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Abstract

Learning-based single image super-resolution (SISR)

methods are continuously showing superior effective-

ness and efficiency over traditional model-based methods,

largely due to the end-to-end training. However, different

from model-based methods that can handle the SISR prob-

lem with different scale factors, blur kernels and noise lev-

els under a unified MAP (maximum a posteriori) frame-

work, learning-based methods generally lack such flexibil-

ity. To address this issue, this paper proposes an end-to-end

trainable unfolding network which leverages both learning-

based methods and model-based methods. Specifically, by

unfolding the MAP inference via a half-quadratic splitting

algorithm, a fixed number of iterations consisting of alter-

nately solving a data subproblem and a prior subproblem

can be obtained. The two subproblems then can be solved

with neural modules, resulting in an end-to-end trainable,

iterative network. As a result, the proposed network inher-

its the flexibility of model-based methods to super-resolve

blurry, noisy images for different scale factors via a single

model, while maintaining the advantages of learning-based

methods. Extensive experiments demonstrate the superior-

ity of the proposed deep unfolding network in terms of flex-

ibility, effectiveness and also generalizability.

1. Introduction

Single image super-resolution (SISR) refers to the pro-

cess of recovering the natural and sharp detailed high-

resolution (HR) counterpart from a low-resolution (LR) im-

age. It is one of the classical ill-posed inverse problems

in low-level computer vision and has a wide range of real-

world applications, such as enhancing the image visual

quality on high-definition displays [42, 53] and improving

the performance of other high-level vision tasks [13].

Despite decades of studies, SISR still requires further

study for academic and industrial purposes [35, 64]. The

difficulty is mainly caused by the inconsistency between the

Degradation Process

y=(x⊗ k)↓s+n

SISR Process

x=f(y; s,k, σ)
(A single model?)

Figure 1. While a single degradation model (i.e., Eq. (1)) can result

in various LR images for an HR image, with different blur kernels,

scale factors and noise, the study of learning a single deep model

to invert all such LR images to HR image is still lacking.

simplistic degradation assumption of existing SISR meth-

ods and the complex degradations of real images [16]. Ac-

tually, for a scale factor of s, the classical (traditional)

degradation model of SISR [17, 18, 37] assumes the LR im-

age y is a blurred, decimated, and noisy version of an HR

image x. Mathematically, it can be expressed by

y=(x⊗ k)↓s+n, (1)

where ⊗ represents two-dimensional convolution of x with

blur kernel k, ↓s denotes the standard s-fold downsampler,

i.e., keeping the upper-left pixel for each distinct s×s patch

and discarding the others, and n is usually assumed to be

additive, white Gaussian noise (AWGN) specified by stan-

dard deviation (or noise level) σ [71]. With a clear physical

meaning, Eq. (1) can approximate a variety of LR images

by setting proper blur kernels, scale factors and noises for

an underlying HR images. In particular, Eq. (1) has been

extensively studied in model-based methods which solve a

combination of a data term and a prior term under the MAP

framework.

Though model-based methods are usually algorithmi-

cally interpretable, they typically lack a standard criterion

for their evaluation because, apart from the scale factor,

Eq. (1) additionally involves a blur kernel and added noise.

For convenience, researchers resort to bicubic degradation

without consideration of blur kernel and noise level [14,
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56, 60]. However, bicubic degradation is mathematically

complicated [25], which in turn hinders the development of

model-based methods. For this reason, recently proposed

SISR solutions are dominated by learning-based methods

that learn a mapping function from a bicubicly downsam-

pled LR image to its HR estimation. Indeed, signifi-

cant progress on improving PSNR [26, 70] and perceptual

quality [31, 47, 58] for the bicubic degradation has been

achieved by learning-based methods, among which convo-

lutional neural network (CNN) based methods are the most

popular, due to their powerful learning capacity and the

speed of parallel computing. Nevertheless, little work has

been done on applying CNNs to tackle Eq. (1) via a single

model. Unlike model-based methods, CNNs usually lack

flexibility to super-resolve blurry, noisy LR images for dif-

ferent scale factors via a single end-to-end trained model

(see Fig. 1).

