


Abstract—Two main branches of machine learning methods

are model-based methods and deep neural networks.

Model-based methods can explicitly include prior knowledge

into the model at expense of difficulties in inference, while

neural networks are featured in their strong predictive power

and straightforward inference approach with the lack of model

interpretability. To construct models which are entitled with the

advantages of both methods and overcome their problems, the

deep unfolding strategy has been developed recently. This paper

adopts the idea of deep unfolding to construct a classification

and feature selection method. The proposed method is based on

the sparse classification; and the iterative inference process of

the sparse classification is unfolded into a layer-wise structure

analogous to a neural network. Thus, the architecture of our

network is fully motivated by the sparse classification method.

Different from other neural networks which are essentially

black-box methods, our deep unfolded network acts as

white-box that features selected in the predictive model can be

explicitly returned. Experimental results show the both

predictive power and feature selection ability of our methods.

Index Terms—Deep unfolded neural network, IRLS-ADMM

net, sparse classification, feature selection, white-box method.

I. INTRODUCTION

Deep unfolding is a recently proposed strategy to construct

neural-network-like machine learning models that take the

advantage of both model-based methods and neural networks

[1]. Model-based methods can easily incorporate prior

knowledge, such as sparsity, conditional dependency and

latent variable structure, into the model. However, the

inference of model-based methods are usually not

straightforward and can be both computationally and

mathematically intractable that approximation methods such

as variational approximation and Monte Carlo sampling are

required to iteratively infer variables of interest. Neural

networks, on the other hand, organise inference into layers

which are typically executed in sequence. Although neural

networks become the state of art in many applications, they

have the problem of model interpretability. Typical neural

methods are black-box methods acting closer to mechanisms

than problem-level formulations. Therefore, it comes to the

idea of bringing the model-based approach to the task of

design the architecture of neural networks, which is called

deep unfolding.

The basic idea of deep unfolding is with a given

model-based method unfolding the iterations of inference

Manuscript received March 22, 2018; revised May 6, 2018.

The authors are with the Data Science Institute, Imperial College London,

SW7 2AZ, UK (e-mail: xian.yang08@impeial.ac.uk, y.guo@impeial.ac.uk).

into a layer-wise structure, which forms into a neural network.

To increase the flexibility of the model and the ease of

training, model parameters across layers are de-coupled. The

resulting formula combines the predictive power of neural

network with problem-level formulation of model-based

methods. The inference is performed with fixed number of

layers and back propagation is used to estimate model

parameters. In [1], this deep unfolding strategy is used in the

domain of speech enhancement, constructing network based

on non-negative matrix factorization [2]. The domain

knowledge that signals mix linearly is embodied in the model.

Deep unfolding has also been applied to multichannel source

separation [3]. A multichannel Gaussian mixture model

based neural network has been proved to achieve improved

performance of separating signals from simultaneous

speakers. In [4], deep unfolded network is applied for

supervised topic model. It improves the classification

accuracy by replacing the maximisation of lower bound of

marginal likelihood in variational Bayesian with the

minimisation of cross entropy. Another example is, in [5], a

Gaussian conditional random field (GCRF) based neural

network is constructed for image denoising. The proposed

network can explicitly model the input noise variance and

handle a range of noise levels. Along with those models,

there are many attempts on constructing neural network

based on model-based methods that impose sparse

constraints. For example, the work in [6] unfolds the

iterations of linear sparse regression method into variants of

long short-term memory (LSTM) cells with the results

showing that the unfolded network has reduced

computational burden in inference. The sparse coding based

neural network has also been applied to reconstruct sparse

signals from noisy and compressive measurements in [7].

The work in [8] design a neural network based on sparse

coding to reconstruct high-quality MR images from

under-sampled data, which is effective both in reconstruction

accuracy and speed.

In this paper, we focus on constructing a model-based

network for both classification and feature selection. The

model-based method investigated in this paper is sparse

Bayesian classification (SBC) [9], [10]. One of the

distinguishing characteristics of SBC is that it does not only

build a classification model but also returns a set of features

with non-zero weights. In the literature, several classification

and feature selection methods are based on SBC [11]-[13]. In

our previous work [14], we derive an optimisation-centric

classification and feature selection method from SBC. The

model is constructed through an iterative convex

optimisation procedure instead of a one-step closed form

calculation. The cost function is cast using hierarchical

Bayesian model, where parameters and hyperparameters are

Deep Unfolded IRLS-ADMM Network for Classification

and Sparse Feature Selection

Xian Yang and Yike Guo

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

241doi: 10.18178/ijmlc.2018.8.3.694

mailto:xian.yang08@impeial.ac.uk

inferred via the convex optimisation procedure [10], [15]. In

this paper, we construct neural network based on this method:

the parameters in the model-based method are regarded as

hidden nodes in the network, while hyperparameters are

learned by training the model through the back-propagation

method. We adopt iterative reweighted least squares (IRLS)

[16] and alternating direction method of multipliers (ADMM)

[8] to get the iterative inference steps. IRLS is used to

formulate the problem of finding the step direction for

Newton’s method as a weighted ordinary least squares
problem; AMDD is applied to solve the convex optimisation

problem by breaking them into smaller pieces, which has

proven to be an efficient variable slitting algorithm with

convergence guarantee. After we derived formula for

iterative updates, we then design deep architecture consisting

of multiple stages, each of which corresponds to an iterative

inference step. The weight parameters in the model-based

classification model are regarded as nodes in the network,

while hyperparameters are learned via stochastic gradient

descend (SGD) [17]. The following parts of our paper will

first introduce the method in detail. Then the experimental

results part will show that the proposed deep unfolded

network works well in the aspect of both classification power

and feature selection.

II. DEPP IRLS-ADMM NET FOR CLASSIFICATION AND

FEATURE SELECTION

A. The Sparse Bayesian Classification Based

Optimisation Method

Suppose we get a set of input vectors {𝒙𝑛 }𝑛=1
𝑁 along with

corresponding targets {𝑦𝑛}𝑛=1
𝑁 . We wish to learn the

underlying functional mapping which is defined by a

parameterised function 𝑓(𝒙;𝜷) = 𝛽𝑖ℵ𝑖=1 𝜙𝑖(𝒙), where the

output is the linear weighted sum of ℵ basis functions and 𝜷 = [𝛽1 , 𝛽2, . . . , 𝛽ℵ]⊤ contains the parameter. Let 𝚽 be the 𝑁 × ℵ design matrix with 𝚽 = [𝝓(𝒙1), 𝝓(𝒙2), . . . , 𝝓(𝒙𝑁)]⊤,

wherein 𝝓(𝒙𝑛) = [𝜙1(𝒙𝑛), 𝜙2(𝒙𝑛), . . . , 𝜙ℵ(𝒙𝑛)] . Then we

can express the mapping function as 𝑓(𝒙; 𝜷) = 𝚽𝜷 . The

prior distribution of the weights is assumed to follow a

zero-mean isotropic Gaussian:

𝒫 𝜷 𝜸 = 𝒩ℵ
𝑖=1

 𝛽𝑖 0, 𝛾𝑖
= (

ℵ
𝑖=1

2𝜋𝛾𝑖)−1
2 exp { − 𝛽𝑖2

2𝛾𝑖},

 (1)

where

 𝜸 = 𝛾1 , … , 𝛾ℵ ∈ ℝℵ, 𝚪 = diag 𝜸 . (2)

The likelihood function 𝒫(𝒚|𝜷, 𝒙) is expressed in the form

of the logistic regression model [18]. According to the Bayes’
rule, maximisation of posterior is equivalent to finding the

maximum over 𝜷 of log 𝒫 (𝒚|𝜷, 𝒙)𝒫(𝜷|𝜸) . The

hyperparameter 𝜸 is updated by maximising the marginal

likelihood, which is equivalent to 𝑎𝑟𝑔𝑚𝑖𝑛𝜸 − 𝒫(𝒚|𝜸, 𝒙) =𝑎𝑟𝑔𝑚𝑖𝑛𝜸 − 𝒫 (𝒚|𝜷, 𝒙)𝒫(𝜷|𝜸)𝑑𝜷. In [14], we propose a

method to jointly estimate 𝜷 and 𝜸 through a common

objective function:

𝑎𝑟𝑔𝑚𝑖𝑛𝜷,𝜸 log [𝑁𝑛=1 1 + exp { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}]

+𝜷⊤𝚪−1𝜷 + log | 𝚪| +
1

2
log | 𝑯(𝜷∗)|,

 (3)

where |𝑯(𝜷∗)| is the Hessian matrix calculated at mode 𝜷∗,
which is assumed to be obtained through the minimisation

step of 𝜷 in the iterative optimisation process. This objective

function can be expressed in the convex-concave form [19]

that the standard iterative optimisation procedure is evoked to

get its solution.

