
  

 
Abstract—Two main branches of machine learning methods 

are model-based methods and deep neural networks. 

Model-based methods can explicitly include prior knowledge 

into the model at expense of difficulties in inference, while 

neural networks are featured in their strong predictive power 

and straightforward inference approach with the lack of model 

interpretability. To construct models which are entitled with the 

advantages of both methods and overcome their problems, the 

deep unfolding strategy has been developed recently. This paper 

adopts the idea of deep unfolding to construct a classification 

and feature selection method. The proposed method is based on 

the sparse classification; and the iterative inference process of 

the sparse classification is unfolded into a layer-wise structure 

analogous to a neural network. Thus, the architecture of our 

network is fully motivated by the sparse classification method. 

Different from other neural networks which are essentially 

black-box methods, our deep unfolded network acts as 

white-box that features selected in the predictive model can be 

explicitly returned. Experimental results show the both 

predictive power and feature selection ability of our methods.    

 
Index Terms—Deep unfolded neural network, IRLS-ADMM 

net, sparse classification, feature selection, white-box method. 

 

I. INTRODUCTION 

Deep unfolding is a recently proposed strategy to construct 

neural-network-like machine learning models that take the 

advantage of both model-based methods and neural networks 

[1]. Model-based methods can easily incorporate prior 

knowledge, such as sparsity, conditional dependency and 

latent variable structure, into the model. However, the 

inference of model-based methods are usually not 

straightforward and can be both computationally and 

mathematically intractable that approximation methods such 

as variational approximation and Monte Carlo sampling are 

required to iteratively infer variables of interest. Neural 

networks, on the other hand, organise inference into layers 

which are typically executed in sequence. Although neural 

networks become the state of art in many applications, they 

have the problem of model interpretability. Typical neural 

methods are black-box methods acting closer to mechanisms 

than problem-level formulations. Therefore, it comes to the 

idea of bringing the model-based approach to the task of 

design the architecture of neural networks, which is called 

deep unfolding.  

The basic idea of deep unfolding is with a given 

model-based method unfolding the iterations of inference 
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into a layer-wise structure, which forms into a neural network. 

To increase the flexibility of the model and the ease of 

training, model parameters across layers are de-coupled. The 

resulting formula combines the predictive power of neural 

network with problem-level formulation of model-based 

methods. The inference is performed with fixed number of 

layers and back propagation is used to estimate model 

parameters. In [1], this deep unfolding strategy is used in the 

domain of speech enhancement, constructing network based 

on non-negative matrix factorization [2]. The domain 

knowledge that signals mix linearly is embodied in the model. 

Deep unfolding has also been applied to multichannel source 

separation [3]. A multichannel Gaussian mixture model 

based neural network has been proved to achieve improved 

performance of separating signals from simultaneous 

speakers. In [4], deep unfolded network is applied for 

supervised topic model. It improves the classification 

accuracy by replacing the maximisation of lower bound of 

marginal likelihood in variational Bayesian with the 

minimisation of cross entropy. Another example is, in [5], a 

Gaussian conditional random field (GCRF) based neural 

network is constructed for image denoising. The proposed 

network can explicitly model the input noise variance and 

handle a range of noise levels. Along with those models, 

there are many attempts on constructing neural network 

based on model-based methods that impose sparse 

constraints. For example, the work in [6] unfolds the 

iterations of linear sparse regression method into variants of 

long short-term memory (LSTM) cells with the results 

showing that the unfolded network has reduced 

computational burden in inference. The sparse coding based 

neural network has also been applied to reconstruct sparse 

signals from noisy and compressive measurements in [7]. 

The work in [8] design a neural network based on sparse 

coding to reconstruct high-quality MR images from 

under-sampled data, which is effective both in reconstruction 

accuracy and speed.  

In this paper, we focus on constructing a model-based 

network for both classification and feature selection. The 

model-based method investigated in this paper is sparse 

Bayesian classification (SBC) [9], [10]. One of the 

distinguishing characteristics of SBC is that it does not only 

build a classification model but also returns a set of features 

with non-zero weights. In the literature, several classification 

and feature selection methods are based on SBC [11]-[13]. In 

our previous work [14], we derive an optimisation-centric 

classification and feature selection method from SBC. The 

model is constructed through an iterative convex 

optimisation procedure instead of a one-step closed form 

calculation. The cost function is cast using hierarchical 

Bayesian model, where parameters and hyperparameters are 
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inferred via the convex optimisation procedure [10], [15]. In 

this paper, we construct neural network based on this method: 

the parameters in the model-based method are regarded as 

hidden nodes in the network, while hyperparameters are 

learned by training the model through the back-propagation 

method. We adopt iterative reweighted least squares (IRLS) 

[16] and alternating direction method of multipliers (ADMM) 

[8] to get the iterative inference steps. IRLS is used to 

formulate the problem of finding the step direction for 

Newton’s method as a weighted ordinary least squares 
problem; AMDD is applied to solve the convex optimisation 

problem by breaking them into smaller pieces, which has 

proven to be an efficient variable slitting algorithm with 

convergence guarantee. After we derived formula for 

iterative updates, we then design deep architecture consisting 

of multiple stages, each of which corresponds to an iterative 

inference step. The weight parameters in the model-based 

classification model are regarded as nodes in the network, 

while hyperparameters are learned via stochastic gradient 

descend (SGD) [17]. The following parts of our paper will 

first introduce the method in detail. Then the experimental 

results part will show that the proposed deep unfolded 

network works well in the aspect of both classification power 

and feature selection.  

 

II. DEPP IRLS-ADMM NET FOR CLASSIFICATION AND 

FEATURE SELECTION 

A. The Sparse Bayesian Classification Based 

Optimisation Method 

Suppose we get a set of input vectors {𝒙𝑛 }𝑛=1
𝑁  along with 

corresponding targets {𝑦𝑛}𝑛=1
𝑁 . We wish to learn the 

underlying functional mapping which is defined by a 

parameterised function 𝑓(𝒙;𝜷) =  𝛽𝑖ℵ𝑖=1 𝜙𝑖(𝒙), where the 

output is the linear weighted sum of ℵ basis functions and 𝜷 = [𝛽1 , 𝛽2, . . . , 𝛽ℵ]⊤  contains the parameter. Let 𝚽  be the 𝑁 × ℵ design matrix with 𝚽 = [𝝓(𝒙1), 𝝓(𝒙2), . . . , 𝝓(𝒙𝑁)]⊤, 

wherein 𝝓(𝒙𝑛) = [𝜙1(𝒙𝑛), 𝜙2(𝒙𝑛), . . . , 𝜙ℵ(𝒙𝑛)] . Then we 

can express the mapping function as 𝑓(𝒙; 𝜷) = 𝚽𝜷 . The 

prior distribution of the weights is assumed to follow a 

zero-mean isotropic Gaussian:  

 

𝒫 𝜷 𝜸 =  𝒩ℵ
𝑖=1

 𝛽𝑖 0, 𝛾𝑖 
=  (

ℵ
𝑖=1

2𝜋𝛾𝑖)−1
2 exp { − 𝛽𝑖2

2𝛾𝑖},

 (1) 

where  

 𝜸 =  𝛾1 , … , 𝛾ℵ ∈ ℝℵ, 𝚪 = diag  𝜸 . (2) 

The likelihood function 𝒫(𝒚|𝜷, 𝒙) is expressed in the form 

of the logistic regression model [18]. According to the Bayes’ 
rule, maximisation of posterior is equivalent to finding the 

maximum over 𝜷  of log 𝒫 (𝒚|𝜷, 𝒙)𝒫(𝜷|𝜸) . The 

hyperparameter 𝜸  is updated by maximising the marginal 

likelihood, which is equivalent to 𝑎𝑟𝑔𝑚𝑖𝑛𝜸 − 𝒫(𝒚|𝜸, 𝒙) =𝑎𝑟𝑔𝑚𝑖𝑛𝜸 −  𝒫 (𝒚|𝜷, 𝒙)𝒫(𝜷|𝜸)𝑑𝜷. In [14], we propose a 

method to jointly estimate 𝜷  and 𝜸  through a common 

objective function:  

𝑎𝑟𝑔𝑚𝑖𝑛𝜷,𝜸  log [𝑁𝑛=1 1 + exp { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}]

+𝜷⊤𝚪−1𝜷 + log | 𝚪| +
1

2
log | 𝑯(𝜷∗)|,

     (3) 

    

where |𝑯(𝜷∗)| is the Hessian matrix calculated at mode 𝜷∗, 
which is assumed to be obtained through the minimisation 

step of 𝜷 in the iterative optimisation process. This objective 

function can be expressed in the convex-concave form [19] 

that the standard iterative optimisation procedure is evoked to 

get its solution.  

