1φ

ℓ(xℓ),⊗m
ℓ=1φ

ℓ(x′ℓ)〉 =
∏m

ℓ=1 k
ℓ(xℓ,x′ℓ).

The joint embeddings can be viewed as an uncentered cross-

covariance operator CX1:m by the standard equivalence be-

tween tensor and linear map (Song et al., 2010). That is,

given a set of functions f1, . . . , fm, their covariance can be

computed by EX1:m

[∏m
ℓ=1 f

ℓ(Xℓ)
]
=

〈
⊗m

ℓ=1f
ℓ, CX1:m

〉
.

When the true distribution P (X1, . . . ,Xm) is unknown, we

can estimate its embedding using a finite sample (Song et al.,

2013). Given a sample DX1:m = {x1:m
1 , . . . ,x1:m

n } of size

n drawn i.i.d. from P (X1, . . . ,Xm), the empirical joint

embedding (the cross-covariance operator) is estimated as

ĈX1:m =
1

n

n∑

i=1

⊗m
ℓ=1φ

ℓ
(
xℓ
i

)
. (4)

This empirical estimate converges to its population counter-

part with a similar convergence rate as marginal embedding.

3.2. Maximum Mean Discrepancy

Let DXs = {xs
1, . . . ,x

s
ns
} and DXt = {xt

1, . . . ,x
t
nt
} be

the sets of samples from distributions P (Xs) and Q(Xt),
respectively. Maximum Mean Discrepancy (MMD) (Gret-

ton et al., 2012) is a kernel two-sample test which rejects or

accepts the null hypothesis P = Q based on the observed

samples. The basic idea behind MMD is that if the generat-

ing distributions are identical, all the statistics are the same.

Formally, MMD defines the following difference measure:

DH (P,Q) , sup
f∈H

(
EXs [f (Xs)]− EXt

[
f
(
Xt

)])
, (5)

where H is a class of functions. It is shown that the class

of functions in an universal RKHS H is rich enough to

distinguish any two distributions and MMD is expressed as

the distance between their mean embeddings: DH (P,Q) =

‖µXs (P )− µXt (Q)‖
2
H. The main theoretical result is that

P = Q if and only if DH (P,Q) = 0 (Gretton et al., 2012).

In practice, an estimate of the MMD compares the square

distance between the empirical kernel mean embeddings as

D̂H (P,Q) =
1

n2
s

ns∑

i=1

ns∑

j=1

k
(
xs
i ,x

s
j

)

+
1

n2
t

nt∑

i=1

nt∑

j=1

k
(
xt
i,x

t
j

)

−
2

nsnt

ns∑

i=1

nt∑

j=1

k
(
xs
i ,x

t
j

)
,

(6)

where D̂H (P,Q) is an unbiased estimator of DH (P,Q).

4. Joint Adaptation Networks

In unsupervised domain adaptation, we are given a source

domain Ds = {(xs
i ,y

s
i )}

ns

i=1 of ns labeled examples and

a target domain Dt = {xt
j}

nt

j=1 of nt unlabeled examples.

The source domain and target domain are sampled from

joint distributions P (Xs,Ys) and Q(Xt,Yt) respectively,

P 6= Q. The goal of this paper is to design a deep neural

network y = f (x) which formally reduces the shifts in

the joint distributions across domains and enables learning

both transferable features and classifiers, such that the target

risk Rt (f) = E(x,y)∼Q [f (x) 6= y] can be minimized by

jointly minimizing the source risk and domain discrepancy.

