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Abstract

Multivariate time series data are becoming increasingly ubiq-
uitous in varies real-world applications such as smart city,
power plant monitoring, wearable devices, etc. Given the cur-
rent time series segment, how to retrieve similar segments
within the historical data in an efficient and effective man-
ner is becoming increasingly important. As it can facilitate
underlying applications such as system status identification,
anomaly detection, etc. Despite the fact that various binary
coding techniques can be applied to this task, few of them
are specially designed for multivariate time series data in
an unsupervised setting. To this end, we present Deep Un-
supervised Binary Coding Networks (DUBCNs) to perform
multivariate time series retrieval. DUBCNs employ the Long
Short-Term Memory (LSTM) encoder-decoder framework to
capture the temporal dynamics within the input segment and
consist of three key components, i.e., a temporal encoding
mechanism to capture the temporal order of different seg-
ments within a mini-batch, a clustering loss on the hidden
feature space to capture the hidden feature structure, and an
adversarial loss based upon Generative Adversarial Networks
(GANs) to enhance the generalization capability of the gen-
erated binary codes. Thoroughly empirical studies on three
public datasets demonstrated that the proposed DUBCNs can
outperform state-of-the-art unsupervised binary coding tech-
niques.

Introduction

Nowadays, multivariate time series data are increasingly col-
lected in numerous real-world applications. For instance, in
a power plant (Prickett, Davies, and R. 2011), a large num-
ber of sensors can be employed to monitor the operation sta-
tus in real-time. With a fitness tracking device, a temporal
sequence of actions (Parkka et al. 2006), e.g., walking for 5
minutes, running for 1 hour, and sitting for 15 minutes, etc,
can be recorded and detected with related sensors. With the
huge amount of historical multivariate time series data, how
to interpret the current status becomes an important problem
to investigate.

∗These two authors contributed equally to this work. Dongjin
Song is the corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Multivariate time series retrieval task. A binary
vector is learned to represent each segment and the similarity
is measured with Hamming distance.

Since it is often difficult to obtain the label information
of the historical data, we formulate it as an unsupervised
multivariate time series retrieval problem. Specifically, given
the current multivariate time series segment, i.e., a slice of
multivariate time series that lasts for a fixed period of time,
we aim to find similar time series segments in the historical
data (or database) as shown in Figure 1. An ideal solution to
this problem can facilitate underlying applications such as
system status identification, anomaly detection, etc.

A naive solution for this problem is to measure the pair-
wise distance in the raw space based upon Euclidean dis-
tance (EU) or Dynamic Time Warping (DTW) (Berndt and
J. 1994; Rakthanmanon et al. 2012). This is usually com-
putationally infeasible if the number and (or) the length of
time series are relatively large. As a result, a surrogate is
to obtain a compact representation of the multivariate time
series segments, and then use a distance measure (e.g., EU
or DTW) to retrieve relevant segments. Over the past few
decades, a number of approaches have been developed to de-
note a time series segment, e.g., Discrete Fourier Transform
(DCT) (Faloutsos, Ranganathan, and Manolopoulos 1994),
Discrete Wavelet Transform (DWT) (Chan and Fu 1999),
Piecewise Aggregate Approximation (PAA) (Keogh et al.
2001), etc. Most of these representations, however, are ob-
tained based on human prior knowledge and hence could
be suboptimal for multivariate time series retrieval because
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their objectives are inconsistent. In addition, even though the
obtained representations are effective, measuring the pair-
wise distance in the feature space based upon EU or DTW
is still computationally expensive.

More recent advances (Kale et al. 2014; Luo and Shri-
vastava 2016) suggest that binary coding techniques, e.g.,
Locality Sensitive Hashing (LSH) (Andoni and Indyk
2008), Sketch, Single, & Hash (SSH) (Luo and Shrivas-
tava 2016), can be employed to further reduce the query
complexity of high-dimensional similarity search compared
to EU or DTW. In addition, deep unsupervised hash-
ing techniques, e.g., DeepBit (Lin et al. 2016) and Hash-
GAN (Ghasedi Dizaji et al. 2018), have been employed
to learn binary representations of images based upon deep
neural networks. These approaches, however, cannot explic-
itly capture temporal dynamics within the input time series
segment and the temporal order across different segments.
Moreover, they may not capture the nonlinear hidden fea-
ture structure of the input segment and their representations
may lack generalization capability.