B. Deep IRLS-ADMM Net 

The approach in [14] carries out an iterative process to 

update 𝜷𝑘+1  and hyper parameters. The target function of 

obtaining 𝜷 can be easily formulated in the ℓ1 regularization 

form as:  

 

𝜷𝑘+1 = argmin𝜷  log [

𝑁
𝑛=1

1 + exp { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}]

+  ‖ℵ
𝑖=1

𝑤𝑖𝑘 ⋅ 𝛽𝑖‖ℓ1
,

 (4) 

where 𝒘𝑘  is related to hyper-parameters. Rather than 

considering the iterations as an algorithm, we consider 

unfolding it as a sequence of layers in a neural network-like 

architecture. The iteration index is now interpreted as an 

index to the neural network [1]. Our approach tries to 

optimise 𝜷𝑘+1 by treating them as nodes of layers in a neural 

network parameterised by 𝒘𝑘 . We optimize the parameter 𝒘𝑘  via the stochastic gradient descent method by minimising 

the loss  𝐷𝑁𝑛=1 (𝑦𝑛 , 𝑦𝑛 ∗), where 𝑦𝑛 ∗ is the estimated target 

and 𝐷 is the loss function.  

1) The IRLS-ADMM algorithm 

To  construct   the   network,  we   need  to   obtain  the 

updating steps of 𝜷𝑘+1  in the form of:  

 𝜷𝑘+1 = 𝑓𝒘𝑘 (𝑿, 𝜷𝑘). (5) 

There are a lot of work on using model-based inspiration of 

novel neural networks, especially on sparse coding problems. 

However, in sparse coding, the target optimisation function is 

generally in the form of ‖𝐴𝒙 − 𝑦‖ℓ2
+ 𝑔(𝒙), where 𝑔(𝒙) is 

the penalty term. Optimisation methods, such as ADMM [8] 

and proximal gradient method [7], can be used to inspire 

novel neural networks. For the sparse coding problem, the 

iterative process for updating 𝒙  can be expressed in the 

closed form. In our case, however, there is no straightforward 

way to drive function 𝑓𝒘𝑘  due to the complex form of the 

first term in Equation 4.  

Our idea is to reformulate the target optimisation function 

in the form of least squares that typical optimisation methods 

can be used to find the expression of 𝑓𝒘𝑘 . We adopt the idea 

in [16] based on the IRLS formulation of logistic regression. 

IRLS reformulates the problem of finding the step direction 

for Newton’s method as a weighted ordinary least squares 
problem. In every iteration, Newton’s method first finds a 
step direction by approximating the objective function by the 

second order Taylor expression at the current point, and 

optimising the quadratic approximation in closed-from. The 

step direction in the 𝑘th iteration is:  

 𝛀𝑘 = 𝜷𝑘 − 𝑯−1(𝜷𝑘)𝒈(𝜷𝑘), (6) 
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where 𝒈 and 𝑯 are gradient and Hessian matrices. Once the 

step direction is computed, Newton’s method computes the 
next iteration  

 𝜷𝑘+1 = (1 − 𝑡)𝜷𝑘 + 𝑡𝛀𝑘  (7) 

by a linear search over the step size parameter 𝑡.  

For the optimisation function in the form of unregularized 

logistic regression, where the penalty term in Equation 4 is 

omitted, the gradient and Hessian matrices are in the form of:  

 𝒈(𝜷𝑘) = − 𝑦𝑛𝑁
𝑛=1

𝝓(𝒙𝑛)[1 − 𝜍{𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛)}] (8) 

and  

 𝐻(𝛽𝑘) = 𝛷⊤ 𝑑𝑖𝑎𝑔  𝑦 𝛬(𝛽𝑘) 𝑑𝑖𝑎𝑔  𝑦 𝛷, (9) 

where  

 
𝚲(𝜷𝑘) = diag ( {𝜍{𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛)}

[1 − 𝜍{𝑦𝑛𝜷𝑘⊤𝝓 𝒙𝑛 }]}𝑛=1
𝑁 )

 (10) 

and  

 𝜍{𝑓} =
1

(1 + 𝑒−𝑓)
. (11) 

Let 𝚽 = diag  𝒚 𝚽, then we get  

 𝑯(𝜷𝑘) = 𝚽 ⊤𝚲(𝜷𝑘)𝚽 . (12) 

If we define a vector 𝒗(𝜷𝑘), whose 𝑛th element is  

 𝑣𝑛(𝛽𝑘) = 𝑦𝑛𝜙(𝑥𝑛)⊤𝛽𝑘 +
1 − 𝜍  𝑦𝑛𝛽𝑘⊤𝜙 𝑥𝑛  𝛬(𝛽𝑘)𝑛 ,𝑛 , (13) 

then 𝒈(𝜷𝑘) can be defined in the form of  

 𝑔(𝛽𝑘) = −𝛷 ⊤𝛬(𝛽𝑘)(𝑣(𝛽𝑘) − 𝛷 𝛽𝑘). (14) 

The step direction in Equation 6 can be expressed as:  

 𝛀𝑘 = (𝚽 ⊤𝚲(𝜷𝑘)𝚽 )−1𝚽 ⊤𝚲(𝜷𝑘)𝒗(𝜷𝑘), (15) 

which can be regarded as the solution to the following 

weighted least squares problem:  

 𝛀𝑘 = argmin𝛀 ‖ (𝚲(𝜷𝑘)
1
2𝚽 )𝛀 − 𝚲(𝜷𝑘)

1
2𝒗(𝜷𝑘)‖ℓ2

. (16) 

Therefore, the Newton step direction can be computed by 

solving the least squares problem defined in Equation 16. The 

term IRLS refers to the fact that in every iteration the least 

squares problem has a different diagonal weighting matrix Λ(𝜷𝑘)  and 𝒗(𝜷𝑘) . For the case of ℓ1  regularized logistic 

regression as in Equation 4, we can get our IRLS formulation 

as  

 
𝛺𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛺 1

2
‖(𝛬(𝛽𝑘)

1
2𝛷 )𝛺 − 𝛬(𝛽𝑘)

1
2𝑣(𝛽𝑘)‖ℓ2

+𝜆‖𝐹𝑘𝛺‖ℓ1
.

 (17) 

Please note that 𝑭𝑘  in Equation 17 is a diagonal matrix 

giving weights to elements of 𝛀.  

Now, we would like to adopt the ADMM method to get 𝛀𝑘  

by solving Equation 17. Suppose  

 𝑨𝑘 = 𝚲(𝜷𝑘)
1
2𝚽  (18) 

and  

 𝒃𝑘 = 𝚲(𝜷𝑘)
1
2𝒗(𝜷𝑘). (19) 

In ADMM form, the problem in Equation 17 can be 

written as  

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  

1

2
‖𝑨𝑘𝛀 − 𝒃𝑘‖ℓ2

+ 𝜆‖𝒛‖ℓ1𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑭𝑘𝛀 − 𝒛 = 0,

 (20) 

which yields the ADMM algorithm in the 𝑖th iteration [20]:  

 

𝛀𝑘 ,𝑖+1 : = (𝑨𝑘⊤𝑨𝑘 + 𝜌𝑭𝑘⊤𝑭𝑘)−1

(𝑨𝑘⊤𝒃𝑘 + 𝜌𝑭𝑘⊤
(𝒛𝑘 ,𝑖 − 𝒖𝑘 ,𝑖))𝒛𝑘 ,𝑖+1 : = 𝑆𝜆/𝜌(𝑭𝑘𝛀𝑘 ,𝑖+1 + 𝒖𝑘 ,𝑖)𝒖𝑘 ,𝑖+1 : = 𝒖𝑘 ,𝑖 + 𝑭𝑘Ω𝑘 ,𝑖+1 − 𝒛𝑘 ,𝑖+1,

 (21) 

where 𝑆 is the soft shareholding operator defined as  

 𝑆𝜅(𝛼) =  𝛼 − 𝜅,  𝛼 > 𝜅
0,  |𝛼| ≤ 𝜅𝛼 + 𝜅,  𝛼 < −𝜅.