Recent studies reveal that deep networks (Bengio et al.,

2013) can learn more transferable representations than tra-

ditional hand-crafted features (Oquab et al., 2013; Yosinski

et al., 2014). The favorable transferability of deep features

leads to several state of the art deep transfer learning meth-

ods (Ganin & Lempitsky, 2015; Tzeng et al., 2015; Long

et al., 2015; 2016). This paper also tackles unsupervised

domain adaptation by learning transferable features using

deep neural networks. We extend deep convolutional neural

networks (CNNs), including AlexNet (Krizhevsky et al.,

2012) and ResNet (He et al., 2016), to novel joint adaptation

networks (JANs) as shown in Figure 1. The empirical error

of CNN classifier f(x) on source domain labeled data Ds is

min
f

1

ns

ns∑

i=1

J (f (xs
i ) ,y

s
i ), (7)

where J(·, ·) is the cross-entropy loss function. Based on the

quantification study of feature transferability in deep con-

volutional networks (Yosinski et al., 2014), convolutional

layers can learn generic features that are transferable across

domains (Yosinski et al., 2014). Thus we opt to fine-tune

the features of convolutional layers when transferring pre-

trained deep models from source domain to target domain.

However, the literature findings also reveal that the deep

features can reduce, but not remove, the cross-domain distri-

bution discrepancy (Yosinski et al., 2014; Long et al., 2015;
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(b) Adversarial Joint Adaptation Network (JAN-A)

Figure 1. The architectures of Joint Adaptation Network (JAN) (a) and its adversarial version (JAN-A) (b). Since deep features eventually

transition from general to specific along the network, activations in multiple domain-specific layers L are not safely transferable. And the

joint distributions of the activations P (Zs1, . . . ,Zs|L|) and Q(Zt1, . . . ,Zt|L|) in these layers should be adapted by JMMD minimization.

2016). The deep features in standard CNNs must eventually

transition from general to specific along the network, and the

transferability of features and classifiers decreases when the

cross-domain discrepancy increases (Yosinski et al., 2014).

In other words, even feed-forwarding the source and target

domain data through the deep network for multilayer feature

abstraction, the shifts in the joint distributions P (Xs,Ys)
and Q(Xt,Yt) still linger in the activations Z1, . . . ,Z|L| of

the higher network layers L. Taking AlexNet (Krizhevsky

et al., 2012) as an example, the activations in the higher fully-

connected layers L = {fc6, fc7, fc8} are not safely trans-

ferable for domain adaptation (Yosinski et al., 2014). Note

that the shift in the feature distributions P (Xs) and Q(Xt)
mainly lingers in the feature layers fc6, fc7 while the shift

in the label distributions P (Ys) and Q(Yt) mainly lingers

in the classifier layer fc8. Thus we can use the joint distribu-

tions of the activations in layers L, i.e. P (Zs1, . . . ,Zs|L|)
and Q(Zt1, . . . ,Zt|L|) as good surrogates of the original

joint distributions P (Xs,Ys) and Q(Xt,Yt), respectively.

To enable unsupervised domain adaptation, we should find

a way to match P (Zs1, . . . ,Zs|L|) and Q(Zt1, . . . ,Zt|L|).

4.1. Joint Maximum Mean Discrepancy

Many existing methods address transfer learning by bound-

ing the target error with the source error plus a discrepancy

between the marginal distributions P (Xs) and Q(Xt) of

the source and target domains (Ben-David et al., 2010). The

Maximum Mean Discrepancy (MMD) (Gretton et al., 2012),

as a kernel two-sample test statistic, has been widely ap-

plied to measure the discrepancy in marginal distributions

P (Xs) and Q(Xt) (Tzeng et al., 2014; Long et al., 2015;

2016). To date MMD has not been used to measure the

discrepancy in joint distributions P (Zs1, . . . ,Zs|L|) and

Q(Zt1, . . . ,Zt|L|), possibly because MMD has not been di-

rectly defined for joint distributions by (Gretton et al., 2012)

while in conventional shallow domain adaptation methods

the joint distributions are not easy to manipulate and match.

