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ABSTRACT To remove the need for signaling overhead of feedback channels for transmitter channel state
information (CSI) in Frequency Division Duplexing (FDD), we propose using convolutional neural networks
and generative adversarial networks (GANs) to infer the downlink (DL) CSI by observing the uplink (UL)
CSI. Our data-driven scheme exploits the fact that both DL and UL channels share the same propagation
environment. As such, we extracted the environment information from UL channel response to a latent
domain and then transferred the derived environment information from the latent domain to predict the DL
channel. To prevent incorrect latent domain and the problem of oversimplistic assumptions, we did not use
any specific parametric model and, instead, used data-driven approaches to discover the underlying structure
of data without any prior model assumptions. To overcome the challenge of capturing the UL-DL joint
distribution, we used a mean square error-based variant of the GAN structure with improved convergence
properties called boundary equilibrium GAN. For training and testing we used simulated data of Extended
Vehicular-A (EVA) and Extended Typical Urban (ETU) models. Simulation results verified that our methods
can accurately infer and predict the downlink CSI from the uplink CSI for different multipath environments.

INDEX TERMS Channel Prediction, Convolutional Neural Networks, Deep Learning, Downlink, FDD
Systems, Generative Adversarial Networks, Uplink.

I. INTRODUCTION
One key feature of newer generations of cellular networks is
their efficient use of frequency bands and energy. To achieve
this goal, they use various techniques, such as water-filling,
appropriate precoding and beamforming. In most of these
techniques, the Channel State Information (CSI) should be
available at the transmitter side (CSIT). In Time Division
Duplexing (TDD) systems, Up-Link (UL) and Down-Link
(DL) frequencies are equal, so we can use channel reciprocity
and simply infer the DL channel by observing the UL chan-
nel. In Frequency Division Duplexing (FDD) systems, how-
ever, DL channel and UL channel have different frequen-
cies. Therefore, we cannot use channel reciprocity to infer
the DL channel. The most commonly used solution is that
the user (receiver) first measures (estimates) the DL channel,
and then sends its information back to the transmitter. This
solution has two major disadvantages: delay and overhead.
If the delay is larger than the coherence time, the actual DL

channel is different from what has been fed back by the
user. In addition, in new generations of mobile networks the
transmitter has a large number of antennas. For example, for
a fourth-generation transmitter with 64 antennas, the need to
learn the DL channel (pilot transmission and feedback data)
consumes a large portion of the transmitter’s traffic [1]. This
very large overhead is a major challenge in LTE networks. [1].
These challenges have such important effects on the network
performance that despite some significant advantages of FDD
systems, such as continuous transmission [2], in recent years,
TDD has attracted more attention.

To eliminate the need for the feedback (and so its associated
overhead and delay), there are several studies that aim to
infer the DL channel by observing the UL channel in FDD
systems. DL-CSI estimation methods in [3]–[5] are based on
the assumption that the difference between the dominant angle
of arrival (AOA) in UL and the dominant angle of departure
(AOD) in DL is small and directional properties of UL and
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DL are correlated. For example, a great deal of measurements
have shown that with probability of about 81 percent, this dif-
ference is smaller than 4.5 degrees [6]. Therefore, by having
the dominant AOA in UL, the dominant AOD in DL can be
obtained and used for purposes like beamforming.

Some works [7]–[10] are based on covariance matrix due to
channel matrix slow variations. In [7] a transformation matrix
is used to convert UL covariance matrix to DL covariance
matrix. [9] is based on the concept of dictionary learning and
it has two phases: training and exploitation. In the training
phase, they make a dictionary with corresponding DL and
UL covariance matrices (by changing user location, they have
constructed the dataset of different input and output pairs).
In the exploitation phase, by observing the UL covariance
matrix, DL covariance matrix is constructed by interpolation
of stored dictionary with various methods.

In [11]–[13] by taking into account the multipath structure
of the channel, they extract the paths of the signal independent
of frequency and hence can infer channel response in any
desired frequency band. For example, in [11], the authors
consider four parameters for every path (path attenuation, path
length, an independent phase shift for modeling reflection,
and angle of arrival of the path). Then, they try to estimate
these parameters using the UL-CSI. The resulting model is
then used for the prediction of the DL-CSI.

AOA-based methods are often not usable in cases where the
accurate channel response is required and are often used only
for beamforming. In path extraction-based methods, we can
obtain the accurate channel response at any desired frequency,
but such methods are often based on assumptions that may
not be practically feasible. For example, path attenuation is
considered independent of frequency [11]. This assumption is
only true if the difference between DL and UL frequencies
is small. In [13], to investigate the dependence of path atten-
uation on frequency, limited feedback was used and it was
verified that deriving the DL channel, with the assumption of
frequency-independent path attenuation, is not very accurate.
Covariance-based algorithms also depend on different envi-
ronmental factors, such as the correlation among antennas.
However, when antenna correlation is poor, [14] showed that
it is not appropriate to use correlation based methods.