  (22) 

The whole process is summarized in Algorithm 1. 

 
Algorithm 1 IRLS-ADMM regularized logistic regression 

1: Set 𝜷1 = 𝟎 

2: for 𝑘 = 1, … , 𝑘𝑚𝑎𝑥  do 

3:       Compute 𝑨𝒌 and 𝒃𝒌 using Equation 18 and 19. 

4:       Set 𝒛𝑘 ,1, and 𝒖𝑘 ,1 to 𝟎  

5:       for 𝑖 = 1, … , 𝑖𝑚𝑎𝑥  do 

6:             Update 𝛀𝑘 ,𝑖 , 𝒛𝑘,𝑖  and 𝒖𝑘 ,𝑖  using Equation 21. 

7:       end for 

8:       Update 𝜷𝑘  using Equation 7, where 𝑡 is found using a backtracking 

line-search that minimizes the objective function.    

9: end for 

2) Deep network design 

We follow the idea in [8] to map the iterative process in 

Algorithm 1 to a data flow graph. In the graph, there are 9 

types of nodes described as follows:  

Weighting matrix Λ𝒌  construction layer: Given 𝜷𝑘 , the 

output of this layer is obtained through:  

 Λ𝑛 ,𝑛𝑘 = 𝜍{𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛)}[1 − 𝜍{𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛)], (23) 

where 𝜍{𝑓} =
1

(1+𝑒−𝑓)
. In the initial stage, 𝜷0 = 𝟎.  

Weighting vector 𝒗𝒌  construction layer: Given 𝜷𝑘 , the 

output of this layer is obtained through:  

 
𝑣𝑛𝑘 = 𝑦𝑛𝝓(𝒙𝑛)⊤𝜷𝑘 +

1 − 𝜍{𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛)}𝛬𝑛 ,𝑛𝑘
= 𝑦𝑛𝝓(𝒙𝑛)⊤𝜷𝑘 + 1 + 𝑒−𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛 ).

 (24) 

In the initial stage, 𝜷0 = 𝟎.  

Weighting matrix 𝑨𝒌 construction layer: Given 𝚲𝑘 , the 

output of this layer is obtained through:  

 𝑨𝑘 = (𝚲𝑘)
1
2𝚽 . (25) 

Weighting vector 𝒃𝒌 construction layer: Given 𝚲𝑘  and 𝒗𝑘 , the output of this layer is obtained through:  

 
 𝑏𝑘 = (𝛬𝑘)

1
2(𝑣𝑘). (26) 

 

Feature Ω𝒌,𝒊 construction layer: Given 𝒛𝑘 ,𝑖−1, 𝒖𝑘 ,𝑖−1, 𝒃𝑘  

and 𝑨𝑘 , the output of this layer is obtained through:  
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𝛀𝑘 ,𝑖 = (𝑨𝑘−1⊤𝑨𝑘−1 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖)−1

(𝑨𝑘−1⊤𝒃𝑘−1 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1)),
 (27) 

where 𝜌𝑘 ,𝑖  and 𝑭𝑘 ,𝑖  are parameters. When 𝑖 = 1 , 𝒛𝑘 ,0  and 𝒖𝑘 ,0 are initialized to zeros.  

Linear transform layer 𝑪𝒌,𝒊: Given 𝛀𝑘 ,𝑖 ,the output of this 

layer is:  

 𝑪𝑘 ,𝑖 = 𝑭𝑘 ,𝑖𝛀𝑘 ,𝑖 , (28) 

where 𝑭𝑘 ,𝑖  is the parameter.  

Nonlinear transform layer 𝒛𝒌,𝒊 : Given 𝑪𝑘 ,𝑖  and 𝒖𝑘 ,𝑖−1,the output of this layer is:  

 𝒛𝑘 ,𝑖 = 𝑆𝜆/𝜌𝑘 ,𝑖(𝑪𝑘 ,𝑖 + 𝒖𝑘 ,𝑖−1), (29) 

where 𝜌𝑘 ,𝑖  is the parameter. When 𝑖 = 1, 𝒖𝑘 ,0 is initialized to 

zeros.  

Linear transform layer 𝒖𝒌,𝒊: Given 𝑪𝑘 ,𝑖 , 𝒖𝑘 ,𝑖−1 and 𝒛𝑘 ,𝑖 , 
the output of this layer is:  

 𝒖𝑘 ,𝑖 = 𝒖𝑘 ,𝑖−1 + 𝑪𝑘 ,𝑖 − 𝒛𝑘 ,𝑖 . (30) 

When 𝑖 = 1, 𝒖𝑘 ,0 is initialized to zeros.  

Linear transform layer 𝜷𝒌: Given 𝛀𝑘−1,𝑖𝑚𝑎𝑥  and 𝜷𝑘−1 , 

the output of this layer is defined as  

 𝜷𝑘 = (1 − 𝑡𝑘)𝜷𝑘−1 + 𝑡𝑘𝛀𝑘−1,𝑖𝑚𝑎𝑥 , (31) 

where 𝑡𝑘  is the parameter.  

An example deep network with 𝑘𝑚𝑎𝑥 = 3 and 𝑖𝑚𝑎𝑥 = 4 

are shown in Fig. 1.  

 

 
Fig. 1. The architecture of deep IRLS-ADMM net with 𝒌𝒎𝒂𝒙 = 𝟑 and 𝒊𝒎𝒂𝒙 = 𝟒. 

 

III. NETWORK TRAINING 

A. Network Loss 

The loss function we choose for network training is:  

 𝐸 =  log [

𝑁
𝑛=1

1 + exp { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}], (32) 

where 𝜷  is the network output. We learn the parameters Θ = {𝜌𝑘 ,𝑖 , 𝑭𝑘 ,𝑖 , 𝑡𝑘} by minimising the loss w.r.t. them using 

the stochastic gradient descent method.  

B. Gradient Computation by Back-Propagation over Data 

Flow Graph 

Fig. 2 shows 19 types of nodes, most of which have 

multiple inputs and outputs. The parameters we need to learn 

are Θ = {𝜌𝑘 ,𝑖 , 𝑭𝑘 ,𝑖 , 𝑡𝑘}  for 𝑘 ∈ {1,2,3}  and 𝑖 ∈ {1,2,3,4} . 

Please refer to the Appendix A for gradients computation for 

each node.  

 

IV. EXPERIMENTS 

A. Simulation Results 

We generate a data matrix with 500 samples and 50 

features from the normal distribution. To check the ability of 

finding correlated features, we split the features with 

non-zero weights into two sets, 𝑆1  and 𝑆2 , each of which 

contains 4 true features. Then, we initialise a design matrix 𝚽 = 𝒙 with 500 samples and 50 features from the normal 

distribution. Let 𝝓𝑖(𝒙)  be the 𝑖 th column of 𝚽 . We set 𝝓𝑆𝑚2 (𝒙) = 𝝓𝑆𝑚1 (𝒙) + 𝒩(0,0.1) , where 𝑆𝑚1  and 𝑆𝑚2  denote 

the 𝑚th element in each feature set. In this way, we get data 

generated from correlated features. The target variable vector 

{𝑦𝑛 }𝑛=1
500  is generated by the linear model using 𝜷 and 𝚽 with 

additive independent identical distributed Gaussian noises, 

where the standard deviation of noise varies ranging from 

{0,0.1,0.5,1}. In our method, 𝜌𝑘 ,𝑖  and 𝑡𝑘  are initialized to be 

1. Each element in the diagonal matrix 𝑭𝑘 ,𝑖  is initialized to be 

10.  

We will first use the whole dataset with no additive noise 

to construct the predictive model, from which we compare 

the estimated weights 𝜷  from our method with the 

regularized logistic regression method (ADMM). It is to 

investigate the ability of selecting real features using our 

method. Moreover, we would like to compare the scaled 

magnitudes of estimated weights 𝜷 with real weights and 

estimated weights from the regularized logistic regression 

method. We scale the estimated results to make the first real 

nonzero feature have the same value. In this way, we can 

intuitively see whether the estimation has maintained the 
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ratio in magnitudes of different weights. Thus the rank of the 

importance of features, which is usually determined by the 

magnitudes, can be obtained correctly. This is quite 

important when we use our method as a feature selection 

approach to select top relevant features in a cross validation 

process. The results are shown in Fig. 3. Fig. 3 shows the 

weights from our method and ADMM, from which we can 

see that there are 50 features, out of which 8 features are 

nonzero. Our method has successfully detected these nonzero 

ones with magnitudes significantly larger than the others, 

while the ADMM method fails to detect 3 nonzero feature. 