In this paper, we propose a deep unfolding super-

resolution network (USRNet) to bridge the gap between

learning-based methods and model-based methods. On one

hand, similar to model-based methods, USRNet can effec-

tively handle the classical degradation model (i.e., Eq. (1))

with different blur kernels, scale factors and noise levels via

a single model. On the other hand, similar to learning-based

methods, USRNet can be trained in an end-to-end fashion

to guarantee effectiveness and efficiency. To achieve this,

we first unfold the model-based energy function via a half-

quadratic splitting algorithm. Correspondingly, we can ob-

tain an inference which iteratively alternates between solv-

ing two subproblems, one related to a data term and the

other to a prior term. We then treat the inference as a

deep network, by replacing the solutions to the two sub-

problems with neural modules. Since the two subprob-

lems correspond respectively to enforcing degradation con-

sistency knowledge and guaranteeing denoiser prior knowl-

edge, USRNet is well-principled with explicit degradation

and prior constraints, which is a distinctive advantage over

existing learning-based SISR methods. It is worth noting

that since USRNet involves a hyper-parameter for each sub-

problem, the network contains an additional module for

hyper-parameter generation. Moreover, in order to reduce

the number of parameters, all the prior modules share the

same architecture and same parameters.

The main contributions of this work are as follows:

1) An end-to-end trainable unfolding super-resolution

network (USRNet) is proposed. USRNet is the first

attempt to handle the classical degradation model with

different scale factors, blur kernels and noise levels via

a single end-to-end trained model.

2) USRNet integrates the flexibility of model-based

methods and the advantages of learning-based meth-

ods, providing an avenue to bridge the gap between

model-based and learning-based methods.

3) USRNet intrinsically imposes a degradation constraint

(i.e., the estimated HR image should accord with the

degradation process) and a prior constraint (i.e., the es-

timated HR image should have natural characteristics)

on the solution.

4) USRNet performs favorably on LR images with dif-

ferent degradation settings, showing great potential for

practical applications.

2. Related work

2.1. Degradation models

Knowledge of the degradation model is crucial for the

success of SISR [16, 59] because it defines how the LR im-

age is degraded from an HR image. Apart from the classical

degradation model and bicubic degradation model, several

others have also been proposed in the SISR literature.

In some early works, the degradation model assumes

the LR image is directly downsampled from the HR im-

age without blurring, which corresponds to the problem of

image interpolation [8]. In [34, 52], the bicubicly down-

sampled image is further assumed to be corrupted by Gaus-

sian noise or JPEG compression noise. In [15, 42], the

degradation model focuses on Gaussian blurring and a sub-

sequent downsampling with scale factor 3. Note that, dif-

ferent from Eq. (1), their downsampling keeps the center

rather than upper-left pixel for each distinct 3×3 patch.

In [67], the degradation model assumes the LR image is

the blurred, bicubicly downsampled HR image with some

Gaussian noise. By assuming the bicubicly downsampled

clean HR image is also clean, [68] treats the degradation

model as a composition of deblurring on the LR image and

SISR with bicubic degradation.

While many degradation models have been proposed,

CNN-based SISR for the classical degradation model has

received little attention and deserves further study.

2.2. Flexible SISR methods

Although CNN-based SISR methods have achieved im-

pressive success to handle bicubic degradation, applying

them to deal with other more practical degradation mod-

els is not straightforward. For the sake of practicability, it

is preferable to design a flexible super-resolver that takes

the three key factors, i.e., scale factor, blur kernel and noise

level, into consideration.

Several methods have been proposed to tackle bicu-

bic degradation with different scale factors via a single

model, such as LapSR [30] with progressive upsampling,

MDSR [36] with scales-specific branches, Meta-SR [23]

with meta-upscale module. To flexibly deal with a blurry

LR image, the methods proposed in [44, 67] take the PCA

dimension reduced blur kernel as input. However, these

methods are limited to Gaussian blur kernels. Perhaps the
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most flexible CNN-based works which can handle various

blur kernels, scale factors and noise levels, are the deep

plug-and-play methods [65, 68]. The main idea of such

methods is to plug the learned CNN prior into the iterative

solution under the MAP framework. Unfortunately, these

are essentially model-based methods which suffer from a

high computational burden and they involve manually se-

lected hyper-parameters. How to design an end-to-end

trainable model so that better results can be achieved with

fewer iterations remains uninvestigated.

