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Abstract

Conventional metric learning methods usually assume

that the training and test samples are captured in similar

scenarios so that their distributions are assumed to be the

same. This assumption doesn’t hold in many real visual

recognition applications, especially when samples are cap-

tured across different datasets. In this paper, we propose a

new deep transfer metric learning (DTML) method to learn

a set of hierarchical nonlinear transformations for cross-

domain visual recognition by transferring discriminative

knowledge from the labeled source domain to the unlabeled

target domain. Specifically, our DTML learns a deep metric

network by maximizing the inter-class variations and mini-

mizing the intra-class variations, and minimizing the distri-

bution divergence between the source domain and the tar-

get domain at the top layer of the network. To better exploit

the discriminative information from the source domain, we

further develop a deeply supervised transfer metric learn-

ing (DSTML) method by including an additional objective

on DTML where the output of both the hidden layers and

the top layer are optimized jointly. Experimental results on

cross-dataset face verification and person re-identification

validate the effectiveness of the proposed methods.

1. Introduction

How to design a good similarity function plays an impor-

tant role in many computer vision and pattern recognition

tasks. Generally, the optimal similarity function for a given

vision problem is task-specific because the underlying data

distributions for different tasks are usually different. Recen-

t advances in machine learning have shown that learning a

distance metric directly from a set of training examples can

usually achieve proposing performance than hand-crafted

distance metrics [9, 32, 33]. In recent years, a variety of

metric learning algorithms have been proposed in the liter-

ature [9, 14, 16, 23, 25, 32, 33], and some of them have
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Figure 1. The basic idea of the proposed DTML method. For each

sample in the training sets from the source domain and the target

domain, we pass it to the developed deep neural network. We

enforce two constraints on the outputs of all training samples at

the top of the network: 1) the inter-class variations are maximized

and the intra-class variations are minimized, and 2) the distribution

divergence between the source domain and the target domain at the

top layer of the network is minimized.

successfully applied in visual analysis applications such as

face recognition [14, 16], image classification [9, 32], hu-

man activity recognition [31], person re-identification [19]

and visual search [26].

Existing metric learning methods can be mainly classi-

fied into two categories: unsupervised and supervised. For

the first category, a low-dimensional subspace or manifold

is learned to preserve the geometrical information of the

samples. For the second category, a discriminative distance

metric is learned to maximize the separability of samples

from different classes. Since the label information of train-

ing samples is used, supervised metric learning methods are

more suitable for the recognition task.

While many supervised metric learning algorithms have

been presented in recent years, there are still two shortcom-

ings of these methods: 1) most of them usually seek a single

linear distance to transform sample into a linear feature s-

pace, so that the nonlinear relationship of samples cannot

be well exploited. Even if the kernel trick [36] can be em-



ployed to addressed the nonlinearity issue, these methods

still suffer from the scalability problem because they cannot

obtain the explicit nonlinear mapping functions; 2) most of

them assume that the training and test samples are captured

in similar scenarios so that their distributions are assumed

to be the same. This assumption doesn’t hold in many re-

al visual recognition applications, especially when samples

are captured across different datasets.

To this end, in this work, we propose a new deep trans-

fer metric learning (DTML) method for cross-dataset visual

recognition. Figure 1 illustrates the basic idea of the pro-

posed method. Our method learns a set of hierarchical non-

linear transformations by transferring discriminative knowl-

edge from the labeled source domain to the unlabeled tar-

get domain, under which the inter-class variations are max-

imized and the intra-class variations are minimized, and the

distribution divergence between the source domain and the

target domain at the top layer of the network is minimized,

simultaneously. To better exploit the discriminative infor-

mation from the source domain, we further develop a deeply

supervised transfer metric learning (DSTML) method by in-

cluding an additional objective on DTML where the output

of both the hidden layers and the top layer are optimized

jointly. Experimental results on cross-dataset face verifica-

tion and person re-identification demonstrate the effective-

ness of the proposed methods.

2. Related Work

Deep Learning: In recent years, deep learning has at-

tracted much attention in computer vision and machine

learning due to its superb performance in various tasks.

Generally, deep learning aims to learn hierarchical fea-

ture representations directly from raw data. Recent ad-

vances have shown that deep learning have been success-

fully applied to many visual tasks such as image classifica-

tion [10, 20], object detection [29], action recognition [21],

and face recognition [17, 30]. Many deep learning mod-

els have been proposed in recent years, and representative

methods include deep convolutional neural networks [20],

deep neural networks [4], deep stacked auto-encoder [21],

deep belief networks [15], and deeply-supervised nets [22].