To overcome the disadvantages of the above-mentioned
methods, artificial intelligence can be used for channel estima-
tion. In recent years, artificial intelligence has revolutionized
human life, so that it was called the fourth industrial revo-
lution. One of the leading areas of artificial intelligence and
machine learning is deep learning, which has been very suc-
cessful in many cases, such as machine vision, speech recog-
nition, and object detection. In some cases deep learning even
exceeds human performance [15]. Deep learning has been
also used in physical layer communications [16]–[23]. O’Shea
et al. [16] considered a communication system at the physical
layer as an autoencoder and designed an end-to-end system
that optimizes transmitter and receiver simultaneously in one
process. Nevertheless, their method is end-to-end, whereas
one advantage of our method is designing a separate channel

FIGURE 1. UL to DL knowledge transfer procedure: extracting environment
information from UL and transferring it to DL.

estimator block. In other wordes, our method can be easily
inserted within current systems, without having to replace the
whole architecture by an end-to-end design. In addition, [17]
used a variational GAN to capture the stochastic model of the
channel to learn its probability density function (PDF). In [18]
authors used an adversarial network to model the channel
input-output conditional probability. In [20], a super resolu-
tion network cascaded with a denoising autoencoder was used
to estimate channel response based on some known pilots.
CsiNet introduced in [21], to perform limited CSI feedback
in FDD systems, encodes channel response at one side (user)
and decodes received feedback with a decoder at the other side
(base station). There are also few works [22], [23] that used
deep learning to predict DL-CSI in FDD systems.

Motivated by such applications, in this paper, we propose a
novel method based on deep neural networks that predicts the
DL-CSI based on the past UL-CSI measurements. Use of the
deep networks enables us to expand the search space of the
environment propagation model (beyond the current mathe-
matical models) and therefore, it can capture more insights on
how to infer DL-CSI from the knowledge of UL-CSI.

In essence, the core idea of our scheme is that the way
that the channel affects the transmitted signal (regardless of
whether it is UL or DL) is related to the structure of the envi-
ronment in which the signal is propagating (e.g., the objects,
which are in the environment, the materials that they are made
of, their shape, etc.). By knowing the fact that both DL and UL
channels share the same propagating environment (assuming
of course no sudden changes in the environment), we use the
data-driven approach to extract the environment information
from UL channel response to a latent domain and then transfer
the derived environment information from the latent domain
to the DL channel, as in Fig. 1.

To achieve this goal we use two types of Deep Networks:
Convolutional Neural Networks (CNNs) and a specific type
of Generative Adversarial Networks (GANs) called Boundary
equilibrium GAN (BEGAN), which is based on the Mean
Square Error (MSE). For training and testing we use simulated
data of Extended Vehicular-A (EVA) and Extended Typical
Urban (ETU) models. Our results verify the effectiveness of
our schemes.

The main contributions of this paper can be summarized as
the follows:
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� using a latent space for transferring channel information
from UL to DL;

� exploiting a deep CNN structure to model the UL to DL
mapping function; and

� solving the problem of DL channel estimation from the
UL information by casting it to image inpainting tech-
niques of deep generative networks.

Moreover, it is worth mentioning that to fully characterize
a DL channel of a multiple-input multiple-output (MIMO)
system, we should characterize a 4-dimensional space, i.e.,
we should find out the channel effects (on both the amplitude
and the phase of the signal) between 1) each transmit antenna
and 2) each receive antenna, for 3) each of the subcarriers in
our frequency range and for 4) each time slot. In most of the
previous studies the prediction of DL matrix is investigated in
terms of the MIMO channel matrix and their aim was not to
determine the channel effect in the time-frequency domain (or
if they considered the time-frequency domain they did not in-
vestigate the MIMO case [22]. In this work, instead of looking
high level at the transmitter and receiver antennas and giving
one value to each pair, we focus on one transmit-receive an-
tenna pair and predict the DL channel over a block of time and
frequency. Then, we extend the results to the MIMO case.

The rest of this paper is organized as follows. In Section II,
we will describe CNNs and GANs as the tools that we used
to predict DL channel. Section III provides detailed discus-
sion on the prediction problem. Section IV contains two
approaches for solving the DL prediction problem, i.e., the
direct approach and the generative approach. In Section V,
we explain implementation details of networks and provide
simulation results along with further discussions and insights
about the results. Section VI draws a conclusion on this paper.

II. BACKGROUND
In the following subsections we briefly discuss two special
types of deep neural networks used in this paper to predict the
DL channel.

A. CONVOLUTIONAL NEURAL NETWORKS
One of the interesting neural network structures widely used
in artificial intelligence (AI) community is the Convolutional
Neural Network (CNN). CNNs could have many hidden lay-
ers and usually they are one of the three types of convolutional
layers, pooling layers, and fully connected layers. CNN is a
powerful tool, specially in analyzing two-dimensional (2D)
data like images. It is mainly due to the structure of the convo-
lutional layer, which computes the output by convolving filter
(kernel) weights with the input image (data). The value of
each point in the output image is equal to the cross-correlation
of the filter and the corresponding area in the input image [24].
After applying convolution operation on the input data, an
activation function will be applied to increase non-linearity
of the network. The output of the activation function will pass
through the next layer as the input. CNNs can deduce the main
features of input data, thus removing the need for manual

feature extraction. We explain more details about the CNN
specifics used in this paper in Section V.