Following the virtue of MMD (5), we use the Hilbert space

embeddings of joint distributions (3) to measure the dis-

crepancy of two joint distributions P (Zs1, . . . ,Zs|L|) and

Q(Zt1, . . . ,Zt|L|). The resulting measure is called Joint

Maximum Mean Discrepancy (JMMD), which is defined as

DL (P,Q) , ‖CZs,1:|L| (P )− CZt,1:|L| (Q)‖
2

⊗
|L|
ℓ=1

Hℓ . (8)

Based on the virtue of the kernel two-sample test theory

(Gretton et al., 2012), we will have P (Zs1, . . . ,Zs|L|) =
Q(Zt1, . . . ,Zt|L|) if and only if DL(P,Q) = 0. Given

source domain Ds of ns labeled points and target domain

Dt of nt unlabeled points drawn i.i.d. from P and Q respec-

tively, the deep networks will generate activations in layers

L as {(zs1i , . . . , z
s|L|
i )}ns

i=1 and {(zt1j , . . . , z
t|L|
j )}nt

j=1. The

empirical estimate of DL(P,Q) is computed as the squared

distance between the empirical kernel mean embeddings as

D̂L (P,Q) =
1

n2
s

ns∑

i=1

ns∑

j=1

∏

ℓ∈L

kℓ
(
zsℓi , zsℓj

)

+
1

n2
t

nt∑

i=1

nt∑

j=1

∏

ℓ∈L

kℓ
(
ztℓi , z

tℓ
j

)

−
2

nsnt

ns∑

i=1

nt∑

j=1

∏

ℓ∈L

kℓ
(
zsℓi , ztℓj

)
.

(9)

Remark: Taking a close look on the objectives of MMD (6)

and JMMD (9), we can find some interesting connections.

The difference is that, for the activations Zℓ in each layer ℓ ∈
L, instead of putting uniform weights on the kernel function

kℓ(zℓi , z
ℓ
j) as in MMD, JMMD applies non-uniform weights,

reflecting the influence of other variables in other layers

L\ℓ. This captures the full interactions between different

variables in the joint distributions P (Zs1, . . . ,Zs|L|) and

Q(Zt1, . . . ,Zt|L|), which is crucial for domain adaptation.

All previous deep transfer learning methods (Tzeng et al.,

2014; Long et al., 2015; Ganin & Lempitsky, 2015; Tzeng

et al., 2015; Long et al., 2016) have not addressed this issue.

4.2. Joint Adaptation Networks

Denote by L the domain-specific layers where the activa-

tions are not safely transferable. We will formally reduce

the discrepancy in the joint distributions of the activations
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in layers L, i.e. P (Zs1, . . . ,Zs|L|) and Q(Zt1, . . . ,Zt|L|).
Note that the features in the lower layers of the network

are transferable and hence will not require a further distri-

bution matching. By integrating the JMMD (9) over the

domain-specific layers L into the CNN error (7), the joint

distributions are matched end-to-end with network training,

min
f

1

ns

ns∑

i=1

J (f (xs
i ) ,y

s
i ) + λD̂L (P,Q) , (10)

where λ > 0 is a tradeoff parameter of the JMMD penalty.

As shown in Figure 1(a), we set L = {fc6, fc7, fc8} for

the JAN model based on AlexNet (last three layers) while

we set L = {pool5, fc} for the JAN model based on ResNet

(last two layers), as these layers are tailored to task-specific

structures, which are not safely transferable and should be

jointly adapted by minimizing CNN error and JMMD (9).

A limitation of JMMD (9) is its quadratic complexity, which

is inefficient for scalable deep transfer learning. Motivated

by the unbiased estimate of MMD (Gretton et al., 2012), we

derive a similar linear-time estimate of JMMD as follows,

D̂L (P,Q) =
2

n

n/2∑

i=1

(
∏

ℓ∈L

k
ℓ(zsℓ2i−1, z

sℓ
2i) +

∏

ℓ∈L

k
ℓ(ztℓ2i−1, z

tℓ
2i)

)

−
2

n

n/2∑

i=1

(
∏

ℓ∈L

k
ℓ(zsℓ2i−1, z

tℓ
2i) +

∏

ℓ∈L

k
ℓ(ztℓ2i−1, z

sℓ
2i)

)

,

(11)

where n = ns. This linear-time estimate well fits the mini-

batch stochastic gradient descent (SGD) algorithm. In each

mini-batch, we sample the same number of source points

and target points to eliminate the bias caused by domain size.