These observations are quite encouraging, showing that our 

method can be used a good tool to select relevant features. 

Most classification methods are not guaranteed to have this 

characteristic.  

 

 
Fig. 2. Illustration of 19 types of nodes. All solid arrows indicate data flow in forward pass. 

 

 
Fig. 3. Comparison of weights estimated from our method and ADMM. 

 

We then investigate the performance of our method with 

different levels of noise. The performance, including 

prediction accuracy, false positive (FP) and false negative 

(FN) rates, is evaluated by the 5-fold cross validation (CV). 

To calculate FP and FN, we need to compare the selected 

features across CV with real non-zero features. As in the 

cross validation process, different training dataset is used for 

feature selection and predictive model construction in each 

fold, selected feature sets from all folds may vary due to the 

variation of training datasets. To select a feature set which is 

stable with small fluctuations of the input dataset and also has 

good predictive accuracy, we use the method from [21]. In 

the 𝑘th fold of cross validation, the whole dataset 𝑫 is split 

into two subsets: CV training dataset 𝑫𝒌  and CV testing 

dataset 𝑫∖𝒌 . Our method can work as a feature selection 

method on the training dataset 𝑫𝒌to rank and select the top 𝑞 

features, labelled as 𝑽𝒒,𝒌. After features have been selected, 

our method then constructs a predictive model for 

classification using 𝑽𝒒,𝒌. The prediction results at this CV 

fold are recorded for later evaluation. To get the complete 

prediction results, we repeat the above steps for all folds of 

CV. The method presented in [21] returns an optimal feature 

set 𝑽𝒒  with an associated performance score 𝑃𝑞  under each 

value of 𝑞. The score 𝑃𝑞  is calculated according to the 6
th

 

strategy proposed in [22] to assess the prediction accuracy 

and stability of features (the details of calculating this score 

can be found in [22]). By checking the maximum value of 𝑃𝑞 , 

we can determine the optimal value of 𝑞  and the 

corresponding optimal feature set 𝑽𝒒 . The detected optimal 

set can then be used to construct a predictive model for future 

prediction.  

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

245



  

Fig. 4 shows the change of scores 𝑃𝑞  under different 

settings of feature size 𝑞 and noise level. We can see that the 

scores of our method under different noise levels peak when 

the value of 𝑞 is close to the number of real nonzero features. 

In contrast to our method, the optimal value of 𝑞  for the 

ADMM method is around 4, which is different from the real 

number of nonzero features. From Fig. 4, we can expect that 

our method works better than the ADMM method in the 

aspect of feature selection. In the following experiments, we 

would like to check the performance of these methods 

averaged over 20 randomly sampled datasets. The results are 

shown in Table I. The feature set size 𝑞 is chosen to be the 

optimal value detected from Fig. 4. To show the ability of 

detecting real positives (i.e. real nonzero features), we also 

present the results of false positive (FP) and false negative 

(FN) rates in Table I. We can see that under different noise 

levels, the accuracy achieved by different methods are all 

maintained at high levels. However, the false negative rates 

from ADMM are much higher than the rates from our method. 

This is because, the ADMM method can detect correlated 

features that some real features are ignored. 
 

 
Fig. 4. The scores achieved by different methods with the size of feature set 

varying from 1 to 8 and standard deviation of noise chosen from 0, 0.1, 0.5 

and 1. 
TABLE I: THE RESULTS OF OUR METHOD AND ADMM UNDER DIFFERENT 

NOISE LEVELS. THE CLASSIFICATION ACCURACY, FALSE POSITIVE AND 

FALSE NEGATIVE RATES ARE COMPARED 
Noise STD Method Accuracy FP FN 

0 
Our method 0.97 0.02 0 

ADMM 0.98 0.09 0.45 

0.1 
Our method 0.97 0.02 0 

ADMM 0.98 0.09 0.46 

0.5 
Our method 0.97 0.02 0 

ADMM 0.96 0.08 0.42 

1 
Our method 0.96 0.02 0 

ADMM 0.98 0.08 0.44 

 

B. Real Examples 

1) Cervical cancer datasets 

To demonstrate the applicability of our method in real 

world problems, we first use the public dataset to test our 

performance, which can be downloaded from 

https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28

Risk+Factors%29. This dataset focuses on the prediction of 

diagnosis of cervical cancer. There are 4 indicators 

(Hinselmann, Schiller, Citology and Biopsy) of disease status. 

We generate a consensus indicator of disease state that if 

more than 2 indicators saying the patient has the cancer then 

we say the patient has the cancer. The dataset comprises of 

demographic information, habits and historic medical records 

of patients. We choose records of 737 patients with no 

missing values and 21 features with at least 10 nonzero 

records across all patients. The detailed descriptions of 

features in this risk factor dataset can be found in [23].  

We first use the whole dataset to select features used in 

predictive model construction. The estimated weights are 

shown in Fig. 5. From Fig. 5, we can see that 5 out of 21 

features are mainly used for predicting diagnosis of cervical 

cancer, which are ’Number of sexual partners’, ’First sexual 
intercourse (age)’, ’Number of pregnancies’, ’Smokes’ 
and ’Hormonal Contraceptives’. Among these features, 
the ’First sexual intercourse (age)’ feature has the largest 
absolute magnitude of weight. Its negative value shows that 

people have their first sexual intercourse at early age are 

more likely to have cervical cancer. These findings can help 

researchers to get a proper list of risk factors for cervical 

cancer prediction. After investigating the ability of feature 

selection, we then also carry out a 5-fold CV process to 

evaluate the prediction accuracy of our method. The mean 

accuracy of our method is as high as 0.95.  
 

 
Fig. 5. Weights estimated from our method in the predictive model for 

cervical cancer risk factors dataset. 

2) Embryonal tumour gene expression data analysis 

We also use a public available gene expression dataset of 

the central nervous system embryonal tumours from the 

study in [24]. The raw data can be downloaded from 

http://archive.broadinstitute.org/mpr/CNS. We selected 10 

CNS medulloblastomas (MD) samples and 10 non-neuronal 

origin malignant gliomas (Mglio) samples to show the 

performance of our method in classifying two tumour types. 

The samples were hybridised on Affymetrix HuGeneFL 

GeneChip arrays. We first preprocessed the raw data using 

GCRMA with empirical Bayes estimate [25]. Then we 

filtered out probe sets which are either not annotated or have 

little variability across samples. We select probes whose p 

value from t test for sample type comparison is smaller than 

0.05 and fold change is larger than 2. Probes for 350 genes 

were remained after preprocessing.  

Our method can find differences between two tumour 

types at molecular level. We construct a classifier using the 
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selected 20 samples with the accuracy of tumour type 

prediction approaching to 100%. The beauty of our method is 

that it does not only have strong predictive power, but also 

selects relevant features that could be candidates of disease 

biomarkers. Fig. 6a) shows the weights of features in our 

classification model, where 21 features are mainly used for 

classification. Features with nonzero weights can be regarded 

as molecular features distinguishing tumours. By looking at 

Fig. 6b), we can see that many of these features are highly 

correlated, telling that our method does not discard features 

from correlated ones.  

 

 

Fig. 6. Results of gene expression analysis: a) weights of features from the 

classification models using our method; b) Heatmap of the correlation matrix 

for 21 genes selected by our classifier. 

 

V. CONCLUSION 

This paper adopts the idea of deep unfolding to design a 

neural network based on IRLS-ADMM for both 

classification and feature selection. The proposed 

IRLS-ADMM net is a novel deep neural network. Different 

from conventional neural networks, which are essentially 

black-box methods, our method works as a white-box that the 

network structure are designed according to the iterative 

updating steps in the model-based model. One advantage of 

our method is that the network can return a set of features that 

are used for prediction while maintain good prediction 

accuracy. Unlike other neural networks, the proposed method 

can explicitly select features which can be used as a feature 

selection tool in many applications, such as clinical variable 

selection and biomarker discovery. Our experimental results 

have shown that our method has taken the advantages of 

model-based methods for explicitly incorporating sparsity 

into model construction and also neural networks with their 

strong predictive power and straightforward parameter 

inference process.  