B. GENERATIVE ADVERSARIAL NETWORKS
Generative adversarial networks (GANs) are among the most
powerful generative models that capture data distribution [25].
They are based on game theory and consist of two networks:
the generator and the discriminator, which are trained simul-
taneously. Considering a noise vector z as the input, (typically
with normal distribution) the generator tries to create images
similar to real ones while the discriminator tries to distinguish
generated images from real ones. Training of GANs is a two-
player mini-max game. The generator tries to maximize er-
ror probability of discriminator (this means the discriminator
assigns high probability of being real to generated images)
while the discriminator tries to minimize the probability of
being real for generated images. GANs are hard to train and
non-convergence or instability are their main problems [26].

Many different structures have been recently proposed for
new implementations of GANs. In the original GAN, the
output of the discriminator is a positive number between 0
and 1. This number represents the probability that the dis-
criminator input image is in fact a real image (not a generated
image). Such a discriminator is the most common type of dis-
criminator networks in GAN’s literature. For the first time in
energy-based GAN (EBGAN) [27], an autoencoder was used
as the discriminator. An autoencoder is an unsupervised neural
network that reduces the dimensionality of the input data by
learning the main latent variables of the data, i.e., encoding the
data. In EBGAN, the discriminator objective is to maximize
reconstruction error of generated images while minimizing
it for real ones. EBGAN generator’s structure is similar to
the decoder part of the discriminator. Using an autoencoder
as the discriminator makes training easier, faster and more
stable. Boundary equilibrium GANs (BEGANs) [28] are im-
proved versions of EBGANs and use the same structure but
BEGANs aim to match autoencoder loss distribution instead
of matching data distribution directly. To train such networks
an equilibrium is

γ × E [L(x)] = E [L (G(z))] (1)

where L(x) and L(G(z)) are the autoencoder reconstruction
losses when it gets a real image and a generated image, respec-
tively. The vector z is a random vector of size 64 uniformly
sampled between −1 and 1. E [.] represents the expectation
operation. In Eq. (1), γ ∈ [0, 1] has an inverse relation with
the diversity of the generated images, meaning that if γ is set
to a larger number, the generator creates less diverse images.

In BEGAN, LD and LG denote the discriminator and gen-
erator loss or objective functions, respectively, and they are
defined as [28]

LD = L(x) − kt .L (G(z))

LG = L (G(z))

kt+1 = kt + λk (γ L(x) − L (G(z))) (2)
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where LD is the difference between the reconstruction loss of
real images and the reconstruction loss of generated images,
which is scaled with the parameter kt introduced to maintain
Eq. (1). Based on proportional control theory, [28] suggests
that kt should be updated using the last equation in (2) and λk

is its learning rate.
BEGAN, which is a modification of GAN, converges by

using the parameter γ for controlling the equilibrium between
the generator and discriminator so that neither wins over the
other. The discriminator is an autoencoder that updates its
weights to reconstruct real images with minimum loss L(x),
while simultaneously increasing the reconstruction loss of
images produced by the generator L(G(z)). In contrast, the
objective of the generator is to minimize the reconstruction
loss of generated images L(G(z)). The value of γ ∈ [0, 1]
determines the level of emphasis on each of these two losses.
Lower values of γ mean higher emphasis on minimizing the
reconstruction loss of generated images than the cost of real
images. This forces the generator to produce more realistic
images. This ratio is dynamically adapted using kt , which is
updated over time as in Eq. (2). The parameter λ has a similar
interpretation as the learning rate (for example, in algorithms
such as gradient descent) and is usually set to 0.001.

Visual inspection is typically the only way to determine
convergence in GANs but a convergence measure can also be
defined [28] as

MGlobal = L(x) + |γ L(x) − L(G(z))| . (3)

In (3), smaller MGlobal is desired as it means both smaller
reconstruction loss for real images and maintaining Eq. (1).

III. PROBLEM DEFINITION AND FORMULATION
Consider a network composed of a base-station (transmitter)
and a user (receiver). To increase the network spectral effi-
ciency (by techniques such as water-filling and beamforming
in the case of multiple antennas), the base-station needs to
know the DL-CSI. When a user sends its data on the UL
channel for example, if it uses OFDM method, it allocates
some of its subcarriers and time-slots to pilots transmission.
Using the pilots, the base-station can estimate UL-CSI, but in
an FDD system UL and DL CSI reciprocity does not hold.
So, one way to get that information is to first send pilots in
the downlink and after the user estimates the DL-CSI, it sends
DL-CSI over the feedback link. However, this scheme leads
to higher overhead in the system. Eliminating the feedback,
we should find a way to derive DL-CSI using UL-CSI, which
is the only available information about the environment at the
base-station.

To better describe the problem, consider a block of time-
frequency between a pair of transmitter-receiver antennas, as
in Fig. 2. Assuming a grid over this block, the knowledge of
the channel state information is equivalent to having informa-
tion about the effects of the channel (on both amplitude and
phase of the transmitted signal) over each cell of the grid (i.e.,
we should know a complex value for each grid cell).

FIGURE 2. UL-DL joint frame structure.

This block itself consists of two main portions of UL and
DL: a) the first � fUL rows (subcarriers) of the frame are
assigned to UL and b) the next � fDL rows (subcarriers) are
assigned to DL. Columns of our frame represent different
time slots (or how the channel effects change over time). By
considering this structure, we can say that the problem at hand
is having the UL-CSI information over the � fUL subcarriers
and �tUL time slots (part 1) and wanting to predict DL-CSI
in � fDL subcarriers and the next �tDL time slots (part 2). It is
worth mentioning that to make the model realistic and causal,
we only use the past UL-CSI information for DL-CSI predic-
tion (and not the UL-CSI measured at the same time-slots of
DL-CSI).