This enables our models to scale linearly to large samples.

4.3. Adversarial Training for Optimal MMD

The MMD defined using the RKHS (6) has the advantage of

not requiring a separate network to approximately maximize

the original definition of MMD (5). But the original MMD

(5) reveals that, in order to maximize the test power such

that any two distributions can be distinguishable, we require

the class of functions f ∈ H to be rich enough. Although

(Gretton et al., 2012) shows that an universal RKHS is rich

enough, such kernel-based MMD may suffer from vanishing

gradients for low-bandwidth kernels. Moreover, it may be

possible that some widely-used kernels are unable to capture

very complex distances in high dimensional spaces such as

natural images (Reddi et al., 2015; Arjovsky et al., 2017).

To circumvent the issues of vanishing gradients and non-rich

function class of kernel-based MMD (6), we are enlightened

by the original MMD (5) which fits the adversarial training

in GANs (Goodfellow et al., 2014). We add multiple fully-

connected layers parametrized by θ to the proposed JMMD

(9) to make the function class of JMMD richer using neural

network as shown in Figure 1(b). We maximize JMMD with

respect to these new parameters θ to approach the virtue of

the original MMD (5), that is, maximizing the test power of

JMMD such that distributions of source and target domains

are made more distinguishable (Sriperumbudur et al., 2009).

This leads to a new adversarial joint adaptation network as

min
f

max
θ

1

ns

ns∑

i=1

J (f (xs
i ) ,y

s
i ) + λD̂L (P,Q; θ) . (12)

Learning deep features by minimizing this more powerful

JMMD, intuitively any shift in the joint distributions will be

more easily identified by JMMD and then adapted by CNN.

Remark: This version of JAN shares the idea of domain-

adversarial training with (Ganin & Lempitsky, 2015), but

differs in that we use the JMMD as the domain adversary

while (Ganin & Lempitsky, 2015) uses logistic regression.

As pointed out in a very recent study (Arjovsky et al., 2017),

our JMMD-adversarial network can be trained more easily.

5. Experiments

We evaluate the joint adaptation networks with state of the

art transfer learning and deep learning methods. Codes and

datasets are available at http://github.com/thuml.

5.1. Setup

Office-31 (Saenko et al., 2010) is a standard benchmark for

domain adaptation in computer vision, comprising 4,652

images and 31 categories collected from three distinct do-

mains: Amazon (A), which contains images downloaded

from amazon.com, Webcam (W) and DSLR (D), which

contain images respectively taken by web camera and dig-

ital SLR camera under different settings. We evaluate all

methods across three transfer tasks A → W, D → W and W

→ D, which are widely adopted by previous deep transfer

learning methods (Tzeng et al., 2014; Ganin & Lempitsky,

2015), and another three transfer tasks A → D, D → A and

W → A as in (Long et al., 2015; 2016; Tzeng et al., 2015).

ImageCLEF-DA1 is a benchmark dataset for ImageCLEF

2014 domain adaptation challenge, which is organized by

selecting the 12 common categories shared by the follow-

ing three public datasets, each is considered as a domain:

Caltech-256 (C), ImageNet ILSVRC 2012 (I), and Pascal

VOC 2012 (P). There are 50 images in each category and

600 images in each domain. We use all domain combina-

tions and build 6 transfer tasks: I → P, P → I, I → C, C

→ I, C → P, and P → C. Different from Office-31 where

different domains are of different sizes, the three domains

in ImageCLEF-DA are of equal size, which makes it a good

complement to Office-31 for more controlled experiments.