While learning-based blind image restoration has re-

cently received considerable attention [12, 39, 43, 50, 62],

we note that this work focuses on non-blind SISR which as-

sumes the LR image, blur kernel and noise level are known

beforehand. In fact, non-blind SISR is still an active re-

search direction. First, the blur kernel and noise level can

be estimated, or are known based on other information (e.g.,

camera setting). Second, users can control the preference

of sharpness and smoothness by tuning the blur kernel and

noise level. Third, non-blind SISR can be an intermediate

step towards solving blind SISR.

2.3. Deep unfolding image restoration

Apart from the deep plug-and-play methods (see, e.g., [7,

10, 22, 57]), deep unfolding methods can also integrate

model-based methods and learning-based methods. Their

main difference is that the latter optimize the parameters in

an end-to-end manner by minimizing the loss function over

a large training set, and thus generally produce better results

even with fewer iterations. The early deep unfolding meth-

ods can be traced back to [4, 48, 54] where a compact MAP

inference based on gradient descent algorithm is proposed

for image denoising. Since then, a flurry of deep unfold-

ing methods based on certain optimization algorithms (e.g.,

half-quadratic splitting [2], alternating direction method of

multipliers [6] and primal-dual [1, 9]) have been proposed

to solve different image restoration tasks, such as image de-

noising [11, 32], image deblurring [29, 49], image compres-

sive sensing [61, 63], and image demosaicking [28].

Compared to plain learning-based methods, deep unfold-

ing methods are interpretable and can fuse the degradation

constraint into the learning model. However, most of them

suffer from one or several of the following drawbacks. (i)

The solution of the prior subproblem without using a deep

CNN is not powerful enough for good performance. (ii) The

data subproblem is not solved by a closed-form solution,

which may hinder convergence. (iii) The whole inference is

trained via a stage-wise and fine-tuning manner rather than a

complete end-to-end manner. Furthermore, given that there

exists no deep unfolding SISR method to handle the classi-

cal degradation model, it is of particular interest to propose

such a method that overcomes the above mentioned draw-

backs.

3. Method

3.1. Degradation model: classical vs. bicubic

Since bicubic degradation is well-studied, it is interest-

ing to investigate its relationship to the classical degradation

model. Actually, the bicubic degradation can be approxi-

mated by setting a proper blur kernel in Eq. (1). To achieve

this, we adopt the data-driven method to solve the following

kernel estimation problem by minimizing the reconstruction

error over a large HR/bicubic-LR pairs {(x, y)}

k×s

bicubic = argmin k‖(x⊗ k)↓s −y‖. (2)

Fig. 2 shows the approximated bicubic kernels for scale fac-

tors 2, 3 and 4. It should be noted that since the downsamlp-

ing operation selects the upper-left pixel for each distinct

s × s patch, the bicubic kernels for scale factors 2, 3 and 4

have a center shift of 0.5, 1 and 1.5 pixels to the upper-left

direction, respectively.
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Figure 2. Approximated bicubic kernels for scale factors 2, 3 and

4 under the classical SISR degradation model assumption. Note

that these kernels contain negative values.

3.2. Unfolding optimization

According to the MAP framework, the HR image could

be estimated by minimizing the following energy function

E(x) =
1

2σ2
‖y − (x⊗ k)↓s ‖

2 + λΦ(x), (3)

where 1

2σ2 ‖y − (x ⊗ k)↓s)‖
2 is the data term, Φ(x) is the

prior term, and λ is a trade-off parameter. In order to obtain

an unfolding inference for Eq. (3), the half-quadratic split-

ting (HQS) algorithm is selected due to its simplicity and

fast convergence in many applications. HQS tackles Eq. (3)

by introducing an auxiliary variable z, leading to the fol-

lowing approximate equivalence

Eµ(x, z) =
1

2σ2
‖y− (z⊗k)↓s ‖

2+λΦ(x)+
µ

2
‖z−x‖2,

(4)
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where µ is the penalty parameter. Such problem can be ad-

dressed by iteratively solving subproblems for x and z

{

zk=argmin z‖y − (z⊗ k)↓s ‖
2+µσ2‖z− xk−1‖

2,(5)

xk=argmin x

µ

2
‖zk − x‖2 + λΦ(x). (6)

According to Eq. (5), µ should be large enough so that x and

z are approximately equal to the fixed point. However, this

would also result in slow convergence. Therefore, a good

rule of thumb is to iteratively increase µ. For convenience,

the µ in the k-th iteration is denoted by µk.