To solve DL prediction problem, most of the previous
studies are based on first considering a mathematical channel
model for the environment. For example, the multipath chan-
nel model is defined as

h =
N∑

n=1

ane
− j2π dn

λ0
+ jφn

, (4)

where h is the channel response over particular frequency of
1
λ0

. In (4), it is assumed that there are N distinct paths in
the environment, where an is the path attenuation and φn is
a frequency-independent phase shift that captures reflection
and attenuation of the signal along that path.

In a machine learning terminology, the common approach is
that they first consider a parametric model for the environment
and then use UL-CSI to estimate the parameters of the model.
By obtaining the resulted complete model, the DL-CSI can be
predicted.

Incorrect assumptions about the parametric model and/or
incorrect derivation of the parameters both lead to loss of
some parts of UL-CSI information and consequently low ac-
curacy of DL-CSI prediction. Furthermore, when parametric
models are estimated, often some simplifying assumptions
should be considered that may not be true in some cases or
even violated. For example, as mentioned in Section I, in
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FIGURE 3. CSI between a pair of antennas considered as an image.

Eq. (4), an is assumed to be constant for UL and DL, but as
some studies (e.g., [13]) suggest this assumption is not always
correct.

To avoid forcing incorrect latent domain and the problem
of oversimplistic assumptions, in this work, we do not use
any specific parametric model and instead use data-driven ap-
proaches to discover the underlying structure of data without
any prior model assumptions. More details of the proposed
scheme are presented in Section IV.

IV. PROPOSED SCHEME
In this section, we first explain how CSI information can be
considered as an image. Then, we present the two approaches,
which we propose for DL channel prediction.

A. CSI AS AN IMAGE
Looking back at Fig. 2, CSI is a 2D complex matrix with size
of Ns × Nt , where Ns is the number of subcarriers and Nt is
the number of time slots in the time-frequency block.

Recently, many advanced techniques have been proposed
for analyzing image data using neural networks. Image data
are in fact 2D real matrices with one or more channels. For
example, the color images are 2D images with 3 channels
(for red, green, and blue components). To use image-based
techniques in this work we have considered the 2D CSI matrix
as an image. For example in Fig. 3, the heat map of CSI
absolute values are plotted for a sample FDD frame.

If we use only absolute values, phase information will be
lost. So to solve this problem, we consider the complex valued
CSI matrix as a real valued matrix with two channels. There
are two choices to put complex values as two channels of an
image: put absolute values in the first channel and phase val-
ues in the second channel or put real values in the first channel
and imaginary values in the second channel. We selected the
second approach to prevent the problem of phase wrapping
that may happen for the phase information.

In the rest of this paper wherever we use the term “image,”
it refers to the CSI matrix that is considered as a Ns × Nt ×
2 image with real values in the first channel and imaginary
values in the second channel.

FIGURE 4. Direct approach: considering Fig. 2, the network gets “part 1”
of the image (UL-CSI) as input, and tries to predict “part 2” of the image
(DL-CSI) as output. Clearly, we do not use information of other parts of the
image in this approach.

B. UP-LINK TO DOWN-LINK KNOWLEDGE TRANSFER
In this paper, to extract environment information from UL
and then transfer the derived knowledge back to the DL do-
main, two approaches are introduced based on deep neural
networks: direct approach and generative approach. In the fol-
lowing subsections we explain each of these two approaches
in details.

1) Direct Approach
As mentioned before in UL to DL transfer, we have two
steps: first encode the environment information from UL-CSI
to a latent domain, second transfer and decode derived latent
domain model into DL-CSI. In the direct approach we use
a network to accomplish both of these two steps in a single
process as one deep network (Fig. 4).

In this approach, we feed UL-CSI in � fUL subcarriers and
past �tUL time slots (part 1 in Fig. 2) as the input and the
network tries to predict DL-CSI in � fDL subcarriers and next
�tDL time slots (as shown in part 2 of Fig. 2) as the output.

As discussed in Section II, CNNs are among the most
successful tools in analyzing image data, so in this work we
design a specific convolutional neural network to implement
direct approach and use the designed model to predict DL
CSI. The details of the network structure will be discussed
in Section V.

2) Generative Approach
We still have similar desired input and output: considering
part 1 of Fig. 2 as the input and part 2 as the output. The
difference is that we do not directly learn the UL to DL rela-
tion, instead, we consider the whole time-frequency block (a
matrix of size Ns × Nt ) as the image that we want to learn, i.e.,
we want to learn the joint distribution between different pixels
of the complete CSI image. Knowing the joint distribution of
the whole frame, we also know joint distribution of the UL
section and DL section (Part 1 and part 2). Using UL-DL
joint distribution, we can predict DL-CSI when we have the
UL-CSI. It is clear that capturing such joint distribution is a
very complicated task (considering the size of the CSI matrix).

As briefly described in Section II, researchers in the AI
field, recently proposed the GAN structure as a very suc-
cessful tool for estimating joint distribution of the input data,
specially when we are dealing with images. After training a
GAN with a set of images, it can generate images that are
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FIGURE 5. Given a set of complete time-frequency CSI blocks, the
generator learns how to create CSI images that are similar to the real CSI
blocks.

very similar to the real images. One interesting application of
GANs is in image completion, i.e., given a corrupted image
(like when one part of the image is missing) the GAN tries
to find the missing part. Several schemes have been proposed
for image completion. The core idea of them is that first GAN
tries to generate an image that resembles (according to some
metric) the corrupted image and then uses the generated image
to predict the missing part.

