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Deep Unfolded Robust PCA with Application to

Clutter Suppression in Ultrasound
Oren Solomon, Student Member, IEEE, Regev Cohen, Student Member, IEEE, Yi Zhang, Yi Yang, He Qiong,

Jianwen Luo, Ruud J.G. van Sloun, Member, IEEE, and Yonina C. Eldar, Fellow, IEEE

Abstract—Contrast enhanced ultrasound is a radiation-free
imaging modality which uses encapsulated gas microbubbles
for improved visualization of the vascular bed deep within
the tissue. It has recently been used to enable imaging with
unprecedented subwavelength spatial resolution by relying on
super-resolution techniques. A typical preprocessing step in
super-resolution ultrasound is to separate the microbubble signal
from the cluttering tissue signal. This step has a crucial impact
on the final image quality. Here, we propose a new approach to
clutter removal based on robust principle component analysis
(PCA) and deep learning. We begin by modeling the acquired
contrast enhanced ultrasound signal as a combination of a low
rank and sparse components. This model is used in robust
PCA and was previously suggested in the context of ultrasound
Doppler processing and dynamic magnetic resonance imaging.
We then illustrate that an iterative algorithm based on this
model exhibits improved separation of microbubble signal from
the tissue signal over commonly practiced methods. Next, we
apply the concept of deep unfolding to suggest a deep network
architecture tailored to our clutter filtering problem which
exhibits improved convergence speed and accuracy with respect
to its iterative counterpart. We compare the performance of the
suggested deep network on both simulations and in-vivo rat brain
scans, with a commonly practiced deep-network architecture
and the fast iterative shrinkage algorithm, and show that our
architecture exhibits better image quality and contrast.

Index Terms—Ultrasound, Machine learning, Inverse methods,
Neural network.

I. INTRODUCTION

MEDICAL ultrasound (US) is a radiation-free imaging

modality used extensively for diagnosis in a wide

range of clinical segments such as radiology, cardiology,

vascular, obstetrics and emergency medicine. Ultrasound-

based imaging modalities include brightness, motion, Doppler,

harmonic modes, elastography and more [1].

One important imaging modality is contrast-enhanced ul-

trasound (CEUS) [2] which allows the detection and visual-

ization of blood vessels whose physical parameters such as
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relative blood volume (rBV), velocity, shape and density are

associated with different clinical conditions [3]. CEUS uses

encapsulated gas microbubbles as ultrasound contrast agents

(UCAs) which are administrated intravenously and are similar

in size to red blood cells and thus can flow throughout the

vascular system [4]. Among its many applications, CEUS is

used for imaging of perfusion at the capillary level [5, 6],

for estimating blood velocity in small vessels arteriole by

applying Doppler processing [7, 8] and for sub-wavelength

vascular imaging [9–14].

A major challenge in ultrasonic vascular imaging such as

CEUS is to suppress clutter signals stemming from stationary

and slowly moving tissue as they introduce significant artifacts

in blood flow imaging [15]. Over the past few decades

several approaches have been suggested for clutter removal.

The simplest method to remove tissue signal is to filter the

ultrasonic signal along the temporal dimension using high-

pass finite impulse response (FIR) or infinite impulse response

(IIR) filters [16]. However, FIR filters need to have high order

while IIR filters exhibit a long settling time which leads to

a low number of temporal samples in each spatial location

[17] when using focused transmission. The above methods

rely on the assumption that tissue motion, if exists, is slow

while blood flow is fast. This high-pass filtering approach is

prone to failure in the presence of fast tissue motion, as in

cardiology, or when imaging microvasculature in which blood

velocities are low.

An alternative method for tissue suppression is second

harmonic imaging [18], which separates the blood and tissue

signals by exploiting the non-linear response of the UCAs to

low acoustic pressures, compared with the mostly linear tissue

response. This technique, however, limits the frame-rate of the

US scanner, and does not remove the tissue signal completely,

as tissue can also exhibit a nonlinear response.

The above techniques are based only on temporal infor-

mation and neglect the high spatial coherence of the tissue,

compared to the blood. To take advantage of these spatial

characteristics of tissue, a method for clutter removal was

presented in [19], based on the singular value decomposi-

tion (SVD) of the correlation matrix of successive temporal

samples. SVD filtering operates by stacking the (typically

beamformed) acquired frames as vectors in a matrix whose

column index indicates frame number. Then, an SVD of the

matrix is performed and the largest singular values, which

correspond to the highly correlated tissue, are zeroed out.

Finally, a new matrix is composed based on the remaining

singular values and reshaped to produce the blood/UCA
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movie.