B. Deep IRLS-ADMM Net

The approach in [14] carries out an iterative process to

update 𝜷𝑘+1 and hyper parameters. The target function of

obtaining 𝜷 can be easily formulated in the ℓ1 regularization

form as:

𝜷𝑘+1 = argmin𝜷 log [

𝑁
𝑛=1

1 + exp { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}]

+ ‖ℵ
𝑖=1

𝑤𝑖𝑘 ⋅ 𝛽𝑖‖ℓ1
,

 (4)

where 𝒘𝑘 is related to hyper-parameters. Rather than

considering the iterations as an algorithm, we consider

unfolding it as a sequence of layers in a neural network-like

architecture. The iteration index is now interpreted as an

index to the neural network [1]. Our approach tries to

optimise 𝜷𝑘+1 by treating them as nodes of layers in a neural

network parameterised by 𝒘𝑘 . We optimize the parameter 𝒘𝑘 via the stochastic gradient descent method by minimising

the loss 𝐷𝑁𝑛=1 (𝑦𝑛 , 𝑦𝑛 ∗), where 𝑦𝑛 ∗ is the estimated target

and 𝐷 is the loss function.

1) The IRLS-ADMM algorithm

To construct the network, we need to obtain the

updating steps of 𝜷𝑘+1 in the form of:

 𝜷𝑘+1 = 𝑓𝒘𝑘 (𝑿, 𝜷𝑘). (5)

There are a lot of work on using model-based inspiration of

novel neural networks, especially on sparse coding problems.

However, in sparse coding, the target optimisation function is

generally in the form of ‖𝐴𝒙 − 𝑦‖ℓ2
+ 𝑔(𝒙), where 𝑔(𝒙) is

the penalty term. Optimisation methods, such as ADMM [8]

and proximal gradient method [7], can be used to inspire

novel neural networks. For the sparse coding problem, the

iterative process for updating 𝒙 can be expressed in the

closed form. In our case, however, there is no straightforward

way to drive function 𝑓𝒘𝑘 due to the complex form of the

first term in Equation 4.

Our idea is to reformulate the target optimisation function

in the form of least squares that typical optimisation methods

can be used to find the expression of 𝑓𝒘𝑘 . We adopt the idea

in [16] based on the IRLS formulation of logistic regression.

IRLS reformulates the problem of finding the step direction

for Newton’s method as a weighted ordinary least squares
problem. In every iteration, Newton’s method first finds a
step direction by approximating the objective function by the

second order Taylor expression at the current point, and

optimising the quadratic approximation in closed-from. The

step direction in the 𝑘th iteration is:

 𝛀𝑘 = 𝜷𝑘 − 𝑯−1(𝜷𝑘)𝒈(𝜷𝑘), (6)

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

242

where 𝒈 and 𝑯 are gradient and Hessian matrices. Once the

step direction is computed, Newton’s method computes the
next iteration

 𝜷𝑘+1 = (1 − 𝑡)𝜷𝑘 + 𝑡𝛀𝑘 (7)

by a linear search over the step size parameter 𝑡.

For the optimisation function in the form of unregularized

logistic regression, where the penalty term in Equation 4 is

omitted, the gradient and Hessian matrices are in the form of:

 𝒈(𝜷𝑘) = − 𝑦𝑛𝑁
𝑛=1

𝝓(𝒙𝑛)[1 − 𝜍{𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛)}] (8)

and

 𝐻(𝛽𝑘) = 𝛷⊤ 𝑑𝑖𝑎𝑔 𝑦 𝛬(𝛽𝑘) 𝑑𝑖𝑎𝑔 𝑦 𝛷, (9)

where

𝚲(𝜷𝑘) = diag ({𝜍{𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛)}

[1 − 𝜍{𝑦𝑛𝜷𝑘⊤𝝓 𝒙𝑛 }]}𝑛=1
𝑁)

 (10)

and

 𝜍{𝑓} =
1

(1 + 𝑒−𝑓)
. (11)

Let 𝚽 = diag 𝒚 𝚽, then we get

 𝑯(𝜷𝑘) = 𝚽 ⊤𝚲(𝜷𝑘)𝚽 . (12)

If we define a vector 𝒗(𝜷𝑘), whose 𝑛th element is

 𝑣𝑛(𝛽𝑘) = 𝑦𝑛𝜙(𝑥𝑛)⊤𝛽𝑘 +
1 − 𝜍 𝑦𝑛𝛽𝑘⊤𝜙 𝑥𝑛 𝛬(𝛽𝑘)𝑛 ,𝑛 , (13)

then 𝒈(𝜷𝑘) can be defined in the form of

 𝑔(𝛽𝑘) = −𝛷 ⊤𝛬(𝛽𝑘)(𝑣(𝛽𝑘) − 𝛷 𝛽𝑘). (14)

The step direction in Equation 6 can be expressed as:

 𝛀𝑘 = (𝚽 ⊤𝚲(𝜷𝑘)𝚽)−1𝚽 ⊤𝚲(𝜷𝑘)𝒗(𝜷𝑘), (15)

which can be regarded as the solution to the following

weighted least squares problem:

 𝛀𝑘 = argmin𝛀 ‖ (𝚲(𝜷𝑘)
1
2𝚽)𝛀 − 𝚲(𝜷𝑘)

1
2𝒗(𝜷𝑘)‖ℓ2

. (16)

Therefore, the Newton step direction can be computed by

solving the least squares problem defined in Equation 16. The

term IRLS refers to the fact that in every iteration the least

squares problem has a different diagonal weighting matrix Λ(𝜷𝑘) and 𝒗(𝜷𝑘) . For the case of ℓ1 regularized logistic

regression as in Equation 4, we can get our IRLS formulation

as

𝛺𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛺 1

2
‖(𝛬(𝛽𝑘)

1
2𝛷)𝛺 − 𝛬(𝛽𝑘)

1
2𝑣(𝛽𝑘)‖ℓ2

+𝜆‖𝐹𝑘𝛺‖ℓ1
.

 (17)

Please note that 𝑭𝑘 in Equation 17 is a diagonal matrix

giving weights to elements of 𝛀.

Now, we would like to adopt the ADMM method to get 𝛀𝑘

by solving Equation 17. Suppose

 𝑨𝑘 = 𝚲(𝜷𝑘)
1
2𝚽 (18)

and

 𝒃𝑘 = 𝚲(𝜷𝑘)
1
2𝒗(𝜷𝑘). (19)

In ADMM form, the problem in Equation 17 can be

written as

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

1

2
‖𝑨𝑘𝛀 − 𝒃𝑘‖ℓ2

+ 𝜆‖𝒛‖ℓ1𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑭𝑘𝛀 − 𝒛 = 0,

 (20)

which yields the ADMM algorithm in the 𝑖th iteration [20]:

𝛀𝑘 ,𝑖+1 : = (𝑨𝑘⊤𝑨𝑘 + 𝜌𝑭𝑘⊤𝑭𝑘)−1

(𝑨𝑘⊤𝒃𝑘 + 𝜌𝑭𝑘⊤
(𝒛𝑘 ,𝑖 − 𝒖𝑘 ,𝑖))𝒛𝑘 ,𝑖+1 : = 𝑆𝜆/𝜌(𝑭𝑘𝛀𝑘 ,𝑖+1 + 𝒖𝑘 ,𝑖)𝒖𝑘 ,𝑖+1 : = 𝒖𝑘 ,𝑖 + 𝑭𝑘Ω𝑘 ,𝑖+1 − 𝒛𝑘 ,𝑖+1,

 (21)

where 𝑆 is the soft shareholding operator defined as

 𝑆𝜅(𝛼) = 𝛼 − 𝜅, 𝛼 > 𝜅
0, |𝛼| ≤ 𝜅𝛼 + 𝜅, 𝛼 < −𝜅.

 (22)

The whole process is summarized in Algorithm 1.

Algorithm 1 IRLS-ADMM regularized logistic regression

1: Set 𝜷1 = 𝟎

2: for 𝑘 = 1, … , 𝑘𝑚𝑎𝑥 do

3: Compute 𝑨𝒌 and 𝒃𝒌 using Equation 18 and 19.

4: Set 𝒛𝑘 ,1, and 𝒖𝑘 ,1 to 𝟎

5: for 𝑖 = 1, … , 𝑖𝑚𝑎𝑥 do

6: Update 𝛀𝑘 ,𝑖 , 𝒛𝑘,𝑖 and 𝒖𝑘 ,𝑖 using Equation 21.

7: end for

8: Update 𝜷𝑘 using Equation 7, where 𝑡 is found using a backtracking

line-search that minimizes the objective function.

9: end for

2) Deep network design

We follow the idea in [8] to map the iterative process in

Algorithm 1 to a data flow graph. In the graph, there are 9

types of nodes described as follows:

Weighting matrix Λ𝒌 construction layer: Given 𝜷𝑘 , the

output of this layer is obtained through:

 Λ𝑛 ,𝑛𝑘 = 𝜍{𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛)}[1 − 𝜍{𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛)], (23)

where 𝜍{𝑓} =
1

(1+𝑒−𝑓)
. In the initial stage, 𝜷0 = 𝟎.