1http://imageclef.org/2014/adaptation

http://github.com/thuml
amazon.com
http://imageclef.org/2014/adaptation
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We compare with conventional and state of the art transfer

learning and deep learning methods: Transfer Component

Analysis (TCA) (Pan et al., 2011), Geodesic Flow Kernel

(GFK) (Gong et al., 2012), Convolutional Neural Networks

AlexNet (Krizhevsky et al., 2012) and ResNet (He et al.,

2016), Deep Domain Confusion (DDC) (Tzeng et al., 2014),

Deep Adaptation Network (DAN) (Long et al., 2015), Re-

verse Gradient (RevGrad) (Ganin & Lempitsky, 2015), and

Residual Transfer Network (RTN) (Long et al., 2016). TCA

is a transfer learning method based on MMD-regularized

Kernel PCA. GFK is a manifold learning method that inter-

polates across an infinite number of intermediate subspaces

to bridge domains. DDC is the first method that maximizes

domain invariance by regularizing the adaptation layer of

AlexNet using linear-kernel MMD (Gretton et al., 2012).

DAN learns transferable features by embedding deep fea-

tures of multiple task-specific layers to reproducing kernel

Hilbert spaces (RKHSs) and matching different distributions

optimally using multi-kernel MMD. RevGrad improves do-

main adaptation by making the source and target domains

indistinguishable for a domain discriminator by adversarial

training. RTN jointly learns transferable features and adap-

tive classifiers by deep residual learning (He et al., 2016).

We examine the influence of deep representations for do-

main adaptation by employing the breakthrough AlexNet

(Krizhevsky et al., 2012) and the state of the art ResNet (He

et al., 2016) for learning transferable deep representations.

For AlexNet, we follow DeCAF (Donahue et al., 2014) and

use the activations of layer fc7 as image representation. For

ResNet (50 layers), we use the activations of the last feature

layer pool5 as image representation. We follow standard

evaluation protocols for unsupervised domain adaptation

(Long et al., 2015; Ganin & Lempitsky, 2015). For both

Office-31 and ImageCLEF-DA datasets, we use all labeled

source examples and all unlabeled target examples. We

compare the average classification accuracy of each method

on three random experiments, and report the standard error

of the classification accuracies by different experiments of

the same transfer task. We perform model selection by tun-

ing hyper-parameters using transfer cross-validation (Zhong

et al., 2010). For MMD-based methods and JAN, we adopt

Gaussian kernel with bandwidth set to median pairwise

squared distances on the training data (Gretton et al., 2012).

We implement all deep methods based on the Caffe frame-

work, and fine-tune from Caffe-provided models of AlexNet

(Krizhevsky et al., 2012) and ResNet (He et al., 2016), both

are pre-trained on the ImageNet 2012 dataset. We fine-tune

all convolutional and pooling layers and train the classifier

layer via back propagation. Since the classifier is trained

from scratch, we set its learning rate to be 10 times that

of the other layers. We use mini-batch stochastic gradient

descent (SGD) with momentum of 0.9 and the learning rate

annealing strategy in RevGrad (Ganin & Lempitsky, 2015):

the learning rate is not selected by a grid search due to high

computational cost—it is adjusted during SGD using the

following formula: ηp = η0

(1+αp)β
, where p is the training

progress linearly changing from 0 to 1, η0 = 0.01, α = 10
and β = 0.75, which is optimized to promote convergence

and low error on the source domain. To suppress noisy acti-

vations at the early stages of training, instead of fixing the

adaptation factor λ, we gradually change it from 0 to 1 by a

progressive schedule: λp = 2
1+exp(−γp) − 1, and γ = 10 is

fixed throughout experiments (Ganin & Lempitsky, 2015).

This progressive strategy significantly stabilizes parameter

sensitivity and eases model selection for JAN and JAN-A.