However, most of them aim to learn feature representations

via deep model rather than similarity measure. More recent-

ly, deep learning has also been used in metric learning, and

several metric learning methods have been proposed. For

example, Cai et al. [5] introduced a nonlinear metric learn-

ing method using the stacked independent subspace analy-

sis. Hu et al. [16] proposed a discriminative deep metric

learning method which employs a conventional neural net-

work by enforcing a large margin criterion at the top layer

of the network. While these methods have achieved reason-

ably good performance, they assume that the training and

test samples are captured in the same environments, which

is not always satisfied in many real applications. In this

work, we proposed a deep transfer metric learning approach

by learning a deep metric network and considering the dis-

tribution difference between the source domain and the tar-

get domain.

Transfer Learning: Transfer learning aims to address

the problem when the distribution of the training data from

the source domain is different from that of the target do-

main. Over the past decades, a variety of transfer learn-

ing algorithms [28] have been proposed and they can be

mainly categorized into two classes: instance-based [8] and

feature-based [2]. For the first class, different weights are

learned to rank the training samples in the source domain

for better learning in the target domain. For the second

class, a common feature space is usually learned which can

transfer the information learned from the source domain to

the target domain. In recent years, several transfer learning

techniques have been presented and representative meth-

ods include domain transfer support vector machine [11],

transfer dimensionality reduction [27], and transfer metric

learning [37, 38]. While some proposing results can be ob-

tained by these transfer learning methods, most of them on-

ly consider minimizing the distribution difference between

the source domain and the target domain by using linear

mappings or the kernel trick, which are not effective enough

to transfer the knowledge if the distribution difference is

large and the transfer functions are usually not explicitly

obtained. In this work, we borrow the idea of deep learn-

ing and propose a deep transfer metric learning method by

learning a discriminative distance network with some infor-

mation transferred from the source domain.

3. DTML

In this section, we first introduce the notation used in this

work. Then, we present the deep metric learning frame-

work. Lastly, we present the proposed deep transfer metric

learning method.

3.1. Notation

Let Xs = {(xsi, ysi)|i = 1, 2, · · · , Ns} be the train-

ing set in the source domain, which contains Ns exam-

ples, where xsi ∈ R
d is a d-dimensional feature vector,

ysi ∈ {1, 2, · · · , Cs} is the label of xsi, and Cs is the num-

ber of classes. Similarly, we denote Xt = {(xti, yti)|i =
1, 2, · · · , Nt} be the training samples in the target domain,

where Nt is the number of samples in the set, yti is the label

of xti. Let X = {(xi, yi)|i = 1, 2, · · · , N} be the labeled

training set, which contains samples either only from the

source domain Xs or from both the source domain Xs and

the target domain Xt. In our experiments, we consider a

challenging case where the labeled training set X is only

sampled from the source domain Xs (i.e., X = Xs) and no

labeled training set is obtained from the target domain.
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Figure 2. The network architecture used in our method. The input

to the network is x, and the output of the hidden layer and the top

layer is h(1) and h
(2), respectively. Here W

(m) and b
(m) are the

parameters of the network to be learned, 1 ≤ m ≤ 2.

3.2. Deep Metric Learning

Unlike most previous metric learning methods which

usually seek a single linear distance to transform sample

into a linear feature space, we construct a deep neural net-

work to compute the representations of each sample x by

passing it to multiple layers of nonlinear transformations,

as shown in Figure 2. The key advantage of using such a

network to map x is the nonlinear mapping function can be

explicitly obtained. Assume there are M + 1 layers in the

designed network and p(m) units in the mth layer, where

m = 1, 2, · · · ,M . The output of x at the mth layer is com-

puted as:

f (m)(x) = h
(m)

= ϕ
(

W
(m)

h
(m−1) + b

(m)
)

∈ R
p(m)

, (1)

where W
(m) ∈ R

p(m)
×p(m−1)

and b
(m) ∈ R

p(m)

are

the weight matrix and bias of the parameters in this lay-

er; and ϕ is a nonlinear activation function which oper-

ates component-wisely, such as widely used tanh or sigmoid

functions. The nonlinear mapping f (m) : Rd 7→ R
p(m)

is

a function parameterized by {W(i)}mi=1 and {b(i)}mi=1. For

the first layer, we assume h
(0) = x and p(0) = d.