Weighting vector 𝒗𝒌 construction layer: Given 𝜷𝑘 , the

output of this layer is obtained through:

𝑣𝑛𝑘 = 𝑦𝑛𝝓(𝒙𝑛)⊤𝜷𝑘 +

1 − 𝜍{𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛)}𝛬𝑛 ,𝑛𝑘
= 𝑦𝑛𝝓(𝒙𝑛)⊤𝜷𝑘 + 1 + 𝑒−𝑦𝑛𝜷𝑘⊤𝝓(𝒙𝑛).

 (24)

In the initial stage, 𝜷0 = 𝟎.

Weighting matrix 𝑨𝒌 construction layer: Given 𝚲𝑘 , the

output of this layer is obtained through:

 𝑨𝑘 = (𝚲𝑘)
1
2𝚽 . (25)

Weighting vector 𝒃𝒌 construction layer: Given 𝚲𝑘 and 𝒗𝑘 , the output of this layer is obtained through:

 𝑏𝑘 = (𝛬𝑘)

1
2(𝑣𝑘). (26)

Feature Ω𝒌,𝒊 construction layer: Given 𝒛𝑘 ,𝑖−1, 𝒖𝑘 ,𝑖−1, 𝒃𝑘

and 𝑨𝑘 , the output of this layer is obtained through:

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

243

𝛀𝑘 ,𝑖 = (𝑨𝑘−1⊤𝑨𝑘−1 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖)−1

(𝑨𝑘−1⊤𝒃𝑘−1 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1)),
 (27)

where 𝜌𝑘 ,𝑖 and 𝑭𝑘 ,𝑖 are parameters. When 𝑖 = 1 , 𝒛𝑘 ,0 and 𝒖𝑘 ,0 are initialized to zeros.

Linear transform layer 𝑪𝒌,𝒊: Given 𝛀𝑘 ,𝑖 ,the output of this

layer is:

 𝑪𝑘 ,𝑖 = 𝑭𝑘 ,𝑖𝛀𝑘 ,𝑖 , (28)

where 𝑭𝑘 ,𝑖 is the parameter.

Nonlinear transform layer 𝒛𝒌,𝒊 : Given 𝑪𝑘 ,𝑖 and 𝒖𝑘 ,𝑖−1,the output of this layer is:

 𝒛𝑘 ,𝑖 = 𝑆𝜆/𝜌𝑘 ,𝑖(𝑪𝑘 ,𝑖 + 𝒖𝑘 ,𝑖−1), (29)

where 𝜌𝑘 ,𝑖 is the parameter. When 𝑖 = 1, 𝒖𝑘 ,0 is initialized to

zeros.

Linear transform layer 𝒖𝒌,𝒊: Given 𝑪𝑘 ,𝑖 , 𝒖𝑘 ,𝑖−1 and 𝒛𝑘 ,𝑖 ,
the output of this layer is:

 𝒖𝑘 ,𝑖 = 𝒖𝑘 ,𝑖−1 + 𝑪𝑘 ,𝑖 − 𝒛𝑘 ,𝑖 . (30)

When 𝑖 = 1, 𝒖𝑘 ,0 is initialized to zeros.

Linear transform layer 𝜷𝒌: Given 𝛀𝑘−1,𝑖𝑚𝑎𝑥 and 𝜷𝑘−1 ,

the output of this layer is defined as

 𝜷𝑘 = (1 − 𝑡𝑘)𝜷𝑘−1 + 𝑡𝑘𝛀𝑘−1,𝑖𝑚𝑎𝑥 , (31)

where 𝑡𝑘 is the parameter.

An example deep network with 𝑘𝑚𝑎𝑥 = 3 and 𝑖𝑚𝑎𝑥 = 4

are shown in Fig. 1.

Fig. 1. The architecture of deep IRLS-ADMM net with 𝒌𝒎𝒂𝒙 = 𝟑 and 𝒊𝒎𝒂𝒙 = 𝟒.

III. NETWORK TRAINING

A. Network Loss

The loss function we choose for network training is:

 𝐸 = log [

𝑁
𝑛=1

1 + exp { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}], (32)

where 𝜷 is the network output. We learn the parameters Θ = {𝜌𝑘 ,𝑖 , 𝑭𝑘 ,𝑖 , 𝑡𝑘} by minimising the loss w.r.t. them using

the stochastic gradient descent method.

B. Gradient Computation by Back-Propagation over Data

Flow Graph

Fig. 2 shows 19 types of nodes, most of which have

multiple inputs and outputs. The parameters we need to learn

are Θ = {𝜌𝑘 ,𝑖 , 𝑭𝑘 ,𝑖 , 𝑡𝑘} for 𝑘 ∈ {1,2,3} and 𝑖 ∈ {1,2,3,4} .

Please refer to the Appendix A for gradients computation for

each node.

IV. EXPERIMENTS

A. Simulation Results

We generate a data matrix with 500 samples and 50

features from the normal distribution. To check the ability of

finding correlated features, we split the features with

non-zero weights into two sets, 𝑆1 and 𝑆2 , each of which

contains 4 true features. Then, we initialise a design matrix 𝚽 = 𝒙 with 500 samples and 50 features from the normal

distribution. Let 𝝓𝑖(𝒙) be the 𝑖 th column of 𝚽 . We set 𝝓𝑆𝑚2 (𝒙) = 𝝓𝑆𝑚1 (𝒙) + 𝒩(0,0.1) , where 𝑆𝑚1 and 𝑆𝑚2 denote

the 𝑚th element in each feature set. In this way, we get data

generated from correlated features. The target variable vector

{𝑦𝑛 }𝑛=1
500 is generated by the linear model using 𝜷 and 𝚽 with

additive independent identical distributed Gaussian noises,

where the standard deviation of noise varies ranging from

{0,0.1,0.5,1}. In our method, 𝜌𝑘 ,𝑖 and 𝑡𝑘 are initialized to be

1. Each element in the diagonal matrix 𝑭𝑘 ,𝑖 is initialized to be

10.

We will first use the whole dataset with no additive noise

to construct the predictive model, from which we compare

the estimated weights 𝜷 from our method with the

regularized logistic regression method (ADMM). It is to

investigate the ability of selecting real features using our

method. Moreover, we would like to compare the scaled

magnitudes of estimated weights 𝜷 with real weights and

estimated weights from the regularized logistic regression

method. We scale the estimated results to make the first real

nonzero feature have the same value. In this way, we can

intuitively see whether the estimation has maintained the

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

244

ratio in magnitudes of different weights. Thus the rank of the

importance of features, which is usually determined by the

magnitudes, can be obtained correctly. This is quite

important when we use our method as a feature selection

approach to select top relevant features in a cross validation

process. The results are shown in Fig. 3. Fig. 3 shows the

weights from our method and ADMM, from which we can

see that there are 50 features, out of which 8 features are

nonzero. Our method has successfully detected these nonzero

ones with magnitudes significantly larger than the others,

while the ADMM method fails to detect 3 nonzero feature.

These observations are quite encouraging, showing that our

method can be used a good tool to select relevant features.

Most classification methods are not guaranteed to have this

characteristic.

Fig. 2. Illustration of 19 types of nodes. All solid arrows indicate data flow in forward pass.

Fig. 3. Comparison of weights estimated from our method and ADMM.

We then investigate the performance of our method with

different levels of noise. The performance, including

prediction accuracy, false positive (FP) and false negative

(FN) rates, is evaluated by the 5-fold cross validation (CV).

To calculate FP and FN, we need to compare the selected

features across CV with real non-zero features. As in the

cross validation process, different training dataset is used for

feature selection and predictive model construction in each

fold, selected feature sets from all folds may vary due to the

variation of training datasets. To select a feature set which is

stable with small fluctuations of the input dataset and also has

good predictive accuracy, we use the method from [21]. In

the 𝑘th fold of cross validation, the whole dataset 𝑫 is split

into two subsets: CV training dataset 𝑫𝒌 and CV testing

dataset 𝑫∖𝒌 . Our method can work as a feature selection

method on the training dataset 𝑫𝒌to rank and select the top 𝑞

features, labelled as 𝑽𝒒,𝒌. After features have been selected,

our method then constructs a predictive model for

classification using 𝑽𝒒,𝒌. The prediction results at this CV

fold are recorded for later evaluation. To get the complete

prediction results, we repeat the above steps for all folds of

CV. The method presented in [21] returns an optimal feature

set 𝑽𝒒 with an associated performance score 𝑃𝑞 under each

value of 𝑞. The score 𝑃𝑞 is calculated according to the 6
th

strategy proposed in [22] to assess the prediction accuracy

and stability of features (the details of calculating this score

can be found in [22]). By checking the maximum value of 𝑃𝑞 ,

we can determine the optimal value of 𝑞 and the

corresponding optimal feature set 𝑽𝒒 . The detected optimal

set can then be used to construct a predictive model for future

prediction.