Several SVD-based techniques have been proposed [15, 20–

23], such as down-mixing [15] for tissue motion estimation,

adaptive clutter rejection for color flow proposed by Lovs-

takken et al. [24] and the principal component analysis (PCA)

for blood velocity estimation presented in [25]. However,

these methods are based on focused transmission schemes

which limit the frame rate and the field of view. This in turn

leads to a small number of temporal and spatial samples,

reducing the effectiveness of SVD-based filtering. To over-

come this limitation, SVD-based clutter removal was extended

to ultrafast plane-wave imaging [13, 26–28], demonstrating

substantially improved clutter rejection and microvascular

extraction. This strategy gained a lot of interest in recent years

and nowadays it is used in numerous ultrafast US imaging

applications such as functional ultrasound [29, 30], super-

resolution ultrasound localization microscopy [13, 14] and

high-sensitivity microvessel perfusion imaging [26, 27].

A major limitation of SVD-based filtering is the require-

ment to determine a threshold which discriminates between

tissue related and blood related singular values. The appro-

priate setting of this threshold is typically unclear, especially

when the eigenvalue spectra of the tissue and contrast signals

overlap. This threshold uncertainty motivates the use of a

different model for the acquired data, one that can differentiate

between tissue and contrast signals based on the spatio-

temporal information, as well as additional information unique

to the contrast signal - its sparse distribution in the imaging

plane.

Here, we propose two main contributions. The first, is the

adaptation of a new model for the tissue/contrast separation

problem. We show that similar to other applications such

as MRI [31] and recent US Doppler applications [32], we

can decompose the acquired, beamformed US movie as a

sum of a low-rank matrix (tissue) and a sparse outlier signal

(UCAs). This decomposition is also known as robust principle

component analysis (RPCA) [33]. We then propose to solve

a convex minimization problem to retrieve the UCA signal,

which leads to an iterative principal component pursuit (PCP)

[33]. Second, we utilize recent ideas from the field of deep

learning [34] to dramatically improve the convergence rate

and image reconstruction quality of the iterative algorithm.

We do so by unfolding [35] the algorithm into a fixed-length

deep network which we term Convolutional rObust pRincipal

cOmpoNent Analysis (CORONA). This approach harnesses

the power of both deep learning and model-based frameworks,

and leads to improved performance in various fields [36–40].

CORONA is trained on sets of separated tissue/UCA signals

from both in-vivo and simulated data. Similar to [37], we

utilize convolution layers instead of fully-connected (FC)

layers, to exploit the shared spatial information between

neighboring image pixels. Our training policy is a two stage

process. We start by training the network on simulated data,

and then train the resulting network on in-vivo data. This

hybrid policy allows us to improve the network’s performance

and to achieve a fully-automated network, in which all the

regularization parameters are also learned. We compare the

performance of CORONA with the commonly practiced SVD

approach, the iterative RPCA algorithm and an adaptation

of the residual network (ResNet), which is considered to be

one of the leading deep architectures for a wide variety of

problems [41]. We show that CORONA outperforms all other

approaches in terms of image quality and contrast.

Unfolding, or unrolling an iterative algorithm, was first

suggested by Gregor and LeCun [35] to accelerate algorithm

convergence. In the context of deep learning, an important

question is what type of network architecture to use. Iterative

algorithms provide a natural recurrent architecture, designed

to solve a specific problem, such as sparse approximations,

channel estimation [42] and more. The authors of [35] showed

that by considering each iteration of an iterative algorithm as

a layer in a deep network and subsequent concatenation of a

few such layers it is possible to train such networks to achieve

a dramatic improvement in convergence, i.e., to reduce the

number of iterations significantly.

In the context of RPCA, a principled way to construct learn-

able pursuit architectures for structured sparse and robust low

rank models was introduced in [36]. The proposed networks,

derived from the iteration of proximal descent algorithms,

were shown to faithfully approximate the solution of RPCA

while demonstrating several orders of magnitude speed-up

compared to standard optimization algorithms. However, this

approach is based on a non-convex formulation in which

the rank of the low-rank part (or an upper bound on it) is

assumed to be known a priori. This poses a network design

limitation, as the rank can vary between different applications

or even different realizations of the same application, as in

CEUS. Thus, for each choice of the rank upper bound, a new

network needs to be trained, which can limit its applicability.

In contrast, our approach does not require a-priori knowledge

of the rank. Moreover, the use of convolutional layers exploits

spatial invariance and facilitates our training process as it

reduces the number of learnable parameters dramatically.

The rest of the paper is organized as follows. In Section II

we introduce the mathematical formulation of the low-rank

and sparse decomposition. Section III describes the protocol

of the experiments and technical details regarding the realiza-

tions of CORONA and ResNet. Section IV presents in-silico

as well as in-vivo results of both the iterative algorithm and

the proposed deep networks. Finally, we discuss the results,

limitations and further research directions in Section V.