For each pair of samples xi and xj , they can be final-

ly represented as f (m)(xi) and f (m)(xj) at the mth lay-

er of our designed network, and their distance metric can

be measured by computing the squared Euclidean distance

between the representations f (m)(xi) and f (m)(xj) at the

mth layer:

d2
f(m)(xi,xj) =

∥

∥

∥
f (m)(xi)− f (m)(xj)

∥

∥

∥

2

2
. (2)

Following the graph embedding framework, we enforce

the marginal fisher analysis criterion [35] on the output of

all the training samples at the top layer and formulate a

strongly-supervised deep metric learning method as:

min
f(M)

J = S(M)
c − α S

(M)
b

+ γ
M
∑

m=1

(

∥

∥W
(m)

∥

∥

2

F
+
∥

∥b
(m)

∥

∥

2

2

)

, (3)

where α (α > 0) is a free parameter which balances the im-

portant between intra-class compactness and interclass sep-

arability; ‖Z‖F denotes the Frobenius norm of the matrix

Z; γ (γ > 0) is a tunable positive regularization parameter;

S
(m)
c and S

(m)
b define the intra-class compactness and the

interclass separability, which are defined as follows:

S(m)
c =

1

Nk1

N
∑

i=1

N
∑

j=1

Pij d
2
f(m)(xi,xj), (4)

S
(m)
b =

1

Nk2

N
∑

i=1

N
∑

j=1

Qij d
2
f(m)(xi,xj), (5)

where Pij is set as one if xj is one of k1-intra-class nearest

neighbors of xi, and zero otherwise; and Qij is set as one if

xj is one of k2-interclass nearest neighbors of xi, and zero

otherwise.

3.3. Deep Transfer Metric Learning

Given target domain data Xt and source domain data Xs,

their probability distributions are usually different in the o-

riginal feature space when they are captured from different

datasets. To reduce the distribution difference, it is desir-

able to make the probability distribution of the source do-

main and that of the target domain be as close as possible in

the transformed space. To achieve this, we apply the Maxi-

mum Mean Discrepancy (MMD) criterion [13, 27] to mea-

sure their distribution difference at the mth layer, which is

defined as as follows:

D
(m)
ts (Xt,Xs) =

∥

∥

∥

∥

∥

1

Nt

Nt
∑

i=1

f (m)(xti)−
1

Ns

Ns
∑

i=1

f (m)(xsi)

∥

∥

∥

∥

∥

2

2

. (6)

By combining (3) and (6), we formulate DTML as the

following optimization problem:

min
f(M)

J = S(M)
c − α S

(M)
b + β D

(M)
ts (Xt,Xs)

+ γ

M
∑

m=1

(

∥

∥W
(m)

∥

∥

2

F
+
∥

∥b
(m)

∥

∥

2

2

)

, (7)

where β (β ≥ 0) is a regularization parameter.



To solve the optimization problem in (7), we employ the

stochastic sub-gradient descent method to obtain the param-

eters W(m) and b
(m). The gradients of the objective func-

tion J in (7) with respect to the parameters W(m) and b
(m)

are computed as follows:

∂J

∂W(m)

=
2

Nk1

N
∑

i=1

N
∑

j=1

Pij

(

L
(m)
ij h

(m−1)
i

T

+ L
(m)
ji h

(m−1)
j

T)

−
2α

Nk2

N
∑

i=1

N
∑

j=1

Qij

(

L
(m)
ij h

(m−1)
i

T

+ L
(m)
ji h

(m−1)
j

T)

+ 2β
( 1

Nt

Nt
∑

i=1

L
(m)
ti h

(m−1)
ti

T

+
1

Ns

Ns
∑

i=1

L
(m)
si h

(m−1)
si

T)

+ 2γ W
(m), (8)

∂J

∂b(m)
=

2

Nk1

N
∑

i=1

N
∑

j=1

Pij

(

L
(m)
ij + L

(m)
ji

)

−
2α

Nk2

N
∑

i=1

N
∑

j=1

Qij

(

L
(m)
ij + L

(m)
ji

)

+ 2β
( 1

Nt

Nt
∑

i=1

L
(m)
ti +

1

Ns

Ns
∑

i=1

L
(m)
si

)