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

245

Fig. 4 shows the change of scores 𝑃𝑞 under different

settings of feature size 𝑞 and noise level. We can see that the

scores of our method under different noise levels peak when

the value of 𝑞 is close to the number of real nonzero features.

In contrast to our method, the optimal value of 𝑞 for the

ADMM method is around 4, which is different from the real

number of nonzero features. From Fig. 4, we can expect that

our method works better than the ADMM method in the

aspect of feature selection. In the following experiments, we

would like to check the performance of these methods

averaged over 20 randomly sampled datasets. The results are

shown in Table I. The feature set size 𝑞 is chosen to be the

optimal value detected from Fig. 4. To show the ability of

detecting real positives (i.e. real nonzero features), we also

present the results of false positive (FP) and false negative

(FN) rates in Table I. We can see that under different noise

levels, the accuracy achieved by different methods are all

maintained at high levels. However, the false negative rates

from ADMM are much higher than the rates from our method.

This is because, the ADMM method can detect correlated

features that some real features are ignored.

Fig. 4. The scores achieved by different methods with the size of feature set

varying from 1 to 8 and standard deviation of noise chosen from 0, 0.1, 0.5

and 1.
TABLE I: THE RESULTS OF OUR METHOD AND ADMM UNDER DIFFERENT

NOISE LEVELS. THE CLASSIFICATION ACCURACY, FALSE POSITIVE AND

FALSE NEGATIVE RATES ARE COMPARED
Noise STD Method Accuracy FP FN

0
Our method 0.97 0.02 0

ADMM 0.98 0.09 0.45

0.1
Our method 0.97 0.02 0

ADMM 0.98 0.09 0.46

0.5
Our method 0.97 0.02 0

ADMM 0.96 0.08 0.42

1
Our method 0.96 0.02 0

ADMM 0.98 0.08 0.44

B. Real Examples

1) Cervical cancer datasets

To demonstrate the applicability of our method in real

world problems, we first use the public dataset to test our

performance, which can be downloaded from

https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28

Risk+Factors%29. This dataset focuses on the prediction of

diagnosis of cervical cancer. There are 4 indicators

(Hinselmann, Schiller, Citology and Biopsy) of disease status.

We generate a consensus indicator of disease state that if

more than 2 indicators saying the patient has the cancer then

we say the patient has the cancer. The dataset comprises of

demographic information, habits and historic medical records

of patients. We choose records of 737 patients with no

missing values and 21 features with at least 10 nonzero

records across all patients. The detailed descriptions of

features in this risk factor dataset can be found in [23].

We first use the whole dataset to select features used in

predictive model construction. The estimated weights are

shown in Fig. 5. From Fig. 5, we can see that 5 out of 21

features are mainly used for predicting diagnosis of cervical

cancer, which are ’Number of sexual partners’, ’First sexual
intercourse (age)’, ’Number of pregnancies’, ’Smokes’
and ’Hormonal Contraceptives’. Among these features,
the ’First sexual intercourse (age)’ feature has the largest
absolute magnitude of weight. Its negative value shows that

people have their first sexual intercourse at early age are

more likely to have cervical cancer. These findings can help

researchers to get a proper list of risk factors for cervical

cancer prediction. After investigating the ability of feature

selection, we then also carry out a 5-fold CV process to

evaluate the prediction accuracy of our method. The mean

accuracy of our method is as high as 0.95.

Fig. 5. Weights estimated from our method in the predictive model for

cervical cancer risk factors dataset.

2) Embryonal tumour gene expression data analysis

We also use a public available gene expression dataset of

the central nervous system embryonal tumours from the

study in [24]. The raw data can be downloaded from

http://archive.broadinstitute.org/mpr/CNS. We selected 10

CNS medulloblastomas (MD) samples and 10 non-neuronal

origin malignant gliomas (Mglio) samples to show the

performance of our method in classifying two tumour types.

The samples were hybridised on Affymetrix HuGeneFL

GeneChip arrays. We first preprocessed the raw data using

GCRMA with empirical Bayes estimate [25]. Then we

filtered out probe sets which are either not annotated or have

little variability across samples. We select probes whose p

value from t test for sample type comparison is smaller than

0.05 and fold change is larger than 2. Probes for 350 genes

were remained after preprocessing.

Our method can find differences between two tumour

types at molecular level. We construct a classifier using the

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

246

selected 20 samples with the accuracy of tumour type

prediction approaching to 100%. The beauty of our method is

that it does not only have strong predictive power, but also

selects relevant features that could be candidates of disease

biomarkers. Fig. 6a) shows the weights of features in our

classification model, where 21 features are mainly used for

classification. Features with nonzero weights can be regarded

as molecular features distinguishing tumours. By looking at

Fig. 6b), we can see that many of these features are highly

correlated, telling that our method does not discard features

from correlated ones.

Fig. 6. Results of gene expression analysis: a) weights of features from the

classification models using our method; b) Heatmap of the correlation matrix

for 21 genes selected by our classifier.

V. CONCLUSION

This paper adopts the idea of deep unfolding to design a

neural network based on IRLS-ADMM for both

classification and feature selection. The proposed

IRLS-ADMM net is a novel deep neural network. Different

from conventional neural networks, which are essentially

black-box methods, our method works as a white-box that the

network structure are designed according to the iterative

updating steps in the model-based model. One advantage of

our method is that the network can return a set of features that

are used for prediction while maintain good prediction

accuracy. Unlike other neural networks, the proposed method

can explicitly select features which can be used as a feature

selection tool in many applications, such as clinical variable

selection and biomarker discovery. Our experimental results

have shown that our method has taken the advantages of

model-based methods for explicitly incorporating sparsity

into model construction and also neural networks with their

strong predictive power and straightforward parameter

inference process.

APPENDIX A: GRADIENT COMPUTATION FOR DEEP

IRLS-ADMM NET

Node a): As shown in Fig. 2a), this node has one input: 𝚲𝑘

for 𝑘 ∈ {1,2}. Its output 𝑨𝑘 is the input to compute 𝛀𝑘 ,𝑖 for

all 𝑖 ∈ {1,2,3,4}. This layer has no parameters. The loss w.r.t.

output is

𝜕𝐸𝜕𝑨𝑘 = 𝜕𝐸𝜕𝜴𝑘+1,𝑖 𝜕𝜴𝑘+1,𝑖𝜕𝑨𝑘4

𝑖=1

. (33)

The operation in this layer is:

 𝑨𝑘 = (𝚲𝑘)
1
2𝚽 . (34)

We compute the gradients of the output in this layer w.r.t

its input

𝜕𝑨𝑘𝜕𝛬𝑛 ,𝑛𝑘 =

1

2
(𝚲𝑘)

−1
2𝑰 𝑛 ,𝑛𝑘 𝚽 , (35)

where 𝑰 𝑛 ,𝑛𝑘 is the matrix whose entries are zero except the 𝑛th

element on the diagonal equalling to 1.

Node b): As shown in Fig. 2b), this node has one input: 𝜷𝑘 .

Its output 𝚲𝑘 is the input to compute 𝑨𝑘 and 𝒃𝑘 for 𝑘 ∈ {1,2}.

This layer has no parameters. The loss w.r.t. output is

𝜕𝐸𝜕𝜦𝑘 =

𝜕𝐸𝜕𝑨𝑘 𝜕𝑨𝑘𝜕𝜦𝑘 +
𝜕𝐸𝜕𝒃𝑘 𝜕𝒃𝑘𝜕𝜦𝑘 . (36)

The operation in this layer is:

 𝛬𝑛 ,𝑛𝑘 = 𝜍{𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛)}[1 − 𝜍{𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛)], (37)

where 𝜍{𝑓} =
1

(1+𝑒−𝑓)
. We compute the gradients of the

output in this layer w.r.t its input, that is
𝜕𝜦𝑘𝜕𝛽𝑚𝑘 for all 𝑚.

𝜕𝜦𝑘𝜕𝛽𝑚𝑘 is

a diagonal matrix, whose 𝑛th entry on the diagonal is: 𝜕𝛬𝑛 ,𝑛𝑘𝜕𝛽𝑚𝑘 = 𝑦𝑛(
𝑒𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛)

(1 + 𝑒𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛))3

 − 𝑒−𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛)

(1 + 𝑒−𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛))3
)𝜙𝑚 (𝑥𝑛),

(38)

where 𝝓𝑚 (𝒙𝑛) is the 𝑚th element of 𝝓(𝒙𝑛).

Node c): As shown in Fig. 2c), this node has one input: 𝜷𝑘 .