It can be observed that the data term and the prior term

are decoupled into Eq. (5) and Eq. (6), respectively. For

the solution of Eq. (5), the fast Fourier transform (FFT) can

be utilized by assuming the convolution is carried out with

circular boundary conditions. Notably, it has a closed-form

expression [71]

zk=F−1

(

1

αk

(

d−F(k)⊙s

(F(k)d) ⇓s

(F(k)F(k)) ⇓s+αk

)

)

(7)

where d is defined as

d = F(k)F(y ↑s) + αkF(xk−1)

with αk , µkσ
2 and where the F(·) and F−1(·) denote

FFT and inverse FFT, F(·) denotes complex conjugate of

F(·), ⊙s denotes the distinct block processing operator

with element-wise multiplication, i.e., applying element-

wise multiplication to the s × s distinct blocks of F(k),
⇓s denotes the distinct block downsampler, i.e., averaging

the s× s distinct blocks, ↑s denotes the standard s-fold up-

sampler, i.e., upsampling the spatial size by filling the new

entries with zeros. It is especially noteworthy that Eq. (7)

also works for the special case of deblurring when s = 1.

For the solution of Eq. (6), it is known that, from a Bayesian

perspective, it actually corresponds to a denoising problem

with noise level βk ,
√

λ/µk [10].

3.3. Deep unfolding network

Once the unfolding optimization is determined, the next

step is to design the unfolding super-resolution network

(USRNet). Because the unfolding optimization mainly con-

sists of iteratively solving a data subproblem (i.e., Eq. (5))

and a prior subproblem (i.e., Eq. (6)), USRNet should al-

ternate between a data module D and a prior module P .

In addition, as the solutions of the subproblems also take

the hyper-parameters αk and βk as input, respectively, a

hyper-parameter module H is further introduced into US-

RNet. Fig. 3 illustrates the overall architecture of USRNet

with K iterations, where K is empirically set to 8 for the

speed-accuracy trade-off. Next, more details on D, P and

H are provided.

Data module D The data module plays the role of Eq. (7)

which is the closed-form solution of the data subproblem.

Intuitively, it aims to find a clearer HR image which mini-

mizes a weighted combination of the data term ‖y − (z ⊗
k)↓s ‖

2 and the quadratic regularization term ‖z− xk−1‖
2

with trade-off hyper-parameter αk. Because the data term

corresponds to the degradation model, the data module thus

not only has the advantage of taking the scale factor s and

blur kernel k as input but also imposes a degradation con-

straint on the solution. Actually, it is difficult to manually

design such a simple but useful multiple-input module. For

brevity, Eq. (7) is rewritten as

zk = D(xk−1, s,k,y, αk). (8)

Note that x0 is initialized by interpolating y with scale fac-

tor s via the simplest nearest neighbor interpolation. It

should be noted that Eq. (8) contains no trainable param-

eters, which in turn results in better generalizability due

to the complete decoupling between data term and prior

term. For the implementation, we use PyTorch where the

main FFT and inverse FFT operators can be implemented

by torch.rfft and torch.irfft, respectively.

Prior module P The prior module aims to obtain a

cleaner HR image xk by passing zk through a denoiser with

noise level βk. Inspired by [66], we propose a deep CNN

denoiser that takes the noise level as input

xk = P(zk, βk). (9)

The proposed denoiser, namely ResUNet, integrates resid-

ual blocks [21] into U-Net [45]. U-Net is widely used for

image-to-image mapping, while ResNet owes its popular-

ity to fast training and its large capacity with many residual

blocks. ResUNet takes the concatenated zk and noise level

map as input and outputs the denoised image xk. By do-

ing so, ResUNet can handle various noise levels via a sin-

gle model, which significantly reduces the total number of

parameters. Following the common setting of U-Net, Re-

sUNet involves four scales, each of which has an identity

skip connection between downscaling and upscaling oper-

ations. Specifically, the number of channels in each layer

from the first scale to the fourth scale are set to 64, 128,

256 and 512, respectively. For the downscaling and upscal-

ing operations, 2×2 strided convolution (SConv) and 2×2

transposed convolution (TConv) are adopted, respectively.