5.2. Results

The classification accuracy results on the Office-31 dataset

for unsupervised domain adaptation based on AlexNet and

ResNet are shown in Table 1. As fair comparison with identi-

cal evaluation setting, the results of DAN (Long et al., 2015),

RevGrad (Ganin & Lempitsky, 2015), and RTN (Long et al.,

2016) are directly reported from their published papers. The

proposed JAN models outperform all comparison methods

on most transfer tasks. It is noteworthy that JANs promote

the classification accuracies substantially on hard transfer

tasks, e.g. D → A and W → A, where the source and target

domains are substantially different and the source domain

is smaller than the target domain, and produce comparable

classification accuracies on easy transfer tasks, D → W and

W → D, where the source and target domains are similar

(Saenko et al., 2010). The encouraging results highlight the

key importance of joint distribution adaptation in deep neu-

ral networks, and suggest that JANs are able to learn more

transferable representations for effective domain adaptation.

The results reveal several interesting observations. (1) Stan-

dard deep learning methods either outperform (AlexNet) or

underperform (ResNet) traditional shallow transfer learning

methods (TCA and GFK) using deep features (AlexNet-fc7

and ResNet-pool5) as input. And traditional shallow trans-

fer learning methods perform better with more transferable

deep features extracted by ResNet. This confirms the current

practice that deep networks learn abstract feature represen-

tations, which can only reduce, but not remove, the domain

discrepancy (Yosinski et al., 2014). (2) Deep transfer learn-

ing methods substantially outperform both standard deep

learning methods and traditional shallow transfer learning

methods. This validates that reducing the domain discrep-

ancy by embedding domain-adaptation modules into deep

networks (DDC, DAN, RevGrad, and RTN) can learn more

transferable features. (3) The JAN models outperform pre-

vious methods by large margins and set new state of the art

record. Different from all previous deep transfer learning

methods that only adapt the marginal distributions based

on independent feature layers (one layer for RevGrad and

multilayer for DAN and RTN), JAN adapts the joint distribu-
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Table 1. Classification accuracy (%) on Office-31 dataset for unsupervised domain adaptation (AlexNet and ResNet)

Method A → W D → W W → D A → D D → A W → A Avg

AlexNet (Krizhevsky et al., 2012) 61.6±0.5 95.4±0.3 99.0±0.2 63.8±0.5 51.1±0.6 49.8±0.4 70.1
TCA (Pan et al., 2011) 61.0±0.0 93.2±0.0 95.2±0.0 60.8±0.0 51.6±0.0 50.9±0.0 68.8

GFK (Gong et al., 2012) 60.4±0.0 95.6±0.0 95.0±0.0 60.6±0.0 52.4±0.0 48.1±0.0 68.7
DDC (Tzeng et al., 2014) 61.8±0.4 95.0±0.5 98.5±0.4 64.4±0.3 52.1±0.6 52.2±0.4 70.6
DAN (Long et al., 2015) 68.5±0.5 96.0±0.3 99.0±0.3 67.0±0.4 54.0±0.5 53.1±0.5 72.9
RTN (Long et al., 2016) 73.3±0.3 96.8±0.2 99.6±0.1 71.0±0.2 50.5±0.3 51.0±0.1 73.7

RevGrad (Ganin & Lempitsky, 2015) 73.0±0.5 96.4±0.3 99.2±0.3 72.3±0.3 53.4±0.4 51.2±0.5 74.3
JAN (ours) 74.9±0.3 96.6±0.2 99.5±0.2 71.8±0.2 58.3±0.3 55.0±0.4 76.0

JAN-A (ours) 75.2±0.4 96.6±0.2 99.6±0.1 72.8±0.3 57.5±0.2 56.3±0.2 76.3

ResNet (He et al., 2016) 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
TCA (Pan et al., 2011) 72.7±0.0 96.7±0.0 99.6±0.0 74.1±0.0 61.7±0.0 60.9±0.0 77.6

GFK (Gong et al., 2012) 72.8±0.0 95.0±0.0 98.2±0.0 74.5±0.0 63.4±0.0 61.0±0.0 77.5
DDC (Tzeng et al., 2014) 75.6±0.2 96.0±0.2 98.2±0.1 76.5±0.3 62.2±0.4 61.5±0.5 78.3
DAN (Long et al., 2015) 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
RTN (Long et al., 2016) 84.5±0.2 96.8±0.1 99.4±0.1 77.5±0.3 66.2±0.2 64.8±0.3 81.6