Throughput the paper, x represents a scalar, x a vector,

X a matrix and IN×N is the N × N identity matrix. The

notation ||·||p represents the standard p-norm and ||·||F is the

Frobenius norm. Subscript xl denotes the lth element of x

and xl is the lth column of X. Superscript x
(p) represents

x at iteration p, T ∗ denotes the adjoint of T, and Ā is the

complex conjugate of A.

II. DEEP LEARNING STRATEGY FOR RPCA IN US

A. Problem formulation

We start by providing a low-rank plus sparse (L+S) model

for the acquired US signal. In US imaging, typically a series

of pulses are transmitted to the imaged medium. The resulting

echoes from the medium are received in each transducer

element and then combined in a process called beamforming
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Fig. 1: Architecture comparison between the iterative algorithm applied for K iterations (panel (a)) and its unfolded counterpart

(panel (b)). The learned network in panel (b) draws its architecture from the iterative algorithm, and is trained on examples

from a given dataset. In both panels, D is the input measurement matrix, and Sk and Lk are the estimated sparse and low-rank

matrices in each iteration/layer, respectively.

to produce a focused image. As presented in [43], after

demodulation the complex analytical (IQ) signal can be rep-

resented as

D(x, z, t) = I(x, z, t) + iQ(x, z, t),

where I(x, z, t) and Q(x, z, t) are the in-phase and quadrature

components of the demodulated signal, x, z are the vertical

and axial coordinates, and t indicates frame number. The

signal D(x, z, t) is a sum of echoes returned from the

blood/CEUS signal S(x, z, t) as well as from the tissue

L(x, z, t), contaminated by additive noise N(x, z, t)

D(x, z, t) = L(x, z, t) + S(x, z, t) +N(x, z, t).

Acquiring a series of movie frames t = 1, . . . , T , and

stacking them as vectors in a matrix D, leads to the following

model

D = L+ S+N. (1)

In (1), we assume that the tissue matrix L can be described as

a low-rank matrix, due to its high spatio-temporal coherence.

The CEUS echoes matrix S is assumed to be sparse, as

blood vessels typically sparsely populate the imaged medium.

Assuming that each movie frame is of size M ×M pixels,

the matrices in (1) are of size M2 × T . From here on, we

consider a more general model, in which the acquired matrix

D is composed as

D = H1L+H2S+N, (2)

with H1 and H2 being the measurement matrices of appro-

priate dimensions. The model (2) can also be applied to MR

imaging, video compression and additional US applications,

as we discuss in Section V. Our goal is to formalize a

minimization problem to extract both L and S from D under

the corresponding assumptions of L+S matrices.

Similar to [31], we propose solving the following mini-

mization problem

min
L,S

1

2
||D− (H1L+H2S)||

2
F+λ1||L||∗+λ2||S||1,2, (3)

where ||·||∗ stands for the nuclear norm, which sums the

singular values of L, and ||·||1,2 is the mixed l1,2 norm,

which sums the l2 norms of each row of S. We use the

mixed l1,2 norm since the pattern of the sparse outlier (blood

or CEUS signal) is the same between different frames, and

ultimately corresponds to the locations of the blood vessels,

which are assumed to be fixed, or change very slowly during

the acquisition period. The nuclear norm is known to promote

low-rank solutions, and is the convex relaxation of the non-

convex rank minimization constraint [44].

By defining

X =

[

L

S

]

, P1 =

[

I

0

]

, P2 =

[

0

I

]

and A = [H1,H2], (3) can be rewritten as

min
L,S

1

2
||D−AX||2F+h(X), (4)

where h(X) =
∑2

i=1 λiρi(PiX) with ρ1 = ||·||∗ and

ρ2 = ||·||1,2. The minimization problem (4) is a regular-

ized least-squares problem, for which numerous numerical

minimization algorithms exist. Specifically, the (fast) iterative

shrinkage/thresholding algorithm, (F)ISTA, [45, 46] involves

finding the Moreau’s proximal (prox) mapping [47, 48] of h,

defined as

proxh(X) = argmin
U

{

h(U) +
1

2
||U−X||2F

}

. (5)

Plugging the definition of X into (5) yields

proxh(X) = argmin
U1,U2

{

λ1ρ1(U1) +
1

2
||U1 − L||2F

+λ2ρ2(U2) +
1

2
||U2 − S||2F

}

.

Since proxh(X) is separable in L and S, it holds that

proxh(X) =

[

proxρ1
(L)

proxρ2
(S)

]

=

[

SVTλ1
(L)

Tλ2
(S)

]

. (6)
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The operators

Tα(x) = max(0, 1− α/||x||2)x

and

SVTα(X) = Udiag(max(0, σi − α))VH , i = 1, . . . , r

are the mixed l1/2 soft thresholding [45] and singular value

thresholding [49] operators. Here X is assumed to have an

SVD given by X = UΣV
H with Σ = diag(σi, . . . , σr),

a diagonal matrix of the eigenvalues of X. The proximal

mapping (6) is applied in each iteration to the gradient of

the quadratic part of (4), given by

g(X) =
d

dX

1

2
||D−AX||2F= A

H(AX−D),

and more specifically,
[

d
dL
d
dS

]

=

[

H
H
1 (H1L+H2S−D)

H
H
2 (H1L+H2S−D)

]

.