Note that no activation function is followed by SConv and

TConv layers, as well as the first and the last convolutional

layers. For the sake of inheriting the merits of ResNet, a

group of 2 residual blocks are adopted in the downscaling

and upscaling of each scale. As suggested in [36], each

residual block is composed of two 3×3 convolution layers

with ReLU activation in the middle and an identity skip con-

nection summed to its output.
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Figure 3. The overall architecture of the proposed USRNet with K = 8 iterations. USRNet can flexibly handle the classical degradation

(i.e., Eq. (1)) via a single model as it takes the LR image y, scale factor s, blur kernel k and noise level σ as input. Specifically, USRNet

consists of three main modules, including the data module D that makes HR estimation clearer, the prior module P that makes HR

estimation cleaner, and the hyper-parameter module H that controls the outputs of D and P .

Hyper-parameter module H The hyper-parameter mod-

ule acts as a ‘slide bar’ to control the outputs of the data

module and prior module. For example, the solution zk
would gradually approach xk−1 as αk increases. Accord-

ing to the definition of αk and βk, αk is determined by σ
and µk, while βk depends on λ and µk. Although it is pos-

sible to learn a fixed λ and µk, we argue that a performance

gain can be obtained if λ and µk vary with two key ele-

ments, i.e., scale factor s and noise level σ, that influence

the degree of ill-posedness. Let α = [α1, α2, . . . , αK ] and

β = [β1, β2, . . . , βK ], we use a single module to predict α

and β

[α,β] = H(σ, s). (10)

The hyper-parameter module consists of three fully con-

nected layers with ReLU as the first two activation functions

and Softplus [19] as the last. The number of hidden nodes in

each layer is 64. Considering the fact that αk and βk should

be positive, and Eq. (7) should avoid division by extremely

small αk, the output Softplus layer is followed by an extra

addition of 1e-6. We will show how the scale factor and

noise level affect the hyper-parameters in Sec. 4.4.

3.4. End­to­end training

The end-to-end training aims to learn the trainable pa-

rameters of USRNet by minimizing a loss function over a

large training data set. Thus, this section mainly describe

the training data, loss function and training settings. Fol-

lowing [58], we use DIV2K [3] and Flickr2K [55] as the

HR training dataset. The LR images are synthesized via

Eq. (1). Although USRNet focuses on SISR, it is also ap-

plicable to the case of deblurring with s = 1. Hence, the

scale factors are chosen from {1, 2, 3, 4}. However, due to

limited space, this paper does not consider the deblurring

experiments. For the blur kernels, we use anisotropic Gaus-

sian kernels as in [44, 51, 67] and motion kernels as in [5].

We fix the kernel size to 25× 25. For the noise level, we set

its range to [0, 25].

With regard to the loss function, we adopt the L1 loss for

PSNR performance. Following [58], once the model is ob-

tained, we further adopt a weighted combination of L1 loss,

VGG perceptual loss and relativistic adversarial loss [24]

with weights 1, 1 and 0.005 for perceptual quality perfor-

mance. We refer to such fine-tuned model as USRGAN. As

usual, USRGAN only considers scale factor 4. We do not

use additional losses to constrain the intermediate outputs

since the above losses work well. One possible reason is

that the prior module shares parameters across iterations.

To optimize the parameters of USRNet, we adopt the

Adam solver [27] with mini-batch size 128. The learning

rate starts from 1 × 10−4 and decays by a factor of 0.5 ev-

ery 4 × 104 iterations and finally ends with 3 × 10−6. It

is worth pointing out that due to the infeasibility of parallel

computing for different scale factors, each min-batch only

involves one random scale factor. For USRGAN, its learn-

ing rate is fixed to 1×10−5. The patch size of the HR image

for both USRNet and USRGAN is set to 96× 96. We train

the models with PyTorch on 4 Nvidia Tesla V100 GPUs in

Amazon AWS cloud. It takes about two days to obtain the

USRNet model.