APPENDIX A: GRADIENT COMPUTATION FOR DEEP 

IRLS-ADMM NET 

Node a): As shown in Fig. 2a), this node has one input: 𝚲𝑘  

for 𝑘 ∈ {1,2}. Its output 𝑨𝑘  is the input to compute 𝛀𝑘 ,𝑖  for 

all 𝑖 ∈ {1,2,3,4}. This layer has no parameters. The loss w.r.t. 

output is  

 
𝜕𝐸𝜕𝑨𝑘 =  𝜕𝐸𝜕𝜴𝑘+1,𝑖 𝜕𝜴𝑘+1,𝑖𝜕𝑨𝑘4

𝑖=1

. (33) 

The operation in this layer is:  

 𝑨𝑘 = (𝚲𝑘)
1
2𝚽 . (34) 

We compute the gradients of the output in this layer w.r.t 

its input  

 
𝜕𝑨𝑘𝜕𝛬𝑛 ,𝑛𝑘 =

1

2
(𝚲𝑘)

−1
2𝑰 𝑛 ,𝑛𝑘 𝚽 , (35) 

where 𝑰 𝑛 ,𝑛𝑘  is the matrix whose entries are zero except the 𝑛th 

element on the diagonal equalling to 1.  

Node b): As shown in Fig. 2b), this node has one input: 𝜷𝑘 . 

Its output 𝚲𝑘  is the input to compute 𝑨𝑘  and 𝒃𝑘  for 𝑘 ∈ {1,2}. 

This layer has no parameters. The loss w.r.t. output is  

 
𝜕𝐸𝜕𝜦𝑘 =

𝜕𝐸𝜕𝑨𝑘 𝜕𝑨𝑘𝜕𝜦𝑘 +
𝜕𝐸𝜕𝒃𝑘 𝜕𝒃𝑘𝜕𝜦𝑘 . (36) 

The operation in this layer is:  

 𝛬𝑛 ,𝑛𝑘 = 𝜍{𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛)}[1 − 𝜍{𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛)], (37) 

where 𝜍{𝑓} =
1

(1+𝑒−𝑓)
. We compute the gradients of the 

output in this layer w.r.t its input, that is 
𝜕𝜦𝑘𝜕𝛽𝑚𝑘  for all 𝑚. 

𝜕𝜦𝑘𝜕𝛽𝑚𝑘  is 

a diagonal matrix, whose 𝑛th entry on the diagonal is:  𝜕𝛬𝑛 ,𝑛𝑘𝜕𝛽𝑚𝑘 = 𝑦𝑛(
𝑒𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛 )

(1 + 𝑒𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛 ))3

                 − 𝑒−𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛 )

(1 + 𝑒−𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛 ))3
)𝜙𝑚 (𝑥𝑛),

 

 

(38) 

where 𝝓𝑚 (𝒙𝑛) is the 𝑚th element of 𝝓(𝒙𝑛).  

Node c): As shown in Fig. 2c), this node has one input: 𝜷𝑘 . 

Its output 𝒗𝑘  is the input to compute 𝒃𝑘  for 𝑘 ∈ {1,2}. This 

layer has no parameters. The loss w.r.t. output is  

 
𝜕𝐸𝜕𝒗𝑘 =

𝜕𝐸𝜕𝒃𝑘 𝜕𝒃𝑘𝜕𝒗𝑘 . (39) 

The operation in this layer is:  

 𝑣𝑛𝑘 = 𝑦𝑛𝜙(𝑥𝑛)⊤𝛽𝑘 + 1 + 𝑒−𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛 ). (40) 

We compute the gradients of the output in this layer w.r.t 

its input, that is 
𝜕𝒗𝑘𝜕𝜷𝑘 , whose entry in the 𝑛th row and 𝑚th 

column is  

 

𝜕𝑣𝑛𝑘𝜕𝛽𝑚𝑘 =
𝜕𝑦𝑛𝜙(𝑥𝑛)⊤𝛽𝑘 + 1 + 𝑒−𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛 )𝜕𝛽𝑚𝑘

= 𝑦𝑛𝜙𝑚 (𝑥𝑛)(1 − 𝑒−𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛 )),

 (41) 

where 𝝓𝑚 (𝒙𝑛) is the 𝑚th element of 𝝓(𝒙𝑛).  

Node d): As shown in Fig. 2d), this node has two sets of 

inputs: 𝚲𝑘  and 𝒗𝑘 . Its output 𝒃𝑘  is the input to compute 𝛀𝑘 ,𝑖  
for all 𝑖 ∈ {1,2,3,4}  and 𝑘 ∈ {1,2} . This layer has no 

parameters. The loss w.r.t. output is  
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𝜕𝐸𝜕𝒃𝑘 =  𝜕𝐸𝜕𝜴𝑘+1,𝑖 𝜕𝜴𝑘+1,𝑖𝜕𝒃𝑘4

𝑖=1

. (42) 

The operation in this layer is:  

 𝒃𝑘 = (𝚲𝑘)
1
2(𝒗𝑘). (43) 

We compute the gradients of the output in this layer w.r.t 

its input  

 
𝜕𝒃𝑘𝜕𝛬𝑛 ,𝑛𝑘 =

1

2
(𝚲𝑘)

−1
2𝑰 𝑛 ,𝑛𝑘 𝒗𝑘  (44) 

and  

 
𝜕𝒃𝑘𝜕𝒗𝑘 = (𝚲𝑘)

1
2, (45) 

where 𝑰 𝑛 ,𝑛𝑘  is the matrix whose entries are zero except the 𝑛th 

element on the diagonal equalling to 1.  

Node e): As shown in Fig. 2e), this node has four sets of 

inputs: 𝒃𝑘−1 , 𝑨𝑘−1 , 𝒛𝑘 ,𝑖−1  and 𝒖𝑘 ,𝑖−1  for 𝑘 ∈ {2,3}  and 𝑖 ∈ {2,3} . Its output 𝛀𝑘 ,𝑖  is the input to compute 𝑪𝑘 ,𝑖 . 

Parameters of this layer are 𝜌𝑘 ,𝑖  and 𝑭𝑘 ,𝑖 . Please note that 

these two parameters are shared among different layers. Here 

we just calculate its gradient via the node in this layer. To get 

the complete the gradient, we need to sum all gradients 

shared among layers. We will calculate this later. The 

gradients of loss w.r.t. the parameters can be computed as  

 
𝜕𝐸𝜕𝜌𝑘 ,𝑖 =

𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖  (46) 

and  

 
𝜕𝐸𝜕𝑭𝑘 ,𝑖 =

𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝑭𝑘 ,𝑖 , (47) 

where  

 
𝜕𝐸𝜕𝜴𝑘 ,𝑖 =

𝜕𝐸𝜕𝑪𝑘 ,𝑖 𝜕𝑪𝑘 ,𝑖𝜕𝜴𝑘 ,𝑖 . (48) 

To get a complete representation of gradients, we need to 

do the following calculations. The operation in this layer is:  

 
Ωk,i = (Ak−1⊤

Ak−1 + ρk,iFk,i⊤Fk,i)−1

(Ak−1⊤
bk−1 + ρk,iFk,i⊤(zk,i−1 − uk,i−1)).

 (49) 

Assume  

 𝑄 = (𝑨𝑘−1⊤𝑨𝑘−1 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖)−1 . (50) 

The gradients of output in this layer w.r.t. parameters are:  

 

𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 = −𝑄2𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖(𝑨𝑘−1⊤𝒃𝑘−1

+𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1))

+𝑄𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1)

 (51) 

and  

 

𝜕𝜴𝑘 ,𝑖𝜕𝐹𝑚 ,𝑚𝑘 ,𝑖 = −2𝜌𝑘 ,𝑖𝑄2𝑭 𝑚 ,𝑚𝑘 ,𝑖
(𝑨𝑘−1⊤𝒃𝑘−1

+𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1))

+𝜌𝑘 ,𝑖𝑄𝑰 𝑚 ,𝑚𝑘 ,𝑖
(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1),

 (52) 

where 𝐹𝑚 ,𝑚𝑘 ,𝑖
 is the 𝑚th entry on diagonal of 𝑭𝑘 ,𝑖 , 𝑭 𝑚 ,𝑚𝑘 ,𝑖

 and 𝑰 𝑚 ,𝑚𝑘 ,𝑖
 are matrices whose entries are zero except the 𝑚 th 

element on the diagonal equalling to 𝐹𝑚 ,𝑚𝑘 ,𝑖
 and 1, respectively.  