Motivated by the success of GANs and image completion
schemes (and since we are able to consider the CSI matrix as
an image) we should be able to use similar network structure
to find the joint distribution of the CSI and then use that model
to predict DL-CSI from UL-CSI.

The steps of our proposed scheme can be summarized as:
� Training Phase: First train a GAN with CSI images of

the whole time-frequency block. After complete learn-
ing, the generator network is capable of getting a random
vector z as input and creating images, which are very
similar to real CSI images, as shown in Fig. 5.
It is worth mentioning that from different types of
GANs, we first selected the most common structure
called Deep Convolutional Generative Adversarial Net-
work (DCGAN) [29]. Although DCGANs are able to
produce similar images like our CSI images, during the
completion phase, we did not get desired results and
the MSE of prediction was relatively high. Additionally,
given a UL-CSI frame, with different initializations of
the input vector z we got very different predictions of
DL-CSI.
To solve this problem, in this work, we have used BE-
GAN (described in Section II-B). As discussed there
BEGANs are designed based on the MSE error and have
better convergence properties.

� Completion Phase:
In this step we want to predict the DL-CSI. The idea is
that we consider the time-frequency block that only has
the UL-CSI as the corrupted image, then we use different

FIGURE 6. Image completion procedure: given a corrupted image (only
UL-CSI is known), the network generates appropriate image that can be
used for DL-CSI prediction.

GAN-based image completion algorithms to complete
the missing part (DL-CSI). As we treat the prediction
task as completing a corrupted image, we name the
prediction phase, as the completion phase, as shown in
Fig. 6.

More accurately, in the completion phase, the vector z
(input of the generator) is initialized with a random state.
Then we update z using the gradient descent method so that
the generated image and the corrupted image become more
similar (a loss function is reduced). After several iterations,
the generated image is considered equal to a complete real
image and the desired output (DL-CSI) will be derived. In
this work we have used two different loss functions and tried
image completion using both methods.

a) Contextual Loss: Contextual loss is defined as the dis-
tance between a known part of the image and its correspond-
ing part in the generated image. If we define the mask as

mask
[
i, j

] =
{

1, 0 ≤ i ≤ � fUL, 0 ≤ j ≤ �tUL

0, otherwise
. (5)

Then the contextual loss will be

contextual loss = ‖mask � x − mask � G(z)‖ , (6)

where x is the image that we want to complete and G(z) is the
generated image.

b) Contextual Loss + Perceptual Loss: Such loss function
for image completion was first used in [30]. If we use only
contextual loss, the final completed image may seem artificial
(having different structure compared to real data) so one uses
discriminator loss of generated image as a new term in the
total loss and calls that perceptual loss, since it gives a sense
of being real. Hence, in BEGAN

perceptual loss = D (G(z)) , (7)

and,

total loss = contextual loss + λ × perceptual loss, (8)
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FIGURE 7. Samples of time-frequency CSI block: EVA (a) and ETU (b).

where λ is a hyper parameter to control how much emphasis is
put on the perceptual loss with respect to contextual loss while
performing the gradient descent. Its default value in BEGAN
is 0.01.

V. IMPLEMENTATION AND SIMULATION RESULTS
In the following, we discuss the details of the implementation
and the simulation results. The source code of the implemen-
tation can be found at https://github.com/safarisadegh/UL2DL

A. DATASET GENERATION
To evaluate the performance of our proposed schemes, we
have used Vienna LTE-A Downlink link level simulator [31]
to simulate multipath fading channels. Two 3GPP fading mod-
els were simulated for a single-input single-output (SISO)
channel: Extended Vehicular A (EVA) and Extended Typical
Urban (ETU) and we used speed of 50 km/h to take into
account the Doppler effect. Our simulated time-frequency
frames had size of 72 × 14 (72 subcarriers in 14 time slots
equivalent to 6 resource blocks in a 1 ms subframe). These
numbers are selected to have similarity to the 3GPP LTE
FDD frame structure. As for simulations, we select the first
36 subcarriers over the first 7 time slots as the UL channel,
and the second 36 subcarriers over the second 7 time slots as
the DL channel.

The number of simulated frames that were created inde-
pendently was 40 K (35 K for training, 2 k for validation and
3 K for test). Samples of simulated frames are shown in Fig. 7.
For convenience, we only show absolute values of frames (We
note that for training/testing of the networks we always feed
CSI as real and imaginary parts, and just for the presentation
we show the CSI absolute value; the good match between the
predicted and actual absolute values means good prediction
on both real and imaginary parts).

B. NETWORK STRUCTURE
In this section we explain the network structure that we have
used for DL-CSI prediction for each of the direct and genera-
tive approaches.

1) DIRECT APPROACH
As mentioned before, CNN is used to implement the direct
approach. The designed network only contains convolutional
layers (there is no pooling or fully connected layers) that
results in lower training and testing complexity. We aimed to
design our network as simple as possible thus it has only 5
hidden layers. It has a total of about 12 K learnable parameters
that is very small compared to a few million parameters in
typical deep networks. tanh activation function is used in all
layers of the network except the output layer (lrelu activation
function is also tested but tanh results in better predictions).
The deployed network structure is shown in Fig. 8.