Its output 𝒗𝑘 is the input to compute 𝒃𝑘 for 𝑘 ∈ {1,2}. This

layer has no parameters. The loss w.r.t. output is

𝜕𝐸𝜕𝒗𝑘 =

𝜕𝐸𝜕𝒃𝑘 𝜕𝒃𝑘𝜕𝒗𝑘 . (39)

The operation in this layer is:

 𝑣𝑛𝑘 = 𝑦𝑛𝜙(𝑥𝑛)⊤𝛽𝑘 + 1 + 𝑒−𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛). (40)

We compute the gradients of the output in this layer w.r.t

its input, that is
𝜕𝒗𝑘𝜕𝜷𝑘 , whose entry in the 𝑛th row and 𝑚th

column is

𝜕𝑣𝑛𝑘𝜕𝛽𝑚𝑘 =
𝜕𝑦𝑛𝜙(𝑥𝑛)⊤𝛽𝑘 + 1 + 𝑒−𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛)𝜕𝛽𝑚𝑘

= 𝑦𝑛𝜙𝑚 (𝑥𝑛)(1 − 𝑒−𝑦𝑛𝛽𝑘⊤𝜙(𝑥𝑛)),

 (41)

where 𝝓𝑚 (𝒙𝑛) is the 𝑚th element of 𝝓(𝒙𝑛).

Node d): As shown in Fig. 2d), this node has two sets of

inputs: 𝚲𝑘 and 𝒗𝑘 . Its output 𝒃𝑘 is the input to compute 𝛀𝑘 ,𝑖
for all 𝑖 ∈ {1,2,3,4} and 𝑘 ∈ {1,2} . This layer has no

parameters. The loss w.r.t. output is

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

247

𝜕𝐸𝜕𝒃𝑘 = 𝜕𝐸𝜕𝜴𝑘+1,𝑖 𝜕𝜴𝑘+1,𝑖𝜕𝒃𝑘4

𝑖=1

. (42)

The operation in this layer is:

 𝒃𝑘 = (𝚲𝑘)
1
2(𝒗𝑘). (43)

We compute the gradients of the output in this layer w.r.t

its input

𝜕𝒃𝑘𝜕𝛬𝑛 ,𝑛𝑘 =

1

2
(𝚲𝑘)

−1
2𝑰 𝑛 ,𝑛𝑘 𝒗𝑘 (44)

and

𝜕𝒃𝑘𝜕𝒗𝑘 = (𝚲𝑘)

1
2, (45)

where 𝑰 𝑛 ,𝑛𝑘 is the matrix whose entries are zero except the 𝑛th

element on the diagonal equalling to 1.

Node e): As shown in Fig. 2e), this node has four sets of

inputs: 𝒃𝑘−1 , 𝑨𝑘−1 , 𝒛𝑘 ,𝑖−1 and 𝒖𝑘 ,𝑖−1 for 𝑘 ∈ {2,3} and 𝑖 ∈ {2,3} . Its output 𝛀𝑘 ,𝑖 is the input to compute 𝑪𝑘 ,𝑖 .

Parameters of this layer are 𝜌𝑘 ,𝑖 and 𝑭𝑘 ,𝑖 . Please note that

these two parameters are shared among different layers. Here

we just calculate its gradient via the node in this layer. To get

the complete the gradient, we need to sum all gradients

shared among layers. We will calculate this later. The

gradients of loss w.r.t. the parameters can be computed as

𝜕𝐸𝜕𝜌𝑘 ,𝑖 =

𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 (46)

and

𝜕𝐸𝜕𝑭𝑘 ,𝑖 =

𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝑭𝑘 ,𝑖 , (47)

where

𝜕𝐸𝜕𝜴𝑘 ,𝑖 =

𝜕𝐸𝜕𝑪𝑘 ,𝑖 𝜕𝑪𝑘 ,𝑖𝜕𝜴𝑘 ,𝑖 . (48)

To get a complete representation of gradients, we need to

do the following calculations. The operation in this layer is:

Ωk,i = (Ak−1⊤

Ak−1 + ρk,iFk,i⊤Fk,i)−1

(Ak−1⊤
bk−1 + ρk,iFk,i⊤(zk,i−1 − uk,i−1)).

 (49)

Assume

 𝑄 = (𝑨𝑘−1⊤𝑨𝑘−1 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖)−1 . (50)

The gradients of output in this layer w.r.t. parameters are:

𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 = −𝑄2𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖(𝑨𝑘−1⊤𝒃𝑘−1

+𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1))

+𝑄𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1)

 (51)

and

𝜕𝜴𝑘 ,𝑖𝜕𝐹𝑚 ,𝑚𝑘 ,𝑖 = −2𝜌𝑘 ,𝑖𝑄2𝑭 𝑚 ,𝑚𝑘 ,𝑖
(𝑨𝑘−1⊤𝒃𝑘−1

+𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1))

+𝜌𝑘 ,𝑖𝑄𝑰 𝑚 ,𝑚𝑘 ,𝑖
(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1),

 (52)

where 𝐹𝑚 ,𝑚𝑘 ,𝑖
 is the 𝑚th entry on diagonal of 𝑭𝑘 ,𝑖 , 𝑭 𝑚 ,𝑚𝑘 ,𝑖

 and 𝑰 𝑚 ,𝑚𝑘 ,𝑖
 are matrices whose entries are zero except the 𝑚 th

element on the diagonal equalling to 𝐹𝑚 ,𝑚𝑘 ,𝑖
 and 1, respectively.

We also compute the output in this layer w.r.t. its inputs as

follows.

𝜕𝜴𝑘 ,𝑖𝜕𝒃𝑘−1

= 𝑄𝑨𝑘−1⊤ (53)

𝜕𝜴𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖−1

= 𝜌𝑘 ,𝑖𝑄𝑭𝑘 ,𝑖⊤ (54)

𝜕𝜴𝑘 ,𝑖𝜕𝒖𝑘 ,𝑖−1

= −𝜌𝑘 ,𝑖𝑄𝑭𝑘 ,𝑖⊤ (55)

𝜕𝜴𝑘 ,𝑖𝜕𝐴𝑛𝑥 ,𝑛𝑦𝑘−1
= −𝑄2𝑨 𝑛𝑥 ,𝑛𝑦𝑘−1 (𝑨𝑘−1⊤𝒃𝑘−1

+𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1))

+𝑄𝑻 𝑛𝑥 ,𝑛𝑦𝑘−1 𝒃𝑘−1.

 (56)

We have

 𝑨 𝑛𝑥 ,𝑛𝑦𝑘−1 = 𝑨 𝑛𝑥 ,𝑛𝑦𝑘−1 + 𝑨 𝑘−1⊤𝑛𝑥 ,𝑛𝑦 , (57)

where 𝑨 𝑛𝑥 ,𝑛𝑦𝑘−1 is a matrix containing zeros except the 𝑛𝑦 th

row equals to the 𝑛𝑥 th row of 𝑨𝑘−1. And 𝑻 𝑛𝑥 ,𝑛𝑦𝑘 ,𝑖
 is a matrix

containing zeros except the entry in the 𝑛𝑥 th row and 𝑛𝑦 th

column equals to 1.

Node f): As shown in Fig. 2f), this node is nearly same as

the node in Fig. 2e). The only difference is that its output is

the input to compute 𝜷𝑘 .

𝜕𝐸𝜕𝜴𝑘 ,𝑖 =

𝜕𝐸𝜕𝜷𝑘 𝜕𝜷𝑘𝜕𝜴𝑘 ,𝑖 (58)

for 𝑘 ∈ {2,3} and 𝑖 = 4.

Node g): As shown in Fig. 2g), this node is similar with the

node in Fig. 2e). The only difference is that it only have two

inputs: 𝒃𝑘−1 and 𝑨𝑘−1 for 𝑘 ∈ {2,3} and 𝑖 = 1 . The

operation in this layer is:

 𝛀𝑘 ,𝑖 = (𝑨𝑘−1⊤𝑨𝑘−1 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖)−1𝑨𝑘−1⊤𝒃𝑘−1. (59)

The gradients of output in this layer w.r.t. parameters are:

𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 = −𝑄2𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖𝑨𝑘−1⊤𝒃𝑘−1 (60)

and

∂Ωk,i∂Fm,m

k,i
= −2ρk,iQ2F m,m

k,i
Ak−1⊤

bk−1. (61)

The output in this layer w.r.t. its inputs as follows.

𝜕𝜴𝑘 ,𝑖𝜕𝒃𝑘−1

= 𝑄𝑨𝑘−1⊤ (62)

and

𝜕𝜴𝑘 ,𝑖𝜕𝐴𝑛𝑥 ,𝑛𝑦𝑘−1
= −𝑄2𝑨 𝑛𝑥 ,𝑛𝑦𝑘−1 𝑨𝑘−1⊤𝒃𝑘−1

+𝑄𝑻 𝑛𝑥 ,𝑛𝑦𝑘−1 𝒃𝑘−1.