+ 2γ b
(m), (9)

where the updating equations are computed as follows:

L
(M)
ij =

(

h
(M)
i − h

(M)
j

)

⊙ ϕ′

(

z
(M)
i

)

,

L
(M)
ji =

(

h
(M)
j − h

(M)
i

)

⊙ ϕ′

(

z
(M)
j

)

,

L
(m)
ij =

(

W
(m+1)T

L
(m+1)
ij

)

⊙ ϕ′

(

z
(m)
i

)

,

L
(m)
ji =

(

W
(m+1)T

L
(m+1)
ji

)

⊙ ϕ′

(

z
(m)
j

)

,

L
(M)
ti =

( 1

Nt

Nt
∑

j=1

h
(M)
tj −

1

Ns

Ns
∑

j=1

h
(M)
sj

)

⊙ ϕ′

(

z
(M)
ti

)

,

L
(M)
si =

( 1

Ns

Ns
∑

j=1

h
(M)
sj −

1

Nt

Nt
∑

j=1

h
(M)
tj

)

⊙ ϕ′

(

z
(M)
si

)

,

L
(m)
ti =

(

W
(m+1)T

L
(m+1)
ti

)

⊙ ϕ′

(

z
(m)
ti

)

,

L
(m)
si =

(

W
(m+1)T

L
(m+1)
si

)

⊙ ϕ′

(

z
(m)
si

)

,

where m = 1, 2, · · · ,M − 1. Here the operation ⊙ de-

notes the element-wise multiplication, and z
(m)
i is given as

z
(m)
i = W

(m)
h
(m−1)
i + b

(m).

Algorithm 1: DTML

Input: Training set: labeled source domain data Xs

and unlabeled target domain data Xt;

Parameters: α, β, γ, M , k1, k2, learning rate λ,

convergence error ε, and total iterative number

T .

for k = 1, 2, · · · , T do

Do forward propagation to all data points;

Compute compactness S
(M)
c by (4);

Compute separability S
(M)
b by (5);

Obtain MMD term D
(M)
ts (Xt,Xs) by (6);

for m = M,M − 1, · · · , 1 do

Compute ∂J/∂W(m) and ∂J/∂b(m) by

back-propagation using (8) and (9);

end

// Updating weights and biases

for m = 1, 2, · · · ,M do

W
(m) ←−W

(m) − λ ∂J/∂W(m);

b
(m) ←− b

(m) − λ ∂J/∂b(m);

end

λ←− 0.95× λ; // Reducing the learning rate

Obtain Jk by (7);

If |Jk − Jk−1| < ε, go to Output.

end

Output: Weights and biases {W(m),b(m)}Mm=1.

Then, W(m) and b
(m) can be updated by using the gra-

dient descent algorithm as follows until convergence:

W
(m) = W

(m) − λ
∂J

∂W(m)
, (10)

b
(m) = b

(m) − λ
∂J

∂b(m)
, (11)

where λ is the learning rate.

Algorithm 1 summarizes the detailed optimization pro-

cedure of the proposed DTML method.

4. Deeply Supervised Transfer Metric Learn-

ing

The objective function of DTML defined in (7) only con-

siders the supervised information of training samples at the

top layer of the network, which ignore the discriminative

information of the output at the hidden layers. To address

this, we further propose a deeply supervised transfer metric

learning (DSTML) method to better exploit discriminative

information from the output of all layers. We formulate the

following optimization problem:

min
f(M)

J = J (M) +

M−1
∑

m=1

ω(m) h
(

J (m) − τ (m)
)

, (12)



where

J (m) = S(m)
c − α S

(m)
b + β D

(m)
ts (Xt,Xs)

+ γ
(

∥

∥W
(m)

∥

∥

2

F
+
∥

∥b
(m)

∥

∥

2

2

)

, (13)

is the objective function of DTML applied at the mth lay-

er. Here J (M) is the loss of the top layer and J (m) is the

loss of the mth hidden layer, m = 1, 2, · · · ,M − 1. The

hinge loss function is used to measure the loss, which is de-

fined as: h(x) = max(x, 0); τ (m) is a positive threshold,

which controls the loss J (m) to show it plays the role in the

learning procedure; and ω(m) balances the importance of

the loss obtained at the top layer and the mth hidden layer.