We used Xavier method [32] to initialize network parame-
ters. For optimization, we used Adam optimizer [33]. Except
for the first two layers, which have symmetric padding, we
used zero padding for other layers.

2) GENERATIVE APPROACH
To adapt the network structure to our image size (72 × 14 ×
2), we used main BEGAN [28] structure with some modifi-
cations. The network structure is shown in Fig. 9. CSI values
also normalized to their maximum value and during training
procedure a zero mean normal noise with decaying variance
was added to input values to improve network regularization.
Other settings are similar to [28].

During the training phase we also faced the mode collapse
problem. In mode collapse, the generator generates one or
limited sets of images. It is a common problem in training
GANs and as mentioned in [28] can be seen in BEGANs.
Berthelot et al. [28] suggest that decreasing the start learning
rate can help the network recover from the mode collapse
issue but in our case it does not help us to recover from the
collapse mode. The solution we have used in this paper is to
share weights between the generator and the decoder part of
the discriminator, (i.e., not only the generator and the decoder
part of the discriminator/ generator have the same structures,
but also we have used the same weights for both of them, in
contrast to [28], where they could have different weights).
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FIGURE 8. CNN structure used in the direct approach.

FIGURE 9. BEGAN structure used in the generative approach (w: kernel size, d: input and output channel dimensions of the layer, n: a hyperparameter for
hidden layers, which we set to n = 64).

C. SIMULATION RESULTS
1) Direct Approach
After we trained our CNN on EVA and ETU datasets, we
used the trained CNN to predict DL-CSI. Some samples of
the predicted DL-CSI and their corresponding ground truth
(matrices of shapes 36 × 7) are shown in Fig. 10 and Fig. 11.
The actual and predicted DL-CSI are depicted as surface
(solid face colors) and meshgrid plots, respectively. As can be
seen, the network performance on EVA dataset is better than
ETU dataset (for ETU dataset most errors occurred on edge
subcarriers).

Despite the good prediction quality, as can be seen in
Fig. 10, sometimes we have relatively large errors at the edge
subcarriers. This is due to the structure of convolutional layers
(mainly due to the lack of fully connected layers). One way to
correct the edges is to train the network on images larger than
36 × 7 and then look at the middle 36 × 7 block.

Discussion on the CNN Structure: Kernel size is one
of the most important hyperparameters in convolutional net-
works. Several kernel sizes have been examined in this work
where 3 × 3 leads to the best results. Although we cannot
mathematically prove, we might be able to say that when
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FIGURE 10. Samples of DL-CSI prediction using the direct approach on ETU dataset with ground truth depicted as a surface (solid face color) and
predicted DL-CSI depicted as a meshgrid plot.

FIGURE 11. Samples of DL-CSI prediction using the direct approach on EVA dataset with ground truth depicted as a surface (solid face color) and
predicted DL-CSI depicted as a meshgrid plot.
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FIGURE 12. Received constellations for 5K pre-compensated QPSK symbols using DL-CSI prediction (direct approach).

we use smaller filter sizes, the receptive fields of the filter
become smaller and thus it would be easier to detect local
features in the image (data). As for the channel image, since
the channel values are more locally correlated (and they are
more independent when they are farther from each other),
smaller filter sizes should be a better choice. On the other
hand, 1 × 1 kernel size is not adopted as it could not look into
the relationship between the neighboring pixel information.

Furthermore, in typical CNNs, in last layers of the network,
there are one or two fully connected layers but in this work to
reduce the complexity of the network we did not use any fully
connected layers. Addition of these layers would considerably
increase the number of trainable parameters, which makes the
training procedure more complicated. For example, if we add
a fully connected layer as the last layer of the network, there
will be about 1 million additional parameters while currently,
our CNN network has only 12 K parameters.

We also did not use pooling or large strides in our convolu-
tion layers. This has two main reasons:

1) DL-CSI (output) is of the same dimensions as the UL-
CSI (input), so the stride is set at 1 to keep the dimen-
sions, and we use the same padding for the missing
boundary pixels.

2) In typical CNN’s, by use of pooling or stride convolu-
tion the network can be oblivious to rotations and shifts
in the input image. For CSI images, however, rotation
and shift are sources of amplitude and phase distortion
and obviously should not be discarded.

To see the performance of the predicted DL-CSI, let us
consider a pair of a transmitter (base-station) and a receiver
(user). Also assume that the user and the signaling need to
be simple so the user is not able to estimate the channel and
feed it back to the server. In such settings if the base-station
wants to send data to the user, it needs to pre-compensate the
transmitted data.

To perform the pre-compensation, the base-station needs to
know the DL-CSI but since there is no feedback, it should
predict that. Therefore, the procedure for the transmitter is to

first measure the UL-CSI and then use the proposed scheme
to predict the DL channel state in the next time slot. Having a
prediction of the DL channel it can pre-compensate the signal.

To examine such settings, we have simulated many chan-
nel realizations (both UL and DL channels). For each case,
we assume that the base-station only knows the UL channel
and it uses that information to predict the DL channel. As-
suming that the base-station wants to send QPSK modulated
signals, before transmission it divides the signal by what it has
predicted for the DL channel. The pre-compensated signal is
then transmitted through the downlink (and thus will be multi-
plied by the actual realization of the DL channel). Therefore,
if we have a good prediction of downlink they will cancel out
each other. Constellations of the received symbols are shown
in Fig. 12 for EVA and ETU channel models. As can be seen,
the received constellations are well concentered around the
QPSK points verifying high prediction accuracy.