We also compute the output in this layer w.r.t. its inputs as 

follows.  

 
𝜕𝜴𝑘 ,𝑖𝜕𝒃𝑘−1

= 𝑄𝑨𝑘−1⊤ (53) 

 

 
𝜕𝜴𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖−1

= 𝜌𝑘 ,𝑖𝑄𝑭𝑘 ,𝑖⊤ (54) 

 

 
𝜕𝜴𝑘 ,𝑖𝜕𝒖𝑘 ,𝑖−1

= −𝜌𝑘 ,𝑖𝑄𝑭𝑘 ,𝑖⊤ (55) 

 

 

𝜕𝜴𝑘 ,𝑖𝜕𝐴𝑛𝑥 ,𝑛𝑦𝑘−1
= −𝑄2𝑨 𝑛𝑥 ,𝑛𝑦𝑘−1 (𝑨𝑘−1⊤𝒃𝑘−1

+𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1))

+𝑄𝑻 𝑛𝑥 ,𝑛𝑦𝑘−1 𝒃𝑘−1.

 (56) 

We have  

 𝑨 𝑛𝑥 ,𝑛𝑦𝑘−1 = 𝑨 𝑛𝑥 ,𝑛𝑦𝑘−1 + 𝑨 𝑘−1⊤𝑛𝑥 ,𝑛𝑦 , (57) 

where 𝑨 𝑛𝑥 ,𝑛𝑦𝑘−1  is a matrix containing zeros except the 𝑛𝑦 th 

row equals to the 𝑛𝑥 th row of 𝑨𝑘−1. And 𝑻 𝑛𝑥 ,𝑛𝑦𝑘 ,𝑖
 is a matrix 

containing zeros except the entry in the 𝑛𝑥 th row and 𝑛𝑦 th 

column equals to 1.  

Node f): As shown in Fig. 2f), this node is nearly same as 

the node in Fig. 2e). The only difference is that its output is 

the input to compute 𝜷𝑘 .  

 
𝜕𝐸𝜕𝜴𝑘 ,𝑖 =

𝜕𝐸𝜕𝜷𝑘 𝜕𝜷𝑘𝜕𝜴𝑘 ,𝑖  (58) 

for 𝑘 ∈ {2,3} and 𝑖 = 4.  

Node g): As shown in Fig. 2g), this node is similar with the 

node in Fig. 2e). The only difference is that it only have two 

inputs: 𝒃𝑘−1  and 𝑨𝑘−1  for 𝑘 ∈ {2,3}  and 𝑖 = 1 . The 

operation in this layer is:  

 𝛀𝑘 ,𝑖 = (𝑨𝑘−1⊤𝑨𝑘−1 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖)−1𝑨𝑘−1⊤𝒃𝑘−1. (59) 

The gradients of output in this layer w.r.t. parameters are:  

 
𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 = −𝑄2𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖𝑨𝑘−1⊤𝒃𝑘−1 (60) 

and  

 
∂Ωk,i∂Fm,m

k,i
= −2ρk,iQ2F m,m

k,i
Ak−1⊤

bk−1. (61) 

The output in this layer w.r.t. its inputs as follows.  

 
𝜕𝜴𝑘 ,𝑖𝜕𝒃𝑘−1

= 𝑄𝑨𝑘−1⊤ (62) 

and  

 

𝜕𝜴𝑘 ,𝑖𝜕𝐴𝑛𝑥 ,𝑛𝑦𝑘−1
= −𝑄2𝑨 𝑛𝑥 ,𝑛𝑦𝑘−1 𝑨𝑘−1⊤𝒃𝑘−1

+𝑄𝑻 𝑛𝑥 ,𝑛𝑦𝑘−1 𝒃𝑘−1.

 (63) 

 

Node h): As shown in Fig. 2h), this node has no input. Its 

output Ω𝑘 ,𝑖  is the input to compute 𝑪𝑘 ,𝑖  for 𝑘 = 1 and 𝑖 = 1. 

The operation in this layer is:  
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 𝛀1,1 = (𝑨0⊤𝑨0 + 𝜌1,1𝑭1,1⊤𝑭1,1)−1𝑨0⊤𝒃0 . (64) 

where  

 𝑨0 = (𝚲0)
1
2𝚽  (65) 

 

 𝒃0 = (𝚲0)
1
2𝒗0. (66) 

As 𝜷0 = 𝟎, we get 𝚲0 =
1

4
 and 𝒗0 = 2. Then we have  

 𝑨0 =
1

2
𝚽  (67) 

 

 𝒃0 = 1  . (68) 

Parameters of this layer are 𝜌1,1 and 𝑭1,1. The gradients of 

loss w.r.t. the parameters can be computed as  

 
𝜕𝐸𝜕𝜌1,1

=
𝜕𝐸𝜕𝜴1,1

𝜕𝜴1,1𝜕𝜌1,1
 (69) 

and  

 
𝜕𝐸𝜕𝑭1,1

=
𝜕𝐸𝜕𝜴1,1

𝜕𝜴1,1𝜕𝐹𝟏,𝟏 , (70) 

where  

 
𝜕𝐸𝜕𝜴1,1

=
𝜕𝐸𝜕𝑪1,1

𝜕𝑪1,1𝜕𝜴1,1
. (71) 

The gradients of output in this layer w.r.t. parameters are:  

 

𝜕𝜴1,1𝜕𝜌1,1
= −(𝑨0⊤𝑨0 + 𝜌1,1𝑭1,1⊤𝑭1,1)−2𝑭1,1⊤𝑭1,1𝑨0⊤𝒃0

 (72) 

and  

 

𝜕𝜴1,1𝜕𝐹𝑚 ,𝑚1,1
= −2𝜌1,1(𝑨0⊤𝑨0 + 𝜌1,1𝑭1,1⊤𝑭1,1)−2

𝑭 𝑚 ,𝑚𝑘 ,𝑖 𝑨0⊤𝒃0 .

 (73) 

 

Node i) As shown in Fig. 2i), this node is similar with the 

node in Fig. 2e). The only difference is that it only have two 

inputs: 𝒛𝑘 ,𝑖−1  and 𝒖𝑘 ,𝑖−1  for 𝑘 = 1  and 𝑖 ∈ {2,3} . The 

operation in this layer is:  

 
𝛀𝑘 ,𝑖 = (𝑨0⊤𝑨0 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖)−1(𝑨0⊤𝒃0

+𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1))
 (74) 

where  

 𝑨0 =
1

2
𝚽  (75) 

 

 𝒃0 = 𝟏   . (76) 

The gradients of output in this layer w.r.t. parameters are:  

 

𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 = −𝑄2𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖(𝑨0⊤𝒃0 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤
(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1)) + 𝑄𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1)

 (77) 

and  

 

𝜕𝜴𝑘 ,𝑖𝜕𝐹𝑚 ,𝑚𝑘 ,𝑖 = −2𝜌𝑘 ,𝑖𝑄2𝑭 𝑚 ,𝑚𝑘 ,𝑖
(𝑨0⊤𝑏𝟎 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤

(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1))

+𝜌𝑘 ,𝑖𝑄𝑰 𝑚 ,𝑚𝑘 ,𝑖
(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1).

 (78) 

The output in this layer w.r.t. its inputs as follows.  

 
𝜕𝜴𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖−1

= 𝜌𝑘 ,𝑖𝑄𝑭𝑘 ,𝑖⊤ (79) 

 

 
𝜕𝜴𝑘 ,𝑖𝜕𝒖𝑘 ,𝑖−1

= −𝜌𝑘 ,𝑖𝑄𝑭𝑘 ,𝑖⊤ . (80) 

Node j) As shown in Fig. 2j), this node is similar with the 

node in Fig. 2i). The only difference is that its output is the 

input to compute 𝜷𝑘 .  