The general iterative step of ISTA applied to minimizing

(3) (L+S ISTA) is thus given by

X
k+1 = proxh

(

X
k −

1

Lf
g(Xk)

)

,

or

Lk+1 = SVTλ1/Lf

{(

I−
1

Lf
HH

1
H1

)

Lk −HH
1
H2S

k +HH
1
D

}

Sk+1 = Tλ2/Lf

{(

I−
1

Lf
HH

2
H2

)

Sk −HH
2
H1L

k +HH
2
D

}

,

(7)

where Lf is the Lipschitz constant of the quadratic term of

(4), given by the spectral norm of AH
A.

The L+S ISTA algorithm for minimizing (3) is summarized

in Algorithm 1. The diagram in Fig. 1(a) presents the iterative

algorithm, which relies on knowledge of H1,H2 and selection

of λ1 and λ2.

Algorithm 1 L+S ISTA for minimizing (3)

Require: D, λ1 > 0, λ2 > 0, maximum iterations Kmax

Initialize S = L = 0 and k = 1
while k ≤ Kmax or stopping criteria not fulfilled do

1: G1k =
(

I− 1
Lf

H
H
1 H1

)

L
k −H

H
1 H2S

k +H
H
1 D

2: G2k =
(

I− 1
Lf

H
H
2 H2

)

S
k −H

H
2 H1L

k +H
H
2 D

3: Lk+1 = SVTλ1/Lf
{G1k}

4: Sk+1 = Tλ2/Lf
{G2k}

5: k ← k + 1
end while

return SKmax ,LKmax

The dynamic range between returned echoes from the tissue

and UCA/blood signal can range from 10dB to 60dB. As

this dynamic range expands, more iterations are required

to achieve good separation of the signals. This observation

motivates the pursuit of a fixed complexity algorithm. In

the next section we propose CORONA which is based on

unfolding Algorithm 1. Background on learning fast sparse

approximations is given in Section I of the supplementary

materials.

B. Unfolding the iterative algorithm

An iterative algorithm can be considered as a recurrent

neural network, in which the kth iteration is regarded as

the kth layer in a feedforward network [36]. To form a

convolutional network, one may consider convolutional layers

instead of matrix multiplications. With this philosophy, we

form a network from (7) by replacing each of the matrices

dependent on H1 and H2 with convolution layers (kernels)

P
k
1 , . . . ,P

k
6 of appropriate sizes. These will be learned from

training data. Contrary to previous works in unfolding RPCA

which considered training fully connected (FC) layers [36],

we employ convolution kernels in our implementation which

allows us to achieve spatial invariance while reducing the

number of learned parameters considerably.

The kernels as well as the regularization parameters λk
1 and

λk
2 are learned during training. By doing so, the following

equations for the kth layer are obtained

L
k+1 = SVTλk

1

{

P
k
5 ∗ L

k +P
k
3 ∗ S

k +P
k
1 ∗D

}

,

S
k+1 = Tλk

2

{

P
k
6 ∗ L

k +P
k
4 ∗ S

k +P
k
2 ∗D

}

,

with ∗ being a convolution operator. The latter can be

considered as a single layer in a multi-layer feedforward

network, which we refer to as CORONA: Convolutional

rObust pRincipal cOmpoNent Analysis. A diagram of a single

layer from the unfolded architecture is given in Fig. 1(b),

where the supposedly known model matrices were replaced

by the 2D convolution kernels Pk
1 , . . . ,P

k
6 , which are learned

as part of the training process of the overall network.

In many applications, the recovered matrices S and L

represent a 3D volume, or movie, of dynamic objects imposed

on a (quasi) static background. Each column in S and L is

a vectorized frame from the recovered sparse and low-rank

movies. Thus, we consider in practice our data as a 3D volume

and apply 2D convolutions. The SVT operation (which has

similar complexity as the SVD operation) at the kth layer

is performed after reshaping the input 3D volume into a 2D

matrix, by vectorizing and column-wise stacking each frame.

The thresholding coefficients are learned independently for

each layer. Given the kth layer, the actual thresholding values

for both the SVT and soft-thresholding operations are given by

thrkL = σ(λk
L)·aL ·max(Lk) and thrkS = σ(λk

S)·aS ·mean(Sk)
respectively, where σ(x) = 1/(1 + exp(−x)) is a sigmoid

function, aL and aS are fixed scalars (in our application we

chose aL = 0.4 and aS = 1.8) and λk
L and λk

S are learned in

each layer by the network.