RevGrad (Ganin & Lempitsky, 2015) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
JAN (ours) 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3

JAN-A (ours) 86.0±0.4 96.7±0.3 99.7±0.1 85.1±0.4 69.2±0.4 70.7±0.5 84.6

Table 2. Classification accuracy (%) on ImageCLEF-DA for unsupervised domain adaptation (AlexNet and ResNet)

Method I → P P → I I → C C → I C → P P → C Avg

AlexNet (Krizhevsky et al., 2012) 66.2±0.2 70.0±0.2 84.3±0.2 71.3±0.4 59.3±0.5 84.5±0.3 73.9
DAN (Long et al., 2015) 67.3±0.2 80.5±0.3 87.7±0.3 76.0±0.3 61.6±0.3 88.4±0.2 76.9
RTN (Long et al., 2016) 67.4±0.3 81.3±0.3 89.5±0.4 78.0±0.2 62.0±0.2 89.1±0.1 77.9

JAN (ours) 67.2±0.5 82.8±0.4 91.3±0.5 80.0±0.5 63.5±0.4 91.0±0.4 79.3

ResNet (He et al., 2016) 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7
DAN (Long et al., 2015) 74.5±0.4 82.2±0.2 92.8±0.2 86.3±0.4 69.2±0.4 89.8±0.4 82.5
RTN (Long et al., 2016) 74.6±0.3 85.8±0.1 94.3±0.1 85.9±0.3 71.7±0.3 91.2±0.4 83.9

JAN (ours) 76.8±0.4 88.0±0.2 94.7±0.2 89.5±0.3 74.2±0.3 91.7±0.3 85.8

tions of network activations in all domain-specific layers to

fully correct the shifts in joint distributions across domains.

Although both JAN and DAN (Long et al., 2015) adapt mul-

tiple domain-specific layers, the improvement from DAN to

JAN is crucial for the domain adaptation performance: JAN

uses a JMMD penalty to reduce the shift in the joint distribu-

tions of multiple task-specific layers, which reflects the shift

in the joint distributions of input features and output labels;

DAN needs multiple MMD penalties, each independently

reducing the shift in the marginal distribution of each layer,

assuming feature layers and classifier layer are independent.

By going from AlexNet to extremely deep ResNet, we can

attain a more in-depth understanding of feature transferabil-

ity. (1) ResNet-based methods outperform AlexNet-based

methods by large margins. This validates that very deep

convolutional networks, e.g. VGGnet (Simonyan & Zisser-

man, 2015), GoogLeNet (Szegedy et al., 2015), and ResNet,

not only learn better representations for general vision tasks

but also learn more transferable representations for domain

adaptation. (2) The JAN models significantly outperform

ResNet-based methods, revealing that even very deep net-

works can only reduce, but not remove, the domain discrep-

ancy. (3) The boost of JAN over ResNet is more significant

than the improvement of JAN over AlexNet. This implies

that JAN can benefit from more transferable representations.

The great aspect of JAN is that via the kernel trick there is

no need to train a separate network to maximize the MMD

criterion (5) for the ball of a RKHS. However, this has the

disadvantage that some kernels used in practice are unsuit-

able for capturing very complex distances in high dimen-

sional spaces such as natural images (Arjovsky et al., 2017).

The JAN-A model significantly outperforms the previous do-

main adversarial deep network (Ganin & Lempitsky, 2015).

The improvement from JAN to JAN-A also demonstrates the

benefit of adversarial training for optimizing the JMMD in

a richer function class. By maximizing the JMMD criterion

with respect to a separate network, JAN-A can maximize the

distinguishability of source and target distributions. Adapt-

ing domains against deep features where their distributions

maximally differ, we can enhance the feature transferability.