4. Experiments

We choose the widely-used color BSD68 dataset [40, 46]

to quantitatively evaluate different methods. The dataset

consists of 68 images with tiny structures and fine textures

and thus is challenging to improve the quantitative metrics,

such as PSNR. For the sake of synthesizing the correspond-

ing testing LR images via Eq. (1), blur kernels and noise

levels should be provided. Generally, it would be helpful to

employ a large variety of blur kernels and noise levels for

a thorough evaluation, however, it would also give rise to

burdensome evaluation process. For this reason, as shown

in Table 1, we only consider 12 representative and diverse

blur kernels, including 4 isotropic Gaussian kernels with

different widths (i.e., 0.7, 1.2, 1.6 and 2.0), 4 anisotropic
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Table 1. Average PSNR(dB) results of different methods for different combinations of scale factors, blur kernels and noise levels. The best

two results are highlighted in red and blue colors, respectively.

Method

Blur Kernel

Scale Noise

Factor Level

×2 0 29.48 26.76 25.31 24.37 24.38 24.10 24.25 23.63 20.31 20.45 20.57 22.04

RCAN [70] ×3 0 24.93 27.30 25.79 24.61 24.57 24.38 24.55 23.74 20.15 20.25 20.39 21.68

×4 0 22.68 25.31 25.59 24.63 24.37 24.23 24.43 23.74 20.06 20.05 20.33 21.47

×2 0 29.44 29.48 28.57 27.42 27.15 26.81 27.09 26.25 14.22 14.22 16.02 19.39

ZSSR [51] ×3 0 25.13 25.80 25.94 25.77 25.61 25.23 25.68 25.41 16.37 15.95 17.35 20.45

×4 0 23.50 24.33 24.56 24.65 24.52 24.20 24.56 24.55 16.94 16.43 18.01 20.68

IKC [20] ×4 0 22.69 25.26 25.63 25.21 24.71 24.20 24.39 24.77 20.05 20.03 20.35 21.58

×2 0 29.60 30.16 29.50 28.37 28.07 27.95 28.21 27.19 28.58 26.79 29.02 28.96

×3 0 25.97 26.89 27.07 27.01 26.83 26.76 26.88 26.67 26.22 25.59 26.14 26.05

IRCNN [65] ×3 2.55 25.70 26.13 25.72 25.33 25.28 25.18 25.34 24.97 25.00 24.64 24.90 24.73

×3 7.65 24.58 24.68 24.59 24.39 24.24 24.20 24.27 24.02 23.94 23.77 23.75 23.69

×4 0 23.99 25.01 25.32 25.45 25.36 25.26 25.34 25.47 24.69 24.39 24.44 24.57

×2 0 30.55 30.96 30.56 29.49 29.13 29.12 29.28 28.28 30.90 30.65 30.60 30.75

×3 0 27.16 27.76 27.90 27.88 27.71 27.68 27.74 27.57 27.69 27.50 27.50 27.41

USRNet ×3 2.55 26.99 27.40 27.23 26.78 26.55 26.60 26.72 26.14 26.90 26.80 26.69 26.49

×3 7.65 26.45 26.52 26.10 25.57 25.46 25.40 25.49 25.00 25.39 25.47 25.20 25.01

×4 0 25.30 25.96 26.18 26.29 26.20 26.15 26.17 26.30 25.91 25.57 25.76 25.70

PSNR(dB) 24.92/22.53/21.88 25.24/23.75/21.92 25.42/23.55/26.45 25.82/24.80/27.39 24.80/22.44/21.51 24.26/23.25/25.00

Zoomed LR (×4) RCAN [70] IKC [20] IRCNN [65] USRNet (ours) RankSRGAN [69] USRGAN (ours)

Figure 4. Visual results of different methods on super-resolving noise-free LR image with scale factor 4. The blur kernel is shown on the

upper-right corner of the LR image. Note that RankSRGAN and our USRGAN aim for perceptual quality rather than PSNR value.

Gaussian kernels from [67], and 4 motion blur kernels from

[5, 33]. While it has been pointed out that anisotropic Gaus-

sian kernels are enough for SISR task [44, 51], the SISR

method that can handle more complex blur kernels would

be a preferred choice in real applications. Therefore, it is

necessary to further analyze the kernel robustness of differ-

ent methods, we will thus separately report the PSNR re-

sults for each blur kernel rather than for each type of blur

kernels. Although it has been pointed out that the proper

blur kernel should vary with scale factor [64], we argue that

the 12 blur kernels are diverse enough to cover a large ker-

nel space. For the noise levels, we choose 2.55 (1%) and

7.65 (3%).