 (63)

Node h): As shown in Fig. 2h), this node has no input. Its

output Ω𝑘 ,𝑖 is the input to compute 𝑪𝑘 ,𝑖 for 𝑘 = 1 and 𝑖 = 1.

The operation in this layer is:

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

248

 𝛀1,1 = (𝑨0⊤𝑨0 + 𝜌1,1𝑭1,1⊤𝑭1,1)−1𝑨0⊤𝒃0 . (64)

where

 𝑨0 = (𝚲0)
1
2𝚽 (65)

 𝒃0 = (𝚲0)
1
2𝒗0. (66)

As 𝜷0 = 𝟎, we get 𝚲0 =
1

4
 and 𝒗0 = 2. Then we have

 𝑨0 =
1

2
𝚽 (67)

 𝒃0 = 1 . (68)

Parameters of this layer are 𝜌1,1 and 𝑭1,1. The gradients of

loss w.r.t. the parameters can be computed as

𝜕𝐸𝜕𝜌1,1

=
𝜕𝐸𝜕𝜴1,1

𝜕𝜴1,1𝜕𝜌1,1
 (69)

and

𝜕𝐸𝜕𝑭1,1

=
𝜕𝐸𝜕𝜴1,1

𝜕𝜴1,1𝜕𝐹𝟏,𝟏 , (70)

where

𝜕𝐸𝜕𝜴1,1

=
𝜕𝐸𝜕𝑪1,1

𝜕𝑪1,1𝜕𝜴1,1
. (71)

The gradients of output in this layer w.r.t. parameters are:

𝜕𝜴1,1𝜕𝜌1,1
= −(𝑨0⊤𝑨0 + 𝜌1,1𝑭1,1⊤𝑭1,1)−2𝑭1,1⊤𝑭1,1𝑨0⊤𝒃0

 (72)

and

𝜕𝜴1,1𝜕𝐹𝑚 ,𝑚1,1
= −2𝜌1,1(𝑨0⊤𝑨0 + 𝜌1,1𝑭1,1⊤𝑭1,1)−2

𝑭 𝑚 ,𝑚𝑘 ,𝑖 𝑨0⊤𝒃0 .

 (73)

Node i) As shown in Fig. 2i), this node is similar with the

node in Fig. 2e). The only difference is that it only have two

inputs: 𝒛𝑘 ,𝑖−1 and 𝒖𝑘 ,𝑖−1 for 𝑘 = 1 and 𝑖 ∈ {2,3} . The

operation in this layer is:

𝛀𝑘 ,𝑖 = (𝑨0⊤𝑨0 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖)−1(𝑨0⊤𝒃0

+𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1))
 (74)

where

 𝑨0 =
1

2
𝚽 (75)

 𝒃0 = 𝟏 . (76)

The gradients of output in this layer w.r.t. parameters are:

𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 = −𝑄2𝑭𝑘 ,𝑖⊤𝑭𝑘 ,𝑖(𝑨0⊤𝒃0 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤
(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1)) + 𝑄𝑭𝑘 ,𝑖⊤(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1)

 (77)

and

𝜕𝜴𝑘 ,𝑖𝜕𝐹𝑚 ,𝑚𝑘 ,𝑖 = −2𝜌𝑘 ,𝑖𝑄2𝑭 𝑚 ,𝑚𝑘 ,𝑖
(𝑨0⊤𝑏𝟎 + 𝜌𝑘 ,𝑖𝑭𝑘 ,𝑖⊤

(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1))

+𝜌𝑘 ,𝑖𝑄𝑰 𝑚 ,𝑚𝑘 ,𝑖
(𝒛𝑘 ,𝑖−1 − 𝒖𝑘 ,𝑖−1).

 (78)

The output in this layer w.r.t. its inputs as follows.

𝜕𝜴𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖−1

= 𝜌𝑘 ,𝑖𝑄𝑭𝑘 ,𝑖⊤ (79)

𝜕𝜴𝑘 ,𝑖𝜕𝒖𝑘 ,𝑖−1

= −𝜌𝑘 ,𝑖𝑄𝑭𝑘 ,𝑖⊤ . (80)

Node j) As shown in Fig. 2j), this node is similar with the

node in Fig. 2i). The only difference is that its output is the

input to compute 𝜷𝑘 .

𝜕𝐸𝜕𝜴𝑘 ,𝑖 =

𝜕𝐸𝜕𝜷𝑘 𝜕𝜷𝑘𝜕𝜴𝑘 ,𝑖 (81)

for 𝑘 = 1 and 𝑖 = 4.

Node k): As shown in Fig. 2k), this node has two sets of

inputs: 𝒖𝑘 ,𝑖−1 and 𝑪𝑘 ,𝑖 . Its output 𝒛𝑘 ,𝑖 is the input to compute 𝒖𝑘 ,𝑖 and 𝛀𝑘 ,𝑖+1 for 𝑘 ∈ {1,2,3} and 𝑖 ∈ {2,3}. Parameter of

this layer is 𝜌𝑘 ,𝑖 . The operation in this layer is

 𝒛𝑘 ,𝑖 = 𝑆𝜆/𝜌𝑘 ,𝑖(𝑪𝑘 ,𝑖 + 𝒖𝑘 ,𝑖−1), (82)

where 𝜆 is 1, whose 𝑛th element is

 𝑧𝑚𝑘 ,𝑖 = 𝐶𝑚𝑘 ,𝑖 + 𝑢𝑚𝑘 ,𝑖−1 − 1/𝜌𝑘,𝑖 , 𝐶𝑚𝑘 ,𝑖 + 𝑢𝑚𝑘 ,𝑖−1 > 1/𝜌𝑘,𝑖
0, |𝐶𝑚𝑘 ,𝑖 + 𝑢𝑚𝑘 ,𝑖−1| ≤ 1/𝜌𝑘,𝑖𝐶𝑚𝑘 ,𝑖 + 𝑢𝑚𝑘 ,𝑖−1 + 1/𝜌𝑘,𝑖 , 𝐶𝑚𝑘 ,𝑖 + 𝑢𝑚𝑘 ,𝑖−1 < −1/𝜌𝑘,𝑖 . (83)

The gradients of the loss w.r.t. parameters are

𝜕𝐸𝜕𝜌𝑘 ,𝑖 =

𝜕𝐸𝜕𝒛𝑘 ,𝑖 𝜕𝒛𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 , (84)

where

𝜕𝐸𝜕𝒛𝑘 ,𝑖 =

𝜕𝐸𝜕𝒖𝑘 ,𝑖 𝜕𝒖𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖 +
𝜕𝐸𝜕𝜴𝑘 ,𝑖+1

𝜕𝜴𝑘 ,𝑖+1𝜕𝒛𝑘 ,𝑖 . (85)

We compute the gradients of the output in this layer w.r.t.

parameter as

∂zm

k,i∂ρk,i
= ρk,i−2

, Cm
k,i

+ um
k,i−1

> 1/ρk,i

0, |Cm
k,i

+ um
k,i−1

| ≤ 1/ρk,i−ρk,i−2
, Cm

k,i
+ um

k,i−1
< −1/ρk,i

 (86)

and the gradients of the output in this layer w.r.t. the input as

𝜕𝑧𝑚𝑘 ,𝑖𝜕𝐶𝑚𝑘 ,𝑖 =

𝜕𝑧𝑚𝑘 ,𝑖𝜕𝑢𝑚𝑘 ,𝑖−1
= 1, 𝐶𝑚𝑘 ,𝑖

+ 𝑢𝑚𝑘 ,𝑖−1
> 1/𝜌𝑘 ,𝑖

0, |𝐶𝑚𝑘 ,𝑖
+ 𝑢𝑚𝑘 ,𝑖−1

| ≤ 1/𝜌𝑘,𝑖
1, 𝐶𝑚𝑘 ,𝑖

+ 𝑢𝑚𝑘 ,𝑖−1
< −1/𝜌𝑘 ,𝑖 . (87)

Node l): As shown in Fig. 2l), this node is similar with the

node in Fig. 2k). The only difference is that it only has one

input: 𝑪𝑘 ,𝑖 for 𝑘 ∈ {1,2,3} and 𝑖 = 1. Parameter of this layer

is 𝜌𝑘 ,𝑖 . The operation in this layer is

 𝒛𝑘 ,𝑖 = 𝑆𝜆/𝜌𝑘 ,𝑖(𝑪𝑘 ,𝑖), (88)

where 𝜆 is 1, whose 𝑛th element is

 𝑧𝑚𝑘 ,𝑖
= 𝐶𝑚𝑘 ,𝑖 − 1/𝜌𝑘 ,𝑖 , 𝐶𝑚𝑘 ,𝑖

> 1/𝜌𝑘 ,𝑖
0, |𝐶𝑚𝑘 ,𝑖

| ≤ 1/𝜌𝑘 ,𝑖𝐶𝑚𝑘 ,𝑖
+ 1/𝜌𝑘 ,𝑖 , 𝐶𝑚𝑘 ,𝑖

< −1/𝜌𝑘 ,𝑖 , (89)