 
𝜕𝐸𝜕𝜴𝑘 ,𝑖 =

𝜕𝐸𝜕𝜷𝑘 𝜕𝜷𝑘𝜕𝜴𝑘 ,𝑖  (81) 

for 𝑘 = 1 and 𝑖 = 4.  

Node k): As shown in Fig. 2k), this node has two sets of 

inputs: 𝒖𝑘 ,𝑖−1 and 𝑪𝑘 ,𝑖 . Its output 𝒛𝑘 ,𝑖  is the input to compute 𝒖𝑘 ,𝑖  and 𝛀𝑘 ,𝑖+1  for 𝑘 ∈ {1,2,3} and 𝑖 ∈ {2,3}. Parameter of 

this layer is 𝜌𝑘 ,𝑖 . The operation in this layer is  

 𝒛𝑘 ,𝑖 = 𝑆𝜆/𝜌𝑘 ,𝑖(𝑪𝑘 ,𝑖 + 𝒖𝑘 ,𝑖−1), (82) 

where 𝜆 is 1, whose 𝑛th element is  

 𝑧𝑚𝑘 ,𝑖 =  𝐶𝑚𝑘 ,𝑖 + 𝑢𝑚𝑘 ,𝑖−1 − 1/𝜌𝑘,𝑖 ,  𝐶𝑚𝑘 ,𝑖 + 𝑢𝑚𝑘 ,𝑖−1 > 1/𝜌𝑘,𝑖
0,  |𝐶𝑚𝑘 ,𝑖 + 𝑢𝑚𝑘 ,𝑖−1| ≤ 1/𝜌𝑘,𝑖𝐶𝑚𝑘 ,𝑖 + 𝑢𝑚𝑘 ,𝑖−1 + 1/𝜌𝑘,𝑖 ,  𝐶𝑚𝑘 ,𝑖 + 𝑢𝑚𝑘 ,𝑖−1 < −1/𝜌𝑘,𝑖 .   (83) 

The gradients of the loss w.r.t. parameters are  

 
𝜕𝐸𝜕𝜌𝑘 ,𝑖 =

𝜕𝐸𝜕𝒛𝑘 ,𝑖 𝜕𝒛𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 , (84) 

where  

 
𝜕𝐸𝜕𝒛𝑘 ,𝑖 =

𝜕𝐸𝜕𝒖𝑘 ,𝑖 𝜕𝒖𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖 +
𝜕𝐸𝜕𝜴𝑘 ,𝑖+1

𝜕𝜴𝑘 ,𝑖+1𝜕𝒛𝑘 ,𝑖 . (85) 

We compute the gradients of the output in this layer w.r.t. 

parameter as  

 
∂zm

k,i∂ρk,i
=  ρk,i−2

,  Cm
k,i

+ um
k,i−1

> 1/ρk,i

0,  |Cm
k,i

+ um
k,i−1

| ≤ 1/ρk,i−ρk,i−2
,  Cm

k,i
+ um

k,i−1
< −1/ρk,i

  (86) 

and the gradients of the output in this layer w.r.t. the input as  

 
𝜕𝑧𝑚𝑘 ,𝑖𝜕𝐶𝑚𝑘 ,𝑖 =

𝜕𝑧𝑚𝑘 ,𝑖𝜕𝑢𝑚𝑘 ,𝑖−1
=  1,  𝐶𝑚𝑘 ,𝑖

+ 𝑢𝑚𝑘 ,𝑖−1
> 1/𝜌𝑘 ,𝑖

0,  |𝐶𝑚𝑘 ,𝑖
+ 𝑢𝑚𝑘 ,𝑖−1

| ≤ 1/𝜌𝑘,𝑖
1,  𝐶𝑚𝑘 ,𝑖

+ 𝑢𝑚𝑘 ,𝑖−1
< −1/𝜌𝑘 ,𝑖 .  (87) 

Node l): As shown in Fig. 2l), this node is similar with the 

node in Fig. 2k). The only difference is that it only has one 

input: 𝑪𝑘 ,𝑖  for 𝑘 ∈ {1,2,3} and 𝑖 = 1. Parameter of this layer 

is 𝜌𝑘 ,𝑖 . The operation in this layer is  

 𝒛𝑘 ,𝑖 = 𝑆𝜆/𝜌𝑘 ,𝑖(𝑪𝑘 ,𝑖), (88) 

where 𝜆 is 1, whose 𝑛th element is  

 𝑧𝑚𝑘 ,𝑖
=  𝐶𝑚𝑘 ,𝑖 − 1/𝜌𝑘 ,𝑖 ,  𝐶𝑚𝑘 ,𝑖

> 1/𝜌𝑘 ,𝑖
0,  |𝐶𝑚𝑘 ,𝑖

| ≤ 1/𝜌𝑘 ,𝑖𝐶𝑚𝑘 ,𝑖
+ 1/𝜌𝑘 ,𝑖 ,  𝐶𝑚𝑘 ,𝑖

< −1/𝜌𝑘 ,𝑖 ,  (89) 

The gradients of the loss w.r.t. parameters are  

 
𝜕𝐸𝜕𝜌𝑘 ,𝑖 =

𝜕𝐸𝜕𝒛𝑘 ,𝑖 𝜕𝒛𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 , (90) 

where  

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

249



  

 
𝜕𝐸𝜕𝒛𝑘 ,𝑖 =

𝜕𝐸𝜕𝒖𝑘 ,𝑖 𝜕𝒖𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖 +
𝜕𝐸𝜕𝜴𝑘 ,𝑖+1

𝜕𝜴𝑘 ,𝑖+1𝜕𝒛𝑘 ,𝑖 . (91) 

We compute the gradients of the output in this layer w.r.t. 

parameter as  

 
𝜕𝑧𝑚𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 =  𝜌𝑘 ,𝑖−2

,  𝐶𝑚𝑘 ,𝑖
> 1/𝜌𝑘 ,𝑖

0,  |𝐶𝑚𝑘 ,𝑖
| ≤ 1/𝜌𝑘 ,𝑖−𝜌𝑘 ,𝑖−2

,  𝐶𝑚𝑘 ,𝑖
< −1/𝜌𝑘 ,𝑖   (92) 

and the gradients of the output in this layer w.r.t. the input as  

 
𝜕𝑧𝑚𝑘 ,𝑖𝜕𝐶𝑚𝑘 ,𝑖 =  1,  𝐶𝑚𝑘 ,𝑖

> 1/𝜌𝑘 ,𝑖
0,  |𝐶𝑚𝑘 ,𝑖

| ≤ 1/𝜌𝑘 ,𝑖
1,  𝐶𝑚𝑘 ,𝑖

< −1/𝜌𝑘 ,𝑖 .  (93) 

Node m) As shown in Fig. 2m), this node has one input: Ω𝑘 ,𝑖  for 𝑘 ∈ {1,2,3} and 𝑖 ∈ {1,2,3}. Its output 𝑪𝑘 ,𝑖  is used to 

compute 𝒖𝑘 ,𝑖  and 𝒛𝑘 ,𝑖 . Parameter of this layer is 𝑭𝑘 ,𝑖 . The 

gradients of loss w.r.t the parameter can be calculated as  

 
𝜕𝐸𝜕𝑭𝒌,𝒊 =

𝜕𝐸𝜕𝑪𝑘 ,𝑖 𝜕𝑪𝑘 ,𝑖𝜕𝑭𝑘 ,𝑖 , (94) 

where  

 
𝜕𝐸𝜕𝑪𝑘 ,𝑖 =

𝜕𝐸𝜕𝒖𝑘 ,𝑖 𝜕𝒖𝑘 ,𝑖𝜕𝑪𝑘 ,𝑖 +
𝜕𝐸𝜕𝒛𝑘 ,𝑖 𝜕𝒛𝑘 ,𝑖𝜕𝑪𝑘 ,𝑖 . (95) 

The operation in this layer is:  

 𝑪𝑘 ,𝑖 = 𝑭𝑘 ,𝑖𝛀𝑘 ,𝑖 . (96) 

We compute the gradients of the output in this layer w.r.t 

parameters  

 
𝜕𝑪𝑘 ,𝑖𝜕𝐹𝑚 ,𝑚𝑘 ,𝑖 = 𝑰 𝑚 ,𝑚𝑘 ,𝑖 𝛀𝑘 ,𝑖 . (97) 