2) Generative Approach
We repeat the above studies to see the performance of the
second proposed scheme.

First, we trained BEGAN on EVA and ETU datasets to gen-
erate images like complete frequency-time CSI block. Some
BEGAN generated images are shown in Fig. 13. Note that
these are images of size 72 × 14 (the whole time-frequency
block) not just the DL-CSI.

During the completion phase, the trained BEGAN is used
to restore the missing parts in the CSI image, where UL-CSI
is known and other parts are missing. The DL-CSI part of
the resulting generated CSI image is then considered as the
DL-CSI. Some completion examples using contextual loss are
shown in Fig. 14 (different losses do not have notable visual
differences, so we do not include them here; the numerical
result is reported at the end though). In Fig. 14, the actual
time-frequency block of size 72 × 14 is depicted as a surface
(solid face colors) and the generated image is shown as a
meshgrid. The DL-CSI relates to subcarriers 36 to 72 and time
slots 7 to 14.
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FIGURE 13. Samples of the generated images.

We have also tested the consistency of the DL-CSI image
prediction, meaning that we fixed the UL-CSI part and then
executed the image completion algorithm with different ini-
tializations of the z vector to produce the complete image. We
note that one of the main problems we faced in DCGAN struc-
ture was the large difference between completed images (for a
fixed corrupted image) for different initializations of z vector.
As seen in Fig. 15 this problem is solved using BEGAN. The
ground truth is shown as a surface and the generated images
are depicted as meshgrids (there are five generated images but
as they are very close they are not easily differentiable).

To see the performance of this approach, we followed the
same procedure as the direct approach and simulated the con-
stellation map of the received signal when we perform signal
pre-compensation using the predicted DL-CSI. Resulted con-
stellations are shown in Fig. 16 for EVA and ETU channel
models.

3) Comparing the Results
As in the last section, we present the comparative re-
sults between the performance of different proposed DL-CSI

estimation methods. As for the comparison metric, we have
used normalized mean squared error (NMSE), which is de-
fined as:

NMSE =
∥∥H − Ĥ

∥∥2

‖H‖2 , (9)

where H is the ground truth DL-CSI, and Ĥ is the predicted
value.

In general, we anticipate the CNN performance to be su-
perior on both datasets, since it has been trained directly to
reduce DL-CSI MSE prediction, whereas, in the generative
approach (BEGAN) the network is trained to capture CSI
distribution (not the MSE of DL-CSI prediction). Based on
the results of Table 1, the performance of CNN (as expected)
is better on EVA dataset; however, BEGAN’s performance
is better on ETU dataset, which is a more complex environ-
ment. This observation may lead us to the conclusion that
advanced techniques (like GAN networks) are more suitable
for channels with higher complexity. In BEGAN, both contex-
tual and contextual plus perceptual losses have almost similar
performances. On the EVA dataset contextual plus perceptual
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FIGURE 14. Samples of image completion using the generative approach with the ground truth depicted as a surface of solid face colors and generated
CSI blocks depicted as a meshgrid.

FIGURE 15. Completion results with different initializations of the z
vector: completion is performed for 5 different initialized z vectors. As
shown, the results are almost the same.

loss is slightly better while on the ETU dataset contextual is
slightly better. This may be the indication that BEGAN learns
the distribution correctly, and the ambiguity of the image

TABLE 1. NMSE of Channel Predictions for Different Methods on EVA and
ETU Datasets

completion phase is not large, and with both losses, we are
able to determine the correct image.

It is worth mentioning that previous studies (e.g.,
AOA-based methods, covariance-based methods, and path
extraction-based methods) that aim to predict DL-channel
based on UL-channel focus on finding the MIMO channel
matrix. In MIMO channel matrix each pair of Tx-Rx antenna
is represented by only one value. In other words, those studies
do not consider the time-frequency response that we have
investigated in this paper. Therefore, it is not possible to
compare the results of the proposed scheme with what has
been suggested previously. There also exist some pilot-based
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FIGURE 16. Received constellations for 1 K pre-compensated QPSK symbols using DL-CSI prediction (generative approach).

TABLE 2. NMSE of Prediction Results for CNN and BEGAN Methods for a
2 × 2 MIMO Channel

schemes for DL-channel time-frequency estimation, e.g., min-
imum mean square error (MMSE) and least squares (LS), but
since in our method there is no downlink pilot they are not
suitable for comparing as a baseline.

D. FURTHER DISCUSSION
1) MIMO Extension
To show how the proposed scheme can be used in MIMO
settings, without loss of generality, we evaluated our methods
on 2 × 2 MIMO EVA and ETU channel models.

In previous sections we showed how to train a network
to predict the DL channel from the UL channel for a single
Tx-Rx link. Now we consider the NR × NT MIMO channel
(with NR receiver antennas and NT transmitter antennas) as
NR × NT Tx-Rx links, each link representing a pair of transmit
receive antennas. We then feed our network with the uplink
part of each Tx-Rx antenna pair, and the network outputs
the prediction of the downlink part. The NMSE between the
actual and predicted DL channels is considered as the perfor-
mance metric.