The gradients of the loss w.r.t. parameters are

𝜕𝐸𝜕𝜌𝑘 ,𝑖 =

𝜕𝐸𝜕𝒛𝑘 ,𝑖 𝜕𝒛𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 , (90)

where

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

249

𝜕𝐸𝜕𝒛𝑘 ,𝑖 =

𝜕𝐸𝜕𝒖𝑘 ,𝑖 𝜕𝒖𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖 +
𝜕𝐸𝜕𝜴𝑘 ,𝑖+1

𝜕𝜴𝑘 ,𝑖+1𝜕𝒛𝑘 ,𝑖 . (91)

We compute the gradients of the output in this layer w.r.t.

parameter as

𝜕𝑧𝑚𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 = 𝜌𝑘 ,𝑖−2

, 𝐶𝑚𝑘 ,𝑖
> 1/𝜌𝑘 ,𝑖

0, |𝐶𝑚𝑘 ,𝑖
| ≤ 1/𝜌𝑘 ,𝑖−𝜌𝑘 ,𝑖−2

, 𝐶𝑚𝑘 ,𝑖
< −1/𝜌𝑘 ,𝑖 (92)

and the gradients of the output in this layer w.r.t. the input as

𝜕𝑧𝑚𝑘 ,𝑖𝜕𝐶𝑚𝑘 ,𝑖 = 1, 𝐶𝑚𝑘 ,𝑖

> 1/𝜌𝑘 ,𝑖
0, |𝐶𝑚𝑘 ,𝑖

| ≤ 1/𝜌𝑘 ,𝑖
1, 𝐶𝑚𝑘 ,𝑖

< −1/𝜌𝑘 ,𝑖 . (93)

Node m) As shown in Fig. 2m), this node has one input: Ω𝑘 ,𝑖 for 𝑘 ∈ {1,2,3} and 𝑖 ∈ {1,2,3}. Its output 𝑪𝑘 ,𝑖 is used to

compute 𝒖𝑘 ,𝑖 and 𝒛𝑘 ,𝑖 . Parameter of this layer is 𝑭𝑘 ,𝑖 . The

gradients of loss w.r.t the parameter can be calculated as

𝜕𝐸𝜕𝑭𝒌,𝒊 =

𝜕𝐸𝜕𝑪𝑘 ,𝑖 𝜕𝑪𝑘 ,𝑖𝜕𝑭𝑘 ,𝑖 , (94)

where

𝜕𝐸𝜕𝑪𝑘 ,𝑖 =

𝜕𝐸𝜕𝒖𝑘 ,𝑖 𝜕𝒖𝑘 ,𝑖𝜕𝑪𝑘 ,𝑖 +
𝜕𝐸𝜕𝒛𝑘 ,𝑖 𝜕𝒛𝑘 ,𝑖𝜕𝑪𝑘 ,𝑖 . (95)

The operation in this layer is:

 𝑪𝑘 ,𝑖 = 𝑭𝑘 ,𝑖𝛀𝑘 ,𝑖 . (96)

We compute the gradients of the output in this layer w.r.t

parameters

𝜕𝑪𝑘 ,𝑖𝜕𝐹𝑚 ,𝑚𝑘 ,𝑖 = 𝑰 𝑚 ,𝑚𝑘 ,𝑖 𝛀𝑘 ,𝑖 . (97)

The output in this layer w.r.t its inputs are

𝜕𝑪𝑘 ,𝑖𝜕𝜴𝑘 ,𝑖 = 𝑭𝑘 ,𝑖 . (98)

Node n): As shown in Fig. 2n), this node has two sets of

inputs: 𝜷𝑘−1 and Ω𝑘 ,𝑖𝑚𝑎𝑥 . Its output 𝜷𝑘 is the input to

compute Λ𝑘 , 𝒗𝑘 and 𝜷𝑘+1 for 𝑘 = 2. Parameters of this layer

is 𝑡𝑘 . The operation in this layer is

 𝜷𝑘 = (1 − 𝑡𝑘)𝜷𝑘−1 + 𝑡𝑘𝛀𝑘 ,𝑖𝑚𝑎𝑥 . (99)

The gradients of loss w.r.t. the parameter can be calculated

as

𝜕𝐸𝜕𝑡𝑘 =

𝜕𝐸𝜕𝜷𝑘 𝜕𝜷𝑘𝜕𝑡𝑘 , (100)

where

𝜕𝐸𝜕𝜷𝑘 =
𝜕𝐸𝜕𝜦𝑘 𝜕𝜦𝑘𝜕𝜷𝑘 +

𝜕𝐸𝜕𝒗𝑘 𝜕𝒗𝑘𝜕𝜷𝑘
+

𝜕𝐸𝜕𝜷𝑘+1

𝜕𝜷𝑘+1𝜕𝜷𝑘 .
(101)

We compute the gradients of the output in this layer w.r.t.

parameter as

𝜕𝜷𝑘𝜕𝑡𝑘 = −𝜷𝑘−1 + 𝛀𝑘 ,𝑖𝑚𝑎𝑥 (102)

and the gradients of the output in this layer w.r.t. the input as

𝜕𝜷𝑘𝜕𝜷𝑘−1

= (1 − 𝑡𝑘)𝑰𝑀 ,𝑀 (103)

𝜕𝜷𝑘𝜕𝜴𝑘 ,𝑖𝑚𝑎𝑥 = 𝑡𝑘𝑰𝑀 ,𝑀 . (104)

Node o): As shown in Fig. 2o), this node is similar with the

node in Fig. 2n). The only difference is that it only has one

input: 𝛀𝑘 ,𝑖𝑚𝑎𝑥 for 𝑘 = 1. Parameters of this layer is 𝑡𝑘 . The

operation in this layer is

 𝜷𝑘 = 𝑡𝑘𝛀𝑘 ,𝑖𝑚𝑎𝑥 . (105)

The gradients of the output in this layer w.r.t. parameter as

𝜕𝜷𝑘𝜕𝑡𝑘 = 𝛀𝑘 ,𝑖𝑚𝑎𝑥 (106)

and the gradients of the output in this layer w.r.t. the input as

𝜕𝜷𝑘𝜕𝜴𝑘 ,𝑖𝑚𝑎𝑥 = 𝑡𝑘𝑰𝑀 ,𝑀 . (107)

Node p) As shown in Fig. 2p), this node is similar with the

node in Fig. 2n). The only difference is that its output is not

the input of any other nodes for 𝑘 = 3. That is
𝜕𝐸𝜕𝜷𝑘 can be

calculated directly:

𝜕𝐸𝜕𝜷𝑘 =
𝜕 𝑙𝑜𝑔 [𝑁𝑛=1 1 + 𝑒𝑥𝑝 { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}]𝜕𝜷𝑘

= − 𝑦𝑛𝑁
𝑛=1

𝑒𝑥𝑝 { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}

1 + 𝑒𝑥𝑝 { − 𝑦𝑛𝜷⊤𝝓(𝒙𝑛)}
𝝓(𝒙𝑛)⊤ .

 (108)

Node q): As shown in Fig. 2q), this node has three sets of

inputs: 𝒖𝑘 ,𝑖−1 , 𝑪𝑘 ,𝑖 and 𝒛𝑘 ,𝑖 . Its output 𝒖𝑘 ,𝑖 is the input to

compute 𝒖𝑘 ,𝑖+1 , 𝒛𝑘 ,𝑖+1 and 𝛀𝑘 ,𝑖+1 for 𝑘 ∈ {1,2,3} and 𝑖 = 2.

This layer has no parameters. The loss w.r.t. output is

𝜕𝐸𝜕𝒖𝑘 ,𝑖 =
𝜕𝐸𝜕𝒖𝑘 ,𝑖+1

𝜕𝒖𝑘 ,𝑖+1𝜕𝒖𝑘 ,𝑖
+

𝜕𝐸𝜕𝒛𝑘 ,𝑖+1

𝜕𝒛𝑘 ,𝑖+1𝜕𝒖𝑘 ,𝑖
+

𝜕𝐸𝜕𝜴𝑘 ,𝑖+1

𝜕𝜴𝑘 ,𝑖+1𝜕𝒖𝑘 ,𝑖 .

(109)

The operation in this layer is:

 𝒖𝑘 ,𝑖 = 𝒖𝑘 ,𝑖−1 + 𝑪𝑘 ,𝑖 − 𝒛𝑘 ,𝑖 . (110)

The output in this layer w.r.t its inputs are

 𝜕𝒖𝑘 ,𝑖𝜕𝒖𝑘 ,𝑖−1
= 𝑰𝑀 ,𝑀 (111)

𝜕𝒖𝑘 ,𝑖𝜕𝑪𝑘 ,𝑖 = 𝑰𝑀 ,𝑀 (112)

𝜕𝒖𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖 = −𝑰𝑀 ,𝑀 , (113)

where 𝑀 is the number of elements in 𝜷𝑘 and 𝑰𝑀 ,𝑀 is the

identity matrix with the size of 𝑀 × 𝑀.