4.1. PSNR results

The average PSNR results of different methods for

different degradation settings are reported in Table 1.

The compared methods include RCAN [70], ZSSR [51],

IKC [20] and IRCNN [65]. Specifically, RCAN is state-

of-the-art PSNR oriented method for bicubic degradation;

ZSSR is a non-blind zero-shot learning method with the

ability to handle Eq. (1) for anisotropic Gaussian ker-

nels; IKC is a blind iterative kernel correction method for

isotropic Gaussian kernels; IRCNN a non-blind deep de-

noiser based plug-and-play method. For a fair comparison,

we modified IRCNN to handle Eq. (1) by replacing its data
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x0 (Top); x (Bottom) z1 −→ x1 −→ z2 x7 −→ z8 −→ x8

Figure 5. HR estimations in different iterations of USRNet (top row) and USRGAN (bottom row). The initial HR estimation x0 is the

nearest neighbor interpolated version of LR image. The scale factor is 4, the noise level of LR image is 2.55 (1%), the blur kernel is shown

on the upper-right corner of x0.

solution with Eq. (7). Note that following [37], we fix the

pixel shift issue before calculating PSNR if necessary.

According to Table 1, we can have the following ob-

servations. First, our USRNet with a single model signif-

icantly outperforms the other competitive methods on dif-

ferent scale factors, blur kernels and noise levels. In par-

ticular, with much fewer iterations, USRNet has at least an

average PSNR gain of 1dB over IRCNN with 30 iterations

due to the end-to-end training. Second, RCAN can achieve

good performance on the degradation setting similar to

bicubic degradation but would deteriorate seriously when

the degradation deviates from bicubic degradation. Such a

phenomenon has been well studied in [16]. Third, ZSSR

performs well on both isotropic and anisotropic Gaussian

blur kernels for small scale factors but loses effectiveness

on motion blur kernel and large scale factors. Actually,

ZSSR has difficulty in capturing natural image character-

istic on severely degraded image due to the single image

learning strategy. Fourth, IKC does not generalize well to

anisotropic Gaussian kernels and motion kernels.

Although USRNet is not designed for bicubic degrada-

tion, it is interesting to test its results by taking the approx-

imated bicubic kernels in Fig. 2 as input. From Table 2,

one can see that USRNet still performs favorably without

training on the bicubic kernels.

Table 2. The average PSNR(dB) results of USRNet for bicubic

degradation on commonly-used testing datasets.

Scale Factor Set5 Set14 BSD100 Urban100

×2 37.72 33.49 32.10 31.79

×3 34.45 30.51 29.18 28.38

×4 32.42 28.83 27.69 26.44

4.2. Visual results

The visual results of different methods on super-

resolving noise-free LR image with scale factor 4 are shown

in Fig. 4. Apart from RCAN, IKC and IRCNN, we also

include RankSRGAN [69] for comparison with our USR-

GAN. Note that the visual results of ZSSR are omitted due

to the inferior performance on scale factor 4. It can be ob-

served from Fig. 4 that USRNet and IRCNN produce much

better visual results than RCAN and IKC on the LR im-

age with motion blur kernel. While USRNet can recover

shaper edges than IRCNN, both of them fail to produce

realistic textures. As expected, USRGAN can yield much

better visually pleasant results than USRNet. On the other

hand, RankSRGAN does not perform well if the degrada-

tion largely deviates from the bicubic degradation. In con-

trast, USRGAN is flexible to handle various LR images.