C. Training CORONA

CORONA is trained using back-propagation in a supervised

manner. Generally speaking, we obtain training examples Di

and corresponding sparse Ŝi and low-rank L̂i decompositions.

In practice, Ŝi and L̂i can either be obtained from simulations

or by decomposing Di using iterative algorithms such as

FISTA [50]. The loss function is chosen as the sum of the
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Fig. 2: Simulation results of CORONA. (a) MIP image of the input movie, composed from 50 frames of simulated UCAs

cluttered by tissue. (b) Ground-truth UCA MIP image. (c) Recovered UCA MIP image via CORONA. (d) Ground-truth tissue

MIP image. (d) Recovered tissue MIP image via CORONA. Color bar is in dB.

mean squared errors (MSE) between the predicted S and L

values of the network and Ŝi, L̂i, respectively,
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In the latter equation, fS/fL is the sparse/low-rank

output of CORONA with learnable parameters θ =
{Pk

1 , . . . ,P
k
6 , λ

k
1 , λ

k
2}, k = 1, . . . ,K, where K is the number

of chosen layers.

Training a deep network typically requires a large amount

of training examples, and in practice, US scans of specific

organs are not available in abundance. To be able to train

CORONA, we thus rely on two strategies: patch-based anal-

ysis and simulations. Instead of training the network over

entire scans, we divide the US movie used for training into

3D patches (axial coordinate, lateral coordinate and frame

number). Then we apply Algorithm 1 on each of these 3D

patches. The SVD operations in Algorithm 1 become compu-

tationally tractable since we work on relatively small patches.

The resulting separated UCA movie is then considered as

the desirable outcome of the network and the network is

trained over these pairs of extracted 3D patches from the

acquired movie, and the resulting reconstructed UCA movies.

In practice, the CEUS movie used for training is divided into

3D patches of size 32 × 32 × 20 (32 × 32 pixels over 20

consecutive frames) with 50% overlap between neighboring

patches. The regularization parameters of Algorithm 1, λ1

and λ2 are chosen empirically, but are chosen once for all the

extracted patches.

In Section VI of the supplementary materials, we provide

a detailed description of how the simulations of the UCA and

tissue movies were generated. In particular, we detail how

individual UCAs were modeled and propagated in the imaging

plane, and describe the cluttering tissue signal model. We then

demonstrate the importance of training on both simulations

and in-vivo data in Section IV of the supplementary materials.

III. EXPERIMENTS

The brains of two rats were scanned using a Vantage

256 system (Verasonics Inc., Kirkland, WA, USA). An L20-

10 probe was utilized, with a central frequency of 15MHz.

The rats underwent craniotomy after anesthesia to obtain an

imaging window of 6×2mm2. A bolus of 100µL SonoVueTM

(Bracco, Milan, Italy) contrast agent, diluted with normal

saline with a ratio of 1:4, was administered intravenously to

the rats tail vein. Plane-wave compounding of five steering

angles (from −12◦ to 12◦, with a step of 6◦) was adopted

for ultrasound imaging. For each rat, over 6000 consecutive

frames were acquired with a frame rate of 100Hz. 300 frames

with relatively high B-mode intensity were manually selected

for data processing in this work.

In recent years, several deep learning based architectures

have been proposed and applied successfully to classification

problems. One such approach is the residual network, or

ResNet [41]. ResNet utilizes convolution layers, along with

batch normalization and skip connections, which allow the

network to avoid vanishing gradients and reduce the overall

number of network parameters.

To compare with CORONA, we implemented ResNet us-

ing complex convolutions for the tissue clutter suppression

task. The network does not recover the tissue signal, as

CORONA, but only the UCA signal. In Section IV and in

the supporting materials file, we compare both architectures

and assess the advantages and disadvantages of each network.

In Section IV-B, we show that CORONA outperforms ResNet

in terms of image quality (contrast) of the CEUS signal.

Both ResNet and CORONA were implemented in Python

3.5.2, using the PyTorch 0.4.1 package. CORONA consists

of 10 layers. First three layers used convolution filters of size

5 × 5 × 1 with stride (1, 1, 1), padding (2, 2, 0) and bias,

while the last seven layers used filters of size 3 × 3 × 1
with stride (1, 1, 1), padding (1, 1, 0) and bias. Training was

performed using the ADAM optimizer with a learning rate of

0.002. For the in-vivo experiments in Section IV, we trained

the network over 2400 simulated training pairs and additional

2400 in-vivo pairs taken only from the first rat. Training pairs

were generated from the acquired US clips, after dividing each

clip to 32 × 32 × 20 patches. We then applied Algorithm 1

for each patch with λ1 = 0.02, λ2 = 0.001 and Dmax =
30000 iterations to obtain the separated UCA signal for the

training process. Algorithm 1 was implemented in MATLAB

(Mathworks Inc.) and was applied to the complex-valued IQ

signal. PyTorch performs automatic differentiation and back-

propagation using the Autograd functionality, and version

0.4.1 also supports back-propagation through SVD, but only

for real valued numbers. Thus, complex valued convolution
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Fig. 3: MSE plot for the FISTA algorithm and CORONA as

a function of the number of iterations/layers.

layers and SVD operations were implemented.