The output in this layer w.r.t its inputs are  

 
𝜕𝑪𝑘 ,𝑖𝜕𝜴𝑘 ,𝑖 = 𝑭𝑘 ,𝑖 . (98) 

Node n): As shown in Fig. 2n), this node has two sets of 

inputs: 𝜷𝑘−1  and Ω𝑘 ,𝑖𝑚𝑎𝑥 . Its output 𝜷𝑘  is the input to 

compute Λ𝑘 , 𝒗𝑘  and 𝜷𝑘+1 for 𝑘 = 2. Parameters of this layer 

is 𝑡𝑘 . The operation in this layer is  

 𝜷𝑘 = (1 − 𝑡𝑘)𝜷𝑘−1 + 𝑡𝑘𝛀𝑘 ,𝑖𝑚𝑎𝑥 . (99) 

The gradients of loss w.r.t. the parameter can be calculated 

as  

 
𝜕𝐸𝜕𝑡𝑘 =

𝜕𝐸𝜕𝜷𝑘 𝜕𝜷𝑘𝜕𝑡𝑘 , (100) 

where  

 

𝜕𝐸𝜕𝜷𝑘 =
𝜕𝐸𝜕𝜦𝑘 𝜕𝜦𝑘𝜕𝜷𝑘 +

𝜕𝐸𝜕𝒗𝑘 𝜕𝒗𝑘𝜕𝜷𝑘
+

𝜕𝐸𝜕𝜷𝑘+1

𝜕𝜷𝑘+1𝜕𝜷𝑘 . 
(101) 

We compute the gradients of the output in this layer w.r.t. 

parameter as  

 
𝜕𝜷𝑘𝜕𝑡𝑘 = −𝜷𝑘−1 + 𝛀𝑘 ,𝑖𝑚𝑎𝑥  (102) 

and the gradients of the output in this layer w.r.t. the input as  

 
𝜕𝜷𝑘𝜕𝜷𝑘−1

= (1 − 𝑡𝑘)𝑰𝑀 ,𝑀  (103) 
 

 
𝜕𝜷𝑘𝜕𝜴𝑘 ,𝑖𝑚𝑎𝑥 = 𝑡𝑘𝑰𝑀 ,𝑀 . (104) 

 

Node o): As shown in Fig. 2o), this node is similar with the 

node in Fig. 2n). The only difference is that it only has one 

input: 𝛀𝑘 ,𝑖𝑚𝑎𝑥  for 𝑘 = 1. Parameters of this layer is 𝑡𝑘 . The 

operation in this layer is  

 𝜷𝑘 = 𝑡𝑘𝛀𝑘 ,𝑖𝑚𝑎𝑥 . (105) 

The gradients of the output in this layer w.r.t. parameter as  

 
𝜕𝜷𝑘𝜕𝑡𝑘 = 𝛀𝑘 ,𝑖𝑚𝑎𝑥  (106) 

and the gradients of the output in this layer w.r.t. the input as  

 
𝜕𝜷𝑘𝜕𝜴𝑘 ,𝑖𝑚𝑎𝑥 = 𝑡𝑘𝑰𝑀 ,𝑀 . (107) 

Node p) As shown in Fig. 2p), this node is similar with the 

node in Fig. 2n). The only difference is that its output is not 

the input of any other nodes for 𝑘 = 3. That is 
𝜕𝐸𝜕𝜷𝑘  can be 

calculated directly:  

 

𝜕𝐸𝜕𝜷𝑘 =
𝜕  𝑙𝑜𝑔 [𝑁𝑛=1 1 + 𝑒𝑥𝑝 { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}]𝜕𝜷𝑘

= −  𝑦𝑛𝑁
𝑛=1

𝑒𝑥𝑝 { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}

1 + 𝑒𝑥𝑝 { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}
𝝓(𝒙𝑛)⊤ .

 (108) 

Node q): As shown in Fig. 2q), this node has three sets of 

inputs: 𝒖𝑘 ,𝑖−1 , 𝑪𝑘 ,𝑖  and 𝒛𝑘 ,𝑖 . Its output 𝒖𝑘 ,𝑖  is the input to 

compute 𝒖𝑘 ,𝑖+1 , 𝒛𝑘 ,𝑖+1  and 𝛀𝑘 ,𝑖+1 for 𝑘 ∈ {1,2,3} and 𝑖 = 2. 

This layer has no parameters. The loss w.r.t. output is  

 

𝜕𝐸𝜕𝒖𝑘 ,𝑖 =
𝜕𝐸𝜕𝒖𝑘 ,𝑖+1

𝜕𝒖𝑘 ,𝑖+1𝜕𝒖𝑘 ,𝑖
+

𝜕𝐸𝜕𝒛𝑘 ,𝑖+1

𝜕𝒛𝑘 ,𝑖+1𝜕𝒖𝑘 ,𝑖
+

𝜕𝐸𝜕𝜴𝑘 ,𝑖+1

𝜕𝜴𝑘 ,𝑖+1𝜕𝒖𝑘 ,𝑖 . 

(109) 

The operation in this layer is:  

 𝒖𝑘 ,𝑖 = 𝒖𝑘 ,𝑖−1 + 𝑪𝑘 ,𝑖 − 𝒛𝑘 ,𝑖 . (110) 

The output in this layer w.r.t its inputs are  

 𝜕𝒖𝑘 ,𝑖𝜕𝒖𝑘 ,𝑖−1
= 𝑰𝑀 ,𝑀  (111) 

 

 
𝜕𝒖𝑘 ,𝑖𝜕𝑪𝑘 ,𝑖 = 𝑰𝑀 ,𝑀  (112) 

 

 
𝜕𝒖𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖 = −𝑰𝑀 ,𝑀 , (113) 

where 𝑀  is the number of elements in 𝜷𝑘  and 𝑰𝑀 ,𝑀  is the 

identity matrix with the size of 𝑀 × 𝑀.  

Node r) As shown in Fig. 2r), this node is similar with the 

node in Fig. 2q). The only difference is that its output 𝒖𝑘 ,𝑖  is 
the input to compute 𝛀𝑘 ,𝑖+1  for 𝑘 ∈ {1,2,3} and 𝑖 = 3. The 

loss w.r.t. output is  

 𝜕𝐸𝜕𝒖𝑘 ,𝑖 =
𝜕𝐸𝜕𝜴𝑘 ,𝑖+1

𝜕𝜴𝑘 ,𝑖+1𝜕𝒖𝑘 ,𝑖 . 
(114) 
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Node s) As shown in Fig. 2t), this node is similar with the 

node in Fig. 2q). The only difference is that it has only two 

inputs: 𝑪𝑘 ,𝑖  and 𝒛𝑘 ,𝑖  for 𝑘 ∈ 1,2,3 and 𝑖 = 1. The operation 

in this layer is:  

 𝒖𝑘 ,𝑖 = 𝑪𝑘 ,𝑖 − 𝒛𝑘 ,𝑖 . (115) 

The output in this layer w.r.t its inputs are  

 
𝜕𝒖𝑘 ,𝑖𝜕𝑪𝑘 ,𝑖 = 𝑰𝑀 ,𝑀  (116) 

 

 
𝜕𝒖𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖 = −𝑰𝑀 ,𝑀 . (117) 

 

Gradients of parameters shared among layers): As we 

have discussed in node e), parameters may share among 

different layers. In the above calculations, we only calculate 

the gradients of parameters dependent on the output of this 

node. To get a complete expression of gradients, we need to 

sum them together. Thus, we have  

 𝜕𝐸𝜕𝜌𝑘 ,𝑖 =
𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 +

𝜕𝐸𝜕𝒛𝑘 ,𝑖 𝜕𝒛𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖  (118) 

 

 
𝜕𝐸𝜕𝑭𝒌,𝒊 =

𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝑭𝑘 ,𝑖 +
𝜕𝐸𝜕𝑪𝑘 ,𝑖 𝜕𝑪𝑘 ,𝑖𝜕𝑭𝑘 ,𝑖  (119) 

for 𝑖 ∈ {1,2,3}, and  

 
𝜕𝐸𝜕𝜌𝑘 ,𝑖 =

𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖  (120) 

 
𝜕𝐸𝜕𝑭𝑘 ,𝑖 =

𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝑭𝑘 ,𝑖  (121) 

for 𝑖 = 4 .  
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