For example, Table 2 compares the NMSE of predictions
for BEGAN on ETU channel model and CNN on EVA chan-
nel model. As can be seen, training of one single network
on a single antenna pair (as we proposed) is enough to fully
characterize a MIMO network on all dimensions of transmit
antennas, 2) receive antennas, 3) time slots, and 4) frequency
blocks. Fig. 17 and Fig. 18 each present 2 × 2 DL-CSI predic-
tion samples for ETU and EVA channel models, respectively.

2) Various Channel Models
In the previous sections we developed separate networks
for different channel models, e.g., ETU and EVA. So, one

FIGURE 17. Samples of DL-CSI predictions using the generative approach
(mesh grid) vs. the ground truth (solid face color) for a 2 × 2 ETU MIMO
channel.

question that might arise is that if a single network can be
used for different channel models. For this purpose, we have
concatenated EVA and ETU simulated frames and trained
one network that can handle both models simultaneously.
Fortunately, the network successfully learned to handle both
models simultaneously and the average prediction error of
the network was between errors of the previous two separate
networks. This shows that if we have enough samples and
a network with enough parameters the network can handle
different models concurrently. A few samples of the actual and
reconstructed DL portions of the channel are shown in Fig. 19.

3) Various User Speeds
During training, EVA and ETU models were trained with
samples in which the user speed was 50 km/h. However, to
investigate the effects of varying speeds of users, we tested
our networks (trained using samples of users with the speed
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FIGURE 18. Samples of DL-CSI predictions using the direct approach
(meshgrid) vs. the ground truth (solid face color) for a 2 × 2 EVA MIMO
channel.

FIGURE 19. Performance of the network trained on both ETU and EVA
channel models simultaneously. The ground truth is depicted as solid face
color and the prediction as a meshgrid.

of 50 km/h) to observe the prediction accuracy of the DL
channel with different speeds. As can be seen from Fig. 20,
trained networks still accurately predict DL channels even
with different user speeds during test time.

4) Asymmetric UL and DL Channels
In practical systems, DL and UL traffic loads are usually
asymmetrical; therefore, the bandwidth assigned to the DL
may typically be larger than that of UL. In our previous anal-
ysis in this paper, we assumed equal bandwidth assignment to
both UL and DL.

In this subsection, however, we present an example to show
the validity of our method for asymmetric cases as well. More

FIGURE 20. Channel prediction performance of the proposed models
trained with the speed of 50 km/h and tested at various other speeds.

FIGURE 21. Samples of DL-CSI prediction (meshgrid) compared to ground
truth (as a surface solid face color) for the case of 18 UL subcarriers and
54 DL subcarriers on EVA channel model.

specifically, we trained a CNN network with 18 input subcar-
riers (UL channel) and 54 output subcarriers (DL channel).
This CNN network is similar to our original CNN model
except for the input dimension, which is changed from 36
to 18. Moreover, we added a conv-transpose layer to convert
the CNN output dimension to size 54. The conv-transpose
layer consists of two sublayers: first, we upsample by internal
zero padding between pixels in the input CSI image and then
we apply convolution on the upsampled CSI image. A few
samples of the estimated DL (with 54 subcarriers and 14 time
slots) are shown in Fig. 21.

As can be seen from Fig. 21, the network performance
in this case is as good as in the symmetric UL/DL case.
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Therefore, there is no limitation on using the developed ap-
proaches in asymmetric scenarios.

In general, we can still use the idea of our proposed scheme
for the case of dynamically varying numbers of assigned chan-
nels. However, since the input and output dimensions are not
static, the architecture of the model, like the CNN structure
of Fig, 8, will have variable sizes. So, briefly speaking, the
deep UL2DL method would work for any UL/DL assignment,
but the issue is that we should have trained the associated
model for that particular assignment. As there are many dif-
ferent combinations of UL and DL bandwidth assignments,
it is probably complicated to pre-train the model on all such
combinations. So, the question that we face is how to reduce
the number of models that we need. One idea (which needs
further investigation) consists of training networks that learn
to shift the input CSI (UL-CSI) by a constant frequency value,
which is equal to the frequency gap between the UL and DL.
We evaluated this idea and observed that such a network can
be used to shift UL-CSI to DL-CSI regardless of the actual
frequencies or the sub-channels assigned to the UL part, as
long as the UL to DL frequency gap remains the same. This
promising preliminary result suggests that we can use such
reduced-complexity networks for the dynamic channel as-
signment cases, although, the prediction of DL channel from
UL channel for the case of dynamically varying and adaptive
sizes of allocated resource blocks still requires comprehensive
further investigation and is a subject of future work.

VI. CONCLUSION
In this paper, we have proposed two data-driven approaches
to predict DL-CSI from UL-CSI in FDD systems: direct ap-
proach and generative approach. Both of the proposed ap-
proaches try to use UL-CSI to determine a latent model
that represents the environment propagation properties. The
latent model is then used to predict DL-CSI. To determine
the latent model, we have used convolutional neural network
and generative adversarial network architectures for the di-
rect and generative approaches, respectively. Our simulation
results on EVA and ETU channel models show that even with
simple neural networks we can predict DL-CSI (based on
the observation of the UL-CSI), however, for environments
with complex multipath structures we need more complex
networks.
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