IV. RESULTS

A. Simulation results

In this section we provide reconstruction results for

CORONA applied to a simulated dataset, and trained on

simulations. Figure 2 presents reconstruction results of the

UCA signal S and the low-rank tissue L against the ground

truth images. Panel (a) shows a representative image in the

form of maximum intensity projection (MIP)1 of the input

cluttered movie (50 frames). It is evident that the UCA signal,

depicted as randomly twisting lines, is masked considerably

by the simulated tissue signal. Panel (b) illustrates the ground

truth MIP image of the UCA signal, while panel (c) presents

the MIP image of the recovered UCA signal via CORONA.

Panels (d) and (e) show MIP images of the ground truth and

CORONA recovery, respectively.

Observing all panels, it is clear that CORONA is able to

recover reliably both the UCA signal and the tissue signal.

Section II in the supporting materials provides additional

simulation results, showing also the recovered UCA signal

by ResNet. Although qualitatively ResNet manages to recover

well the UCA signal, its contrast is lower than the contrast

of the CORONA recovery, which presents a clearer depiction

of the random vascular structure of the simulation. Moreover,

ResNet does not recover the tissue signal, while CORONA

does.

As CORONA draws its architecture from the iterative ISTA

algorithm, our second aim in this section is to assess the

performance of both CORONA and the FISTA algorithm by

calculating the MSE of each method as a function of itera-

tion/layer number. Each layer in CORONA can be thought

of as an iteration in the iterative algorithm. To that end, we

next quantify the MSE over the simulated validation batch

(sequence of 100 frames) as a function of layer number

(CORONA) and iteration number (FISTA), as presented in

1In order to present a single representative image, we take the pixel-wise
maximum from each movie. This process is also referred to as maximum
intensity projection, and is a common method to visualize CEUS images.

Fig. 3. For both methods, the MSE for the recovered sparse

part (UCA signal) S and the low-rank part (tissue signal) L

were calculated as a function of iteration/layer number, as well

as the average MSE of both parts, according to (8) (α = 0.5).

For each layer number, we constructed an unfolded network

with that number of layers, and trained it for 50 epochs on

simulated data only.

Observing Fig. 3, it is clear that even when considering

CORONA with only 1 layer, its performance in terms of MSE

in an order of magnitude better than FISTA applied with 50

iterations. Adding more layers improves the CORONA MSE,

though after 5 layers, the performance remains roughly the

same. Figure 3 also shows that a clear decreasing trend is

present for the FISTA MSE, however a dramatic increase in

the number of iterations is required by FISTA to achieve the

same MSE values.

B. In-vivo experiments

We now proceed to demonstrate the performance of

CORONA on in-vivo data. As was described in Section III,

CORONA was trained on both simulated and experimental

data. In Fig. 4, panel (a) depicts SVD based separation of

the CEUS signal, panel (b) shows the FISTA based sep-

aration and panel (c) shows the result of CORONA. The

lower panels of Fig. 4 also compare the performance of the

trained ResNet (panel (f)) on the in-vivo data as well as

provide additional comparison to the commonly used wall

filtering. Specifically, we use a 6th order Butterworth filter

with two cutoff frequencies of 0.2π (panel (d)) and 0.9π
(panel (e)) radians/samples. Two frequencies were chosen

which represent two scenarios. The cutoff frequency of the

recovery in panel (d) was chosen to suppress as much tissue

signal as possible, without rejecting slow moving UCAs. In

panel (e), a higher frequency was chosen, to suppress the

slow moving tissue signal even further, but as can be seen,

at a cost of removing also some of the slower bubbles. The

result is a less consistent vascular image. Visually judging,

all panels of Fig. 4 shows that ResNet outperforms both the

SVD and wall filtering approaches. However, a more careful

observation shows that the ResNet output, although more

similar to CORONA’s output, seems more grainy and less

smooth than CORONA’s image. CORONA’s recovery exhibits

the highest contrast, and produces the best visual.