The second term in (12) will disappear during the learning

procedure if the overall loss of the mth hidden layer is be-

low the threshold τ (m).

The gradient of the objective function J in (12) with re-

spect to the parameters W(m) and b
(m) at the top layer are

computed as follows:

∂J

∂W(M)
=

∂J (M)

∂W(M)
, (14)

∂J

∂b(M)
=

∂J (M)

∂b(M)
, (15)

For other layers m = 1, 2, · · · ,M−1, they are computed

as follows:

∂J

∂W(m)
=

∂J (M)

∂W(m)
+

M−1
∑

ℓ=m

ω(ℓ) h′
(

J (ℓ) − τ (ℓ)
) ∂J (ℓ)

∂W(m)
, (16)

∂J

∂b(m)
=

∂J (M)

∂b(m)
+

M−1
∑

ℓ=m

ω(ℓ) h′
(

J (ℓ) − τ (ℓ)
) ∂J (ℓ)

∂b(m)
, (17)

where h′(x) is the derivative of h(x), and we set h′(x) = 0
for the non-differentiability point x = 0.

For 1 ≤ m ≤ ℓ ≤M , we have

∂J (ℓ)

∂W(m)

=
2

Nk1

N
∑

i=1

N
∑

j=1

Pij

(

L
(m)
ij h

(m−1)
i

T

+ L
(m)
ji h

(m−1)
j

T)

−
2α

Nk2

N
∑

i=1

N
∑

j=1

Qij

(

L
(m)
ij h

(m−1)
i

T

+ L
(m)
ji h

(m−1)
j

T)

+ 2β
( 1

Nt

Nt
∑

i=1

L
(m)
ti h

(m−1)
ti

T

+
1

Ns

Ns
∑

i=1

L
(m)
si h

(m−1)
si

T)

+ 2γ δ(ℓ−m) W(ℓ), (18)

∂J (ℓ)

∂b(m)
=

2

Nk1

N
∑

i=1

N
∑

j=1

Pij

(

L
(m)
ij + L

(m)
ji

)

−
2α

Nk2

N
∑

i=1

N
∑

j=1

Qij

(

L
(m)
ij + L

(m)
ji

)

+ 2β
( 1

Nt

Nt
∑

i=1

L
(m)
ti +

1

Ns

Ns
∑

i=1

L
(m)
si

)

+ 2γ δ(ℓ−m)b(ℓ), (19)

where the delta function δ(x) = 0 holds except δ(x) = 1
at point x = 0, and the updating equations for all layers

1 ≤ m ≤ ℓ− 1 are computed as follows:

L
(ℓ)
ij =

(

h
(ℓ)
i − h

(ℓ)
j

)

⊙ ϕ′

(

z
(ℓ)
i

)

,

L
(ℓ)
ji =

(

h
(ℓ)
j − h

(ℓ)
i

)

⊙ ϕ′

(

z
(ℓ)
j

)

,

L
(m)
ij =

(

W
(m+1)T

L
(m+1)
ij

)

⊙ ϕ′

(

z
(m)
i

)

,

L
(m)
ji =

(

W
(m+1)T

L
(m+1)
ji

)

⊙ ϕ′

(

z
(m)
j

)

,

L
(ℓ)
ti =

( 1

Nt

Nt
∑

j=1

h
(ℓ)
tj −

1

Ns

Ns
∑

j=1

h
(ℓ)
sj

)

⊙ ϕ′

(

z
(ℓ)
ti

)

,

L
(ℓ)
si =

( 1

Ns

Ns
∑

j=1

h
(ℓ)
sj −

1

Nt

Nt
∑

j=1

h
(ℓ)
tj

)

⊙ ϕ′

(

z
(ℓ)
si

)

,

L
(m)
ti =

(

W
(m+1)T

L
(m+1)
ti

)

⊙ ϕ′

(

z
(m)
ti

)

,

L
(m)
si =

(

W
(m+1)T

L
(m+1)
si

)

⊙ ϕ′

(

z
(m)
si

)

.

5. Experiments

In this section, we evaluate the DTML and DSTML

methods on two visual recognition tasks: cross-dataset face

verification and cross-dataset person re-identification. The

followings describe the detailed experiments and results.

5.1. Face Verification

Face verification aims to decide whether a given pair of

face images are from the same person or not. In this sec-

tion, we conducted cross-dataset unconstrained face verifi-

cation where face images were captured in wild condition-

s so that significant variations such as varying expression,

pose, lighting, and background occur the captured images.