Node r) As shown in Fig. 2r), this node is similar with the

node in Fig. 2q). The only difference is that its output 𝒖𝑘 ,𝑖 is
the input to compute 𝛀𝑘 ,𝑖+1 for 𝑘 ∈ {1,2,3} and 𝑖 = 3. The

loss w.r.t. output is

 𝜕𝐸𝜕𝒖𝑘 ,𝑖 =
𝜕𝐸𝜕𝜴𝑘 ,𝑖+1

𝜕𝜴𝑘 ,𝑖+1𝜕𝒖𝑘 ,𝑖 .
(114)

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

250

Node s) As shown in Fig. 2t), this node is similar with the

node in Fig. 2q). The only difference is that it has only two

inputs: 𝑪𝑘 ,𝑖 and 𝒛𝑘 ,𝑖 for 𝑘 ∈ 1,2,3 and 𝑖 = 1. The operation

in this layer is:

 𝒖𝑘 ,𝑖 = 𝑪𝑘 ,𝑖 − 𝒛𝑘 ,𝑖 . (115)

The output in this layer w.r.t its inputs are

𝜕𝒖𝑘 ,𝑖𝜕𝑪𝑘 ,𝑖 = 𝑰𝑀 ,𝑀 (116)

𝜕𝒖𝑘 ,𝑖𝜕𝒛𝑘 ,𝑖 = −𝑰𝑀 ,𝑀 . (117)

Gradients of parameters shared among layers): As we

have discussed in node e), parameters may share among

different layers. In the above calculations, we only calculate

the gradients of parameters dependent on the output of this

node. To get a complete expression of gradients, we need to

sum them together. Thus, we have

 𝜕𝐸𝜕𝜌𝑘 ,𝑖 =
𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 +

𝜕𝐸𝜕𝒛𝑘 ,𝑖 𝜕𝒛𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 (118)

𝜕𝐸𝜕𝑭𝒌,𝒊 =

𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝑭𝑘 ,𝑖 +
𝜕𝐸𝜕𝑪𝑘 ,𝑖 𝜕𝑪𝑘 ,𝑖𝜕𝑭𝑘 ,𝑖 (119)

for 𝑖 ∈ {1,2,3}, and

𝜕𝐸𝜕𝜌𝑘 ,𝑖 =

𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝜌𝑘 ,𝑖 (120)

𝜕𝐸𝜕𝑭𝑘 ,𝑖 =

𝜕𝐸𝜕𝜴𝑘 ,𝑖 𝜕𝜴𝑘 ,𝑖𝜕𝑭𝑘 ,𝑖 (121)

for 𝑖 = 4 .

REFERENCES

[1] J. R. Hershey, J. L. Roux, and F. Weninger, “Deep unfolding:
Model-based inspiration of novel deep architectures,” arXiv preprint

arXiv:1409.2574, 2014.

[2] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix

factorization,” Advances in Neural Information Processing Systems,

2001, pp. 556–562.

[3] S. Wisdom, J. Hershey, J. Le Roux, and S. Watanabe, “Deep unfolding

for multichannel source separation,” in Proc. 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

2016, pp. 121–125.

[4] C.-H. Lee and J.-T. Chien, “Deep unfolding inference for supervised

topic model,” in Proc. 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2016, pp.

2279–2283.

[5] R. Vemulapalli, O. Tuzel, and M.-Y. Liu, “Deep gaussian conditional
random field network: A model-based deep network for discriminative

denoising,” in Proc. the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 4801–4809.

[6] H. He, B. Xin, and D. Wipf, “From sparse bayesian learning to deep

recurrent nets,” NIPS, 2017

[7] D. Mahapatra, S. Mukherjee, and C. S. Seelamantula, “Deep sparse

coding using optimized linear expansion of thresholds,” arXiv preprint

arXiv:1705.07290, 2017.

[8] J. Sun, H. Li, Z. Xu et al., “Deep admm-net for compressive sensing

mri,” Advances in Neural Information Processing Systems, pp. 10–18,

2016.

[9] M. E. Tipping, “Sparse bayesian learning and the relevance vector
machine,” Journal of machine learning research, vol. 1, no. Jun, pp.

211–244, 2001.

[10] W. Pan, “Bayesian learning for nonlinear system identification,” Ph.D.

dissertation, Imperial College London, 2015.

[11] Y. Li, C. Campbell, and M. Tipping, “Bayesian automatic relevance

determination algorithms for classifying gene expression data,”

Bioinformatics, vol. 18, no. 10, pp. 1332–1339, 2002.

[12] B. Krishnapuram, L. Carin, and A. J. Hartemink, “Joint classifier and

feature optimization for comprehensive cancer diagnosis using gene

expression data,” Journal of Computational Biology, vol. 11, no. 2-3,

pp. 227–242, 2004.

[13] G. C. Cawley and N. L. Talbot, “Gene selection in cancer classification

using sparse logistic regression with bayesian regularization,”

Bioinformatics, vol. 22, no. 19, pp. 2348–2355, 2006.

[14] X. Yang, W. Pan, and Y. Guo, “Sparse bayesian classification and

feature selection for biological expression data with high correlations,”
PLOS One, vol. 12, no. 12, 2017.

[15] A. L. Yuille and A. Rangarajan, “The concave-convex procedure,”

Neural Computation, vol. 15, no. 4, pp. 915–936, 2003.

[16] S.-I. Lee, H. Lee, P. Abbeel, and A. Y. Ng, “Efficient l1 regularized

logistic regression,” in AAAI, vol. 6, 2006, pp. 401–408.

[17] L. Bottou, “Large-scale machine learning with stochastic gradient

descent,” in Proc. COMPSTAT’2010. Springer, 2010, pp. 177–186.

[18] T. P. Minka. (2003). A comparison of numerical optimizers for logistic

regression. [Online]. Available:

http://research.microsoft.com/∼minka/papers/logreg

[19] T. Lipp and S. Boyd, “Variations and extension of the convex–concave

procedure,” Optimization and Engineering, vol. 17, no. 2, pp. 263–287,

2016.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed

optimization and statistical learning via the alternating direction

method of multipliers,” Foundations and TrendsR in Machine

Learning, vol. 3, no. 1, pp. 1–122, 2011.

[21] S. Yan, X. Yang, C. Wu, Z. Zheng, and Y. Guo, “Balancing the
stability and predictive performance for multivariate voxel selection in

fmri study,” in Proc. International Conference on Brain Informatics

and Health. Springer, 2014, pp. 90–99.

[22] P. Kirk, A. Witkover, C. R. Bangham, S. Richardson, A. M. Lewin, and

M. P. Stumpf, “Balancing the robustness and predictive performance

of biomarkers,” Journal of Computational Biology, vol. 20, no. 12, pp.

979–989, 2013.

[23] K. Fernandes, J. S. Cardoso, and J. Fernandes, “Transfer learning with

partial observability applied to cervical cancer screening,” in Proc.

Iberian Conference on Pattern Recognition and Image Analysis.

Springer, 2017, pp. 243–250.

[24] S. L. Pomeroy, P. Tamayo et al., “Prediction of central nervous system
embryonal tumour outcome based on gene expression,” Nature, vol.

415, no. 6870, pp. 436–442, 2002.

[25] Z. Wu, R. A. Irizarry, R. Gentleman, F. Martinez-Murillo, and F.

Spencer, “A model-based background adjustment for oligonucleotide

expression arrays,” Journal of the American statistical Association, vol.

99, no. 468, pp. 909–917, 2004.

Xian Yang received her PhD degree from the

Department of Computing, Imperial College London

in 2016. She has been working as a research assistant

at Imperial College London since 2012 and became a

research associate in 2016. Her research interests

include machine learning, neuroimaging,

bioinformatics, system biology, data mining, statistics

and health informatics. She has taken part in various

projects, such as the UBIOPRED project on the severe

asthma study, the iHealth project on clinical pathway

management, and the eTRIKS project on knowledge management for

precision medicine research.

Yike Guo is a professor of computing science in the

Department of Computing at Imperial College

London. He is the founding director of the Data

Science Institute at Imperial College, as well as

leading the Discovery Science Group in the

department. He has been working on technology and

platforms for scientific data analysis, where his

research focuses on knowledge discovery, data mining

and large-scale data management. Professor Guo also

holds the position of CTO of the tranSMART

Foundation, a global open source community using and developing data

sharing and analytics technology for translational medicine, and the position

of CIO of IDBS, a world's leading company in developing innovative data

management and analytics solutions.

’

’

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

251