In each panel, the green and red boxes indicate selected

areas, whose enlarged views are presented in the corre-

sponding green and red boxes below each panel. Visual

inspection of the panels (a)-(f) shows that FISTA, ResNet and

CORONA achieve CEUS signal separation which is less noisy

than the naive SVD approach and wall filtering. Considering

the enlarged regions below the panels further supports this

conclusion, showing better contrast of the FISTA and deep

networks outputs. The enlarged panels below panels (d) and

(e) show that indeed, as the cutoff frequency of the wall

filter is increased, slow moving UCAs are also filtered out.

Both deep networks exhibit higher contrast than the other

approaches.

To further quantify the performance of each method, we

provide two metrics to assess the contrast ratio of their
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Fig. 4: Recovery of in-vivo CEUS signal depicting rat brain vasculature. (a) SVD based separation. (b) L+S FISTA separation.

(c) Deep network separation, with the unfolded architecture of the FISTA algorithm. (d) Wall filtering with cutoff frequency

of 0.2π (e) Wall filtering with cutoff frequency of 0.9π (f) ResNet. Color bar is in dB.

TABLE I: CNR values for the selected green and red rectangles of
Fig. 4, as compared with the dashed yellow background rectangle in
each corresponding panel. All values are in dB.

SVD Wall filter FISTA ResNet Unfolded

Green box -1.65 -2.02 -1.67 -2.17 -0.3
Red box -4.8 -5.55 -3.52 -2.95 -1.13

TABLE II: CR values for the selected green and red rectangles of
Fig. 4, as compared with the dashed yellow background rectangle in
each corresponding panel. All values are in dB.

SVD Wall filter FISTA ResNet Unfolded

Green box 4.68 4.5 5.52 7.92 15.24
Red box 4.56 4.1 5.24 7.55 14.88

outputs, termed contrast to noise ratio (CNR) and contrast

ratio (CR).

CNR is calculated between a selected patch, e.g. the red or

green boxes in panels (a)-(f) and a reference patch, marked by

the dashed yellow patches, which represents the background,

for the same image. That is, for each panel we estimate the

CNR values of the red - yellow and green - yellow boxes,

where µs is the mean of the red/green box with variance σ2
s

and µb is the mean of the dashed yellow patch with variance

σ2
b . The CNR is defined as

CNR =
|µs − µb|
√

σ2
s + σ2

b

.

Similarly, the CR is defined as

CR =
µs

µb
.

Table I and Table II provide the calculated CNR and CR

values of each method, respectively.

In both metrics, higher values imply higher contrast ratios,

which suggest better noise suppression and better signal

depiction. Considering both tables, CORONA outperforms all

other approaches. In most cases, its performance is an order
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Fig. 5: Intensity profiles across the dashed yellow lines in

panels (a)-(c) of Fig. 4. Regions in which CORONAs’ curve

is missing indicate a value of −∞. Values are in dB.

of magnitude better than that SVD. The CR values of ResNet

are also better than the baseline SVD, though lower than those

of CORONA. Its CNR values however, are not always higher

than those of the SVD. In terms of CR, the FISTA results

are better than those of the SVD filter, though lower than

the deep-learning based approaches. In terms of CNR, for

the green box, FISTA is comparable to SVD and better than

ResNet, while for the red box, its performance is the worst.

Both metrics support the previous conclusions, that by

combining a proper model to the separation problem with

a data-driven approach leads to improved separation of UCA

and tissue signals, as well as noise reduction as compared to

the popular SVD approach.

Finally, we also provide intensity cross-sections, taken

along the horizontal yellow dashed line for each method, as

presented in Fig. 5. Considering the intensity cross-section of

Fig. 5, it is evident that all methods reconstruct the peaks

with good correspondence. The FISTA and deep-learning

networks’ profiles exhibit higher contrast than the SVD and

wall filter (deeper “cavities”). In some areas, the unfolded

(yellow) profiles seems to vanish. This is because the attained

value is −∞. The supporting materials file contains additional

comparisons. Section III presents the training and validation

losses of the networks, as well as the evolution of the

regularization coefficients of CORONA as a function of epoch

number. Section IV discusses the importance of training the

networks on both simulations and in-vivo data when applying

CORONA on in-vivo experiments, while Section V presents

the training and execution times for both networks.

V. DISCUSSION AND CONCLUSIONS

In this work, we proposed a low-rank plus sparse model

for tissue/UCA signal separation, which exploits both spatio-

temporal relations in the data, as well as the sparse nature of

the UCA signal. This model leads to a solution in the form

of an iterative algorithm, which outperforms the commonly

practiced SVD approach. We further suggested to improve

both execution time and reconstructed image quality by un-

folding the iterative algorithm into a deep network, referred to

as CORONA. The proposed architecture utilizes convolution

layers instead of FC layers and a hybrid simulation-in-vivo

training policy. Combined, these techniques allow CORONA

to achieve improved performance over its iterative counterpart,

as well as over other popular architectures, such as ResNet.