Datasets and Experimental Settings: We used the La-

beled Faces in the Wild (LFW) [18] and the Wide and Deep

Reference (WDRef) [6] datasets for cross-dataset face veri-

fication. LFW is a challenging dataset which was developed

for studying the problem of unconstrained face verification.

There are 13233 face images of 5749 persons in the LFW

dataset, which were collected from the internet and 1680

people have two or more images. This dataset was divided
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Figure 3. Sampled face images from LFW and WDRef [6].

into 10 non-overlapping folds and the 10-fold cross valida-

tion evaluation was used to test the performance of differ-

ent face verification methods. For each fold, there are 300

matched (positive) pairs and 300 mismatched (negative) im-

age pairs, respectively.

The WDRef [6] dataset contains 99773 face images of

2995 people, and 2065 subjects have at least 15 images. S-

ince face image captured in WDRef are also from the in-

ternet, face images from these two datasets are generally

similar. There is no overlapped subject between the LFW

and WDRef datasets. Figure 3 shows some sample images

from these two datasets. In our experiments, we applied a

subset which is randomly sampled from WDRef which con-

sists of 15000 images (1500 subjects and each subject has

10 images) to learn the discriminative metric network.

In our settings, we selected the LFW dataset as the target

domain data and the WDRef dataset as the source domain

data. For each face image in these two datasets, we used the

conventional local binary patterns (LBP) feature [1] provid-

ed by the authors [6] to represent each face image. Specifi-

cally, we first extracted LBP descriptors at five facial land-

marks with various scales, and then concatenated them to

form a 5900-dimensional feature vector. To further remove

the redundancy, each feature vector is reduced to 500 di-

mension by principal component analysis (PCA) where the

projection is learnt on the source domain data. For our pro-

posed DTML and DSTML methods, we designed a deep

network with three layers (M = 2), and neural nodes from

bottom to top layer are set as: 500→ 400→ 300. The tanh

function was used as the nonlinear activation function in our

methods, and the parameters α, β, γ, ω(1), τ (1), k1 and k2
were empirically set as 0.1, 10, 0.1, 1, 0, 5 and 10, respec-

tively. The initialized value of the learning rate λ was set

as 0.2, and then it gradually reduced by multiplying a factor

0.95 in each iteration. We initialized W
(m) as a matrix with

ones on the main diagonal and zeros elsewhere, and set the

bias b(m) as 0 for all m = 1, 2, · · · ,M .

Results: We first compared our DTML with the shal-

low transfer metric learning (STML) method to show the

advantage of the deep network. STML is a special case of

our DTML model where the designed neural network only

has two layers and the linear activation function ϕ(x) = x
was used. Table 1 shows the average verification rate with

standard error of DTML, DSTML and STML. We see that

Table 1. Mean verification rate with standard error (%) of different

transfer metric learning methods on the LFW dataset.

Method Accuracy (%)

STML 83.60± 0.75
DTML 85.58± 0.61
DSTML 87.32± 0.67

Table 2. Mean verification rate with standard error (%) of different

metric learning methods when knowledge transfer or no knowl-

edge transfer is used on the LFW dataset.

Method Transfer Accuracy (%)

DDML [16] no 83.16± 0.80
STML yes 83.60± 0.75
STML (β = 0) no 82.57± 0.81
DTML yes 85.58± 0.61
DTML (β = 0) no 83.80± 0.55
DSTML yes 87.32± 0.67
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Figure 4. The ROC curves of various methods on LFW dataset.

DTML achieves better performance than STML. The reason

is that DTML learns several hierarchical nonlinear trans-

formations while STML learns only one transformation, so

that the nonlinearity can be better exploited. Moreover, D-

STML improves DTML by 1.7% in terms of the mean ver-

ification rate. This is because DSTML utilizes the label in-

formation from training sampled in the source domain at

both the hidden layers and the top layer while DTML on-

ly exploit such information at the top layer, such that more

discriminative information is exploited in DSTML.

To show the efficacy of knowledge transfer in DTM-

L, we also compared DTML and STML with their corre-

sponding metric learning methods with no knowledge trans-

fer. Hence, the MMD regularization term in DTML is re-

moved, which means the value of the parameter β is set

as 0 in DTML. Table 2 shows the performance compar-

isons of DTML and shallow TML methods with or with-



Table 3. Top r ranked matching accuracy (%) on the VIPeR dataset

with #test = 316 testing persons.