The three domains in ImageCLEF-DA are more balanced

than those of Office-31. With these more balanced transfer

tasks, we are expecting to testify whether transfer learning

improves when domain sizes do not change. The classifica-

tion accuracy results based on both AlexNet and ResNet are

shown in Table 2. The JAN models outperform comparison

methods on most transfer tasks, but by less improvements.

This means the difference in domain sizes may cause shift.
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(a) DAN: Source=A (b) DAN: Target=W (c) JAN: Source=A (d) JAN: Target=W

Figure 2. The t-SNE visualization of network activations (ResNet) generated by DAN (a)(b) and JAN (c)(d), respectively.
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Figure 3. Analysis: (a) A-distance; (b) JMMD; (c) parameter sensitivity of λ; (d) convergence (dashed lines show best baseline results).

5.3. Analysis

Feature Visualization: We visualize in Figures 2(a)–2(d)

the network activations of task A → W learned by DAN and

JAN respectively using t-SNE embeddings (Donahue et al.,

2014). Compared with the activations given by DAN in Fig-

ure 2(a)–2(b), the activations given by JAN in Figures 2(c)–

2(d) show that the target categories are discriminated much

more clearly by the JAN source classifier. This suggests that

the adaptation of joint distributions of multilayer activations

is a powerful approach to unsupervised domain adaptation.

Distribution Discrepancy: The theory of domain adapta-

tion (Ben-David et al., 2010; Mansour et al., 2009) suggests

A-distance as a measure of distribution discrepancy, which,

together with the source risk, will bound the target risk. The

proxy A-distance is defined as dA = 2 (1− 2ǫ), where ǫ

is the generalization error of a classifier (e.g. kernel SVM)

trained on the binary problem of discriminating the source

and target. Figure 3(a) shows dA on tasks A → W, W → D

with features of CNN, DAN, and JAN. We observe that dA
using JAN features is much smaller than dA using CNN and

DAN features, which suggests that JAN features can close

the cross-domain gap more effectively. As domains W and

D are very similar, dA of task W → D is much smaller than

that of A → W, which explains better accuracy of W → D.

A limitation of the A-distance is that it cannot measure the

cross-domain discrepancy of joint distributions, which is

addressed by the proposed JMMD (9). We compute JMMD

(9) across domains using CNN, DAN and JAN activations

respectively, based on the features in fc7 and ground-truth

labels in fc8 (the target labels are not used for model train-

ing). Figure 3(b) shows that JMMD using JAN activations is

much smaller than JMMD using CNN and DAN activations,

which validates that JANs successfully reduce the shifts in

joint distributions to learn more transferable representations.

Parameter Sensitivity: We check the sensitivity of JMMD

parameter λ, i.e. the maximum value of the relative weight

for JMMD. Figure 3(c) demonstrates the transfer accuracy

of JAN based on AlexNet and ResNet respectively, by vary-

ing λ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1} on task A → W.

The accuracy of JAN first increases and then decreases as

λ varies and shows a bell-shaped curve. This confirms the

motivation of deep learning and joint distribution adaptation,

as a proper trade-off between them enhance transferability.

Convergence Performance: As JAN and JAN-A involve

adversarial training procedures, we testify their convergence

performance. Figure 3(d) demonstrates the test errors of

different methods on task A → W, which suggests that JAN

converges fastest due to nonparametric JMMD while JAN-A

has similar convergence speed as RevGrad with significantly

improved accuracy in the whole procedure of convergence.

6. Conclusion

This paper presented a novel approach to deep transfer learn-

ing, which enables end-to-end learning of transferable repre-

sentations. Unlike previous methods that match the marginal

distributions of features across domains, the proposed ap-

proach reduces the shift in joint distributions of the network

activations of multiple task-specific layers, which approxi-

mates the shift in the joint distributions of input features and

output labels. The discrepancy between joint distributions

can be computed by embedding the joint distributions in a

tensor-product Hilbert space, which can be scaled linearly

to large samples and be implemented in most deep networks.

Experiments testified the efficacy of the proposed approach.
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