We demonstrated the performance of all methods on both

simulated and in-vivo datasets, showing improved vascular

depiction in a rat’s brain.

We conclude by discussing several points, regarding the

performance and design of deep-learning based networks.

First, we attribute the improved performance over the com-

monly practiced SVD filtering, wall filtering and FISTA to

two main reasons. The first, is the fact that for application

on in-vivo data, the networks are trained based on both in-

vivo data and simulated data. The simulated data provides

the networks with an opportunity to learn from “perfect” ex-

amples, without noise and with absolute separation of UCAs

and their surroundings. In Section IV of the supplementary

materials we show the effect on recovery when the network

is trained with and without experimental data. The iterative

algorithm, on the other hand, cannot learn or improve its

performance on the in-vivo data from the simulated data. The

second, is the fact that both networks rely on 2D complex

convolutions. Contrary to FC layers, convolution layers reduce

the number of learnable parameters considerably, thus help

avoid over-fitting and achieve good performance even when

the training sets are relatively low. Moreover, convolutions

offer spatial invariance, which allows the network to capture

spatially translated UCAs.

Focusing on patch-based training (Section II-C) over entire

image training has several benefits. UCAs are used to image

blood vessels, and as such entire images will include implic-

itly blood vessel structure. Thus, training over entire images

may result in the network being biased towards the vessel

trees presented in the (relatively small) training cohort. On the

other hand, small patches are less likely to include meaningful

structure, hence training on small patches will be less likely

to bias the network towards specific blood vessel structures

and enable the network to generalize better. Furthermore, as

FISTA and CORONA employ SVD operations, processing the

data in small batches improves execution time [27, 51].

Second, as was mentioned in the introduction, in the context

of RPCA, a principled way to construct learnable pursuit

architectures for structured sparse and robust low rank models

was introduced in [36]. The proposed network was shown to

faithfully approximate the RPCA solution with several orders

of magnitude speed-up compared to its standard optimization

algorithm counterpart. However, this approach is based on a

non-convex formulation of the nuclear norm in which the rank

(or an upper bound of it) is assumed to be known a priori.

The main idea in [36] is to majorize the non-differentiable

nuclear norm with a differentiable term, such that the low-

rank matrix is factorized as a product of two matrices, L =
AB, where A ∈ R

n×q and B ∈ R
q×m. Using this kind of

factorization alleviates the need to compute the SVD product,

but introduces another unknown parameter q which needs to

be set (typically by hand), and corresponds to the rank of

the low-rank matrix. This poses a network design limitation,

as the rank can vary between different applications or even
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different realizations of the same application, requiring the

network to be re-trained per each new choice of q.

In fact, this is the same rank-thresholding parameter as in

the standard SVD filtering technique, which we want to avoid

hand-tuning. Moreover, this kind of factorization leads to a

non-convex minimization problem, whose globally optimal

stationary points depend on the choice of the regularization

parameter λ∗. Since typically these parameters are chosen

empirically, a wrong choice of λ∗ may lead to suboptimal

reconstruction results of the RPCA problem, which are then

used as training data for the fixed complexity learned al-

gorithm. Since we operate on the original convex problem,

we train against optimal reconstruction results of the RPCA

algorithm, without the need to a-priori estimate the low-rank

degree, q.

Third, currently CORONA and ResNet offer a trade-off

between them. By relying on convolutions, CORONA is

trained with a considerable lower number of parameters (314

for 1 layer, 1796 for 10 layers) than the ResNet (25378).

CORONA outperforms ResNet in both visual quality and

quantifiable metrics, as presented in Section IV. However,

its training and execution times are slower (see Section V

in the supporting materials file). This performance-runtime

trade-off is attributed to the fact that CORONA relies on

SVD decomposition in each layer, which is a relatively

computationally demanding operation. However, it allows the

network to learn the rank of the low-rank matrix, without

the need to upper bound it and restrict the architecture of

the network. Incorporation of fast approximations for SVD

computations, such as truncated or random SVD [51–54], can

potentially expedite the network’s performance and achieve

faster execution than ResNet. It is also important to keep in

mind that ResNet does not recover the tissue signal, only the

UCA signal. In some applications, such as super-resolution

CEUS imaging over long time durations, the tissue signal is

used to correct for motion artifacts.

On a final note, the proposed iterative and deep methods

were demonstrated on the extraction of CEUS signal from

an acquired IQ movie, but in principle can also be applied to

dynamic MRI sequences, as well as to the separation of blood

from tissue, e.g. for Doppler processing. In the latter case, the

dynamic range between the tissue signal and the blood signal

will be greater than that of the tissue and UCA signal. In terms

of the iterative algorithm, this would lead to more iterations

for the separation process, but once the iterative algorithm has

finished, its learned version could be trained on its output to

achieve faster execution.
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