Method Source r = 1 r = 5 r = 10 r = 30

L1 - 3.99 8.73 12.59 25.32

L2 - 4.24 8.92 12.66 25.35

i-LIDS 5.63 12.91 21.71 41.80

DDML CAVIAR 5.91 13.53 19.86 37.92

[16] 3DPeS 6.67 17.16 23.87 41.65

i-LIDS 5.88 13.72 21.03 41.49

DTML CAVIAR 6.02 13.81 20.33 38.46

(β = 0) 3DPeS 7.20 18.04 25.96 43.80

i-LIDS 6.68 15.73 23.20 46.42

DTML CAVIAR 6.17 13.10 19.65 37.78

3DPeS 8.51 19.40 27.59 47.91

i-LIDS 6.11 16.01 23.51 45.35

DSTML CAVIAR 6.61 16.93 24.40 41.55

3DPeS 8.58 19.02 26.49 46.77

Table 4. Top r ranked matching accuracy (%) on the i-LIDS

dataset with #test = 60 testing persons.

Method Source r = 1 r = 5 r = 10 r = 30

L1 - 16.51 28.41 38.28 69.32

L2 - 16.30 28.25 38.40 69.77

VIPeR 25.32 45.61 60.27 83.31

DDML CAVIAR 25.67 45.03 61.38 82.56

[16] 3DPeS 28.71 48.55 62.53 83.15

VIPeR 26.27 47.59 62.62 85.07

DTML CAVIAR 26.15 46.87 62.08 84.78

(β = 0) 3DPeS 30.23 51.60 65.21 85.53

VIPeR 28.90 51.43 65.47 87.23

DTML CAVIAR 26.23 49.31 63.99 87.76

3DPeS 31.01 54.51 65.96 88.66

VIPeR 28.35 50.81 61.58 84.72

DSTML CAVIAR 28.37 49.68 64.59 88.68

3DPeS 33.37 54.56 68.27 89.32

out knowledge transfer from source domain on the LFW

dataset. We see that methods with knowledge transfer con-

sistently improve those methods without knowledge trans-

fer by 1% ∼ 1.7% in terms of the mean verification rate

even if the LFW and WDRef datasets are similar. Figure 4

shows the ROC curves of these metric learning methods, we

see that transfer metric learning methods outperform those

methods without knowledge transfer.

5.2. Person ReIdentification

Person re-identification aims to recognize person across

multiple cameras without overlapping views. This task is

very challenging because images of the same subject col-

lected in multiple cameras are usually different due to vari-

ations of viewpoint, illumination, pose, resolution and oc-

clusion. While many person re-identification methods have

been proposed [24, 34, 40], there is no much work on cross-

dataset person re-identification. In this subsection, we eval-

Table 5. Top r ranked matching accuracy (%) on the CAVIAR

dataset with #test = 36 testing persons.

Method Source r = 1 r = 5 r = 10 r = 30

L1 - 20.65 36.44 48.52 88.34

L2 - 20.19 36.43 48.55 87.69

VIPeR 23.80 42.15 55.61 90.73

DDML i-LIDS 22.72 41.36 56.92 90.06

[16] 3DPeS 23.85 44.30 57.81 90.27

VIPeR 23.71 42.57 56.15 90.55

DTML i-LIDS 23.09 42.81 58.43 90.41

(β = 0) 3DPeS 25.11 46.71 59.69 91.99

VIPeR 23.88 42.36 55.60 92.12

DTML i-LIDS 26.06 47.37 61.70 94.23

3DPeS 26.10 47.80 61.31 93.02

VIPeR 26.05 44.33 57.02 92.80

DSTML i-LIDS 25.91 44.47 58.88 93.33

3DPeS 28.18 49.96 63.67 94.13

Table 6. Top r ranked matching accuracy (%) on the 3DPeS dataset

with #test = 95 testing persons.