4.3. Analysis on D and P

Because the proposed USRNet is an iterative method, it

is interesting to investigate the HR estimations of data mod-

ule D and prior module P in different iterations. Fig. 5

shows the results of USRNet and USRGAN in different it-

erations for an LR image with scale factor 4. As one can

see, D and P can facilitate each other for iterative and al-

ternating blur removal and detail recovery. Interestingly, P
can also act as a detail enhancer for high-frequency recov-

ery due to the task-specific training. In addition, it does not

reduce blur kernel induced degradation which verifies the

decoupling between D and P . As a result, the end-to-end

trained USRNet has a task-specific advantage over Gaus-

sian denoiser based plug-and-play SISR. To quantitatively

analyze the role of D, we have trained an USRNet model

with 5 iterations, it turns out that the average PSNR value

will decreases about 0.1dB on Gaussian blur kernels and

0.3dB on motion blur kernels. This further indicates that D
aims to eliminate blur kernel induced degradation. In ad-

dition, one can see that USRGAN has similar results with

USRNet in the first few iterations, but will instead recover

tiny structures and fine textures in last few iterations.
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4.4. Analysis on H

Fig. 6 shows outputs of the hyper-parameter module for

different combinations of scale factor s and noise level σ.

It can be observed from Fig. 6(a) that α is positively corre-

lated with σ and varies with s. This actually accords with

the definition of αk in Sec. 3.2 and our analysis in Sec. 3.3.

From Fig. 6(b), one can see that β has a decreasing ten-

dency with the number of iterations and increases with scale

factor and noise level. This implies that the noise level of

HR estimation is gradually reduced across iterations and

complex degradation requires a large βk to tackle with the

illposeness. It should be pointed out that the learned hyper-

parameter setting is in accordance with that of IRCNN [65].

In summary, the learned H is meaningful as it plays the

proper role.
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Figure 6. Outputs of the hyper-parameter module H, i.e., (a) α

and (b) β, with respect to different combinations of s and σ.

4.5. Generalizability

(a) Zoomed LR (×3) (b) USRNet

(c) Zoomed LR (×3) (d) USRGAN

Figure 7. An illustration to show the generalizability of USRNet

and USRGAN. The sizes of the kernels in (a) and (c) are 67×67

and 70×70, respectively. The two kernels are chosen from [41].

As mentioned earlier, the proposed method enjoys good

generalizability due to the decoupling of data term and prior

term. To demonstrate such an advantage, Fig. 7 shows the

visual results of USRNet and USRGAN on LR image with

a kernel of much larger size than training size of 25×25.

It can be seen that both USRNet and USRGAN can pro-

duce visually pleasant results, which can be attributed to

the trainable parameter-free data module. It is worth point-

ing out that USRGAN is trained on scale factor 4, while

Fig. 7(b) shows its visual result on scale factor 3. This fur-

ther indicates that the prior module of USRGAN can gener-

alize to other scale factors. In summary, the proposed deep

unfolding architecture has superiority in generalizability.

4.6. Real image super­resolution

Because Eq. (7) is based on the assumption of circular

boundary condition, a proper boundary handling for the real

LR image is generally required. We use the following three

steps to do such pre-processing. First, the LR image is inter-

polated to the desired size. Second, the boundary handling

method proposed in [38] is adopted on the interpolated im-

age with the blur kernel. Last, the downsampled boundaries

are padded to the original LR image. Fig. 8 shows the vi-

sual result of USRNet on real LR image with scale factor 4.

The blur kernel is manually selected as isotropic Gaussian

kernel with width 2.2 based on user preference. One can see

from Fig. 8 that the proposed USRNet can reconstruct the

HR image with improved visual quality.

(a) Zoomed LR (×4) (b) USRNet

Figure 8. Visual result of USRNet (×4) on a real LR image.

5. Conclusion

In this paper, we focus on the classical SISR degrada-

tion model and propose a deep unfolding super-resolution

network. Inspired by the unfolding optimization of tradi-

tional model-based method, we design an end-to-end train-

able deep network which integrates the flexibility of model-

based methods and the advantages of learning-based meth-

ods. The main novelty of the proposed network is that it can

handle the classical degradation model via a single model.

Specifically, the proposed network consists of three inter-

pretable modules, including the data module that makes HR

estimation clearer, the prior module that makes HR estima-

tion cleaner, and the hyper-parameter module that controls

the outputs of the other two modules. As a result, the pro-

posed method can impose both degradation constrain and

prior constrain on the solution. Extensive experimental re-

sults demonstrated the flexibility, effectiveness and general-

izability of the proposed method for super-resolving various

degraded LR images. We believe that our work can benefit

to image restoration research community.
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