Method Source r = 1 r = 5 r = 10 r = 30

L1 - 26.93 42.21 51.56 69.57

L2 - 26.95 42.57 51.46 69.84

VIPeR 29.56 51.03 61.71 78.62

DDML i-LIDS 27.81 50.29 58.33 77.05

[16] CAVIAR 30.32 49.36 58.92 79.61

VIPeR 30.33 52.18 62.24 82.58

DTML i-LIDS 29.12 50.07 59.99 78.59

(β = 0) CAVIAR 31.23 51.88 60.87 81.30

VIPeR 32.12 54.36 65.92 84.65

DTML i-LIDS 32.11 52.08 61.63 79.45

CAVIAR 31.79 51.92 62.78 81.98

VIPeR 32.51 52.97 63.12 83.08

DSTML i-LIDS 31.57 52.54 63.50 84.02

CAVIAR 32.53 54.29 65.28 84.72

uate our methods on cross dataset person re-identification

where only the label information of the source domain is

used in the model learning.

Datasets and Experimental Settings: The VIPeR

dataset [12] consists of 632 intra-personal image pairs cap-

tured outdoor by two different camera views, and most of

them contain a viewpoint change of about 90 degrees. The

i-LIDS dataset [39] contains 476 images of 119 people cap-

tured by five cameras at an airport, and each pedestrian has

2 ∼ 8 images. The CAVIAR dataset [7] contains 1220 im-

ages of 72 individuals from two different cameras in an in-

door shopping mall, with 10∼ 20 images per person as well

as large variations in resolutions. The 3DPeS dataset [3]

has 1011 images of 192 persons collected from 8 differ-

ent outdoor cameras with significant changes of viewpoint,

and most of individuals appear in three different camera

views. Figure 5 shows some example images from these

four datasets, respectively.
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Figure 5. Example person images from the VIPeR, i-LIDS, CAVIAR and 3DPeS datasets, respectively, where each column shows two

images belonging to the same person captured in two different cameras.

In our experiments, all images from these datasets were

scaled to 128 × 48 for feature extraction. For each image,

we used two kinds of features descriptor: color and tex-

ture histograms. Following the settings in [34], each image

was divided into six non-overlapping horizontal stripes. For

each stripe, we extracted 16-bins histograms for each col-

or channel of eight channels in the RGB (R, G, B), YUV

(Y, U, V) and HSV (H, S) spaces, and computed uniform

LBP with 8 neighbors and 16 neighbors respectively. Fi-

nally, color and texture histograms from these stripes were

concatenated to form a 2580-dimensional feature vector for

each image. Then PCA learnt on the source domain data

was applied to reduce the dimension of target feature vec-

tor into a low dimensional subspace. We also adopted the

single-Shot experiment setting [34, 40] to randomly split

individuals in each dataset as training set and testing set,

and repeated 10 times. For each partition, there were #test
subjects in the testing set, and one image for each person

was randomly selected as the gallery set and the remaining

images of this person were used as probe images. We also

used a network with three layers (M = 2), and its neural

nodes are given as: 200 → 200 → 100 for all datasets.

The parameter k1 and k2 are set as 3 and 10, respectively1.

For other parameters, we used the same settings which were

used in previous face verification experiments.

Results: Tables 3–6 show cross dataset person re-

identification performance of our proposed methods on the

VIPeR, i-LIDS, CAVIAR and 3DPeS datasets, respective-

ly. The L1 and L2 are two baseline methods which directly

use L1 and L2 norms to compute distance between a probe

image and a gallery image in the target domain. From these

tables, we see that our DTML achieve better performance

than the metric learning method without knowledge trans-

fer in most of cases, which shows that transfer metric learn-

1If the number of image for a given person is less than 3, all intra-class

neighbors were used to compute the intra-class variations.

ing can improve the performance of cross dataset person

re-identification. We also observe that DSTML obtains the

best performance for most cases, which indicates that ex-

ploiting discriminative information from more hidden lay-

ers rather than the single output layer is more effective to

learn good distance metrics.

6. Conclusion

In this paper, we have proposed a deep transfer metric

learning (DTML) method for cross-dataset visual recogni-

tion. By learning a set of hierarchical nonlinear transfor-

mations which transfer discriminative knowledge from the

labeled source domain to the unlabeled target domain, the

proposed method can achieve better performance than exist-

ing linear metric learning methods. To better exploit the dis-

criminative information from the source domain, we have

further developed a deeply supervised transfer metric learn-

ing (DSTML) method by exploiting discriminative informa-

tion from both the hidden layer and the top output layer to

further improve the recognition performance. Experimental

results are presented to show the effectiveness of the pro-

posed methods.
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