To address the aforementioned issues, we present Deep
Unsupervised Binary Coding Networks (DUBCNs) to per-
form multivariate time series retrieval. DUBCNs employ the
Long Short-Term Memory (LSTM) encoder-decoder frame-
work to capture the temporal dynamics within the input mul-
tivariate time series segment. In this framework, we first in-
troduce a novel temporal encoding mechanism to encode the
temporal order of different segments within a mini-batch,
with the intuition that relatively close (or consecutive) seg-
ments in temporal dimension tend to share similar binary
codes. Then, a clustering loss is imposed on the hidden fea-
ture space in order to capture the nonlinear hidden feature
structure and enhance the discriminative property of gener-
ated binary codes. Finally, an adversarial loss based upon
Generative Adversarial Networks (GANs) is utilized to im-
prove the generalization capability of the generated binary
codes. Thoroughly empirical studies on three public datasets
demonstrated that the proposed DUBCNs can outperform
state-of-the-art unsupervised binary coding techniques.

Related Works

The proposed DUBCNs are related to recent advances in
time series representation as well as unsupervised binary
coding techniques.

Existing techniques for time series representation can
be divided into three main categories: temporal methods,
spectral methods, and learning based methods. Temporal
representations, e.g., extrema extraction (Fink, Pratt, and
Gandhi 2003), bit-level representation (Bagnall et al. 2006),
Piecewise Aggregate Approximation (PAA) (Yi and Falout-
sos 2000; Keogh et al. 2000), Adaptive Piecewise Con-
stant Approximation (APCA) (Keogh et al. 2001), tem-
poral logic (Bufo et al. 2014), etc., aim to encode the
temporal structure of raw data. Spectral based methods,
e.g., Discrete Fourier Transform (DCT) (Faloutsos, Ran-
ganathan, and Manolopoulos 1994), Discrete Wavelet Trans-
form (DWT) (Chan and Fu 1999), Mel-Frequency Cepstral
Coefficients (MFCC) (Zheng, Zhang, and Song 2001), etc.,

represent the raw data with frequency information. Learn-
ing based methods include principle component analysis
(PCA), Hidden Markov Models (HMMs) (Azzouzi and Nab-
ney 1998), etc. These representations are obtained based on
human prior knowledge and thus could be suboptimal for
multivariate time series retrieval since their objectives are
usually decoupled.

DUBCNs is more closely related to binary coding tech-
niques which include data independent binary coding ap-
proaches (Andoni and Indyk 2008; Broder et al. 1998)
as well as data dependent (learning based) binary embed-
ding methods (Weiss, Torralba, and Fergus 2008; Gong et
al. 2012; Liu et al. 2012; Norouzi, Fleet, and Salakhut-
dinov 2012; Shen et al. 2015; Song et al. 2015a; 2015b;
Song, Liu, and Meyer 2016). In particular, learning based
binary coding techniques can be further categorized into un-
supervised methods such as spectral hashing (Weiss, Tor-
ralba, and Fergus 2008), Iterative Quantization (ITQ) (Gong
et al. 2012), and supervised methods such as kernelized su-
pervised hashing (Liu et al. 2012), etc.. More recently, unsu-
pervised deep binary coding methods such as DeepBit (Lin
et al. 2016) and HashGAN (Ghasedi Dizaji et al. 2018) have
shown their effectiveness for unsupervised image retrieval
task. Compared to these techniques, DUBCNs are unique
since it is specially designed for multivariate time series data
and thus can explicitly capture temporal dynamics within the
input time series segment and the temporal order across dif-
ferent segments. Moreover, DUBCNs can not only capture
the nonlinear hidden feature structure of the input segment
and enhance the discriminative property of generated binary
codes, but also improve the generalization capability.

Deep Unsupervised Binary Coding Networks

In this section, we present Deep Unsupervised Binary Cod-
ing Networks (DUBCNs) to perform multivariate time series
retrieval (as shown in Figure 2). Specifically, we first state
the problem to study. Then, we introduce DUBCNs which
are essentially a novel LSTM Encoder-Decoder framework
with three key components, i.e., a temporal encoding mech-
anism, a clustering loss, and an adversarial loss, to per-
form binary coding. Finally, we introduce the objective of
DUBCNs and the detailed training procedure.

Problem Statement

We first introduce notations used in the paper. Given a
multivariate time series segment, i.e., n time series with
Xt,w = (x1, · · · ,xn)⊤ = (xt−w+1, · · · ,xt) ∈ R

n×w

where t is the time step index and w is the length of win-
dow size, we use xk = (xk

t−w+1, x
k
t−w+2, · · · , x

k
t )

⊤∈ R
w

to represent the k-th time series of length w and employ
xt = (x1

t , x
2
t , · · · , x

n
t )

⊤ ∈ R
n to denote a vector of n in-

put series at time t. In addition, we use ‖ · ‖F to denote the
Frobenius norm of matrices.

With a query multivariate time series segment Xq,w ∈
R

n×w, i.e., a slice of n time series which lasts w time steps,
we aim to find its most similar time series segments in the
historical data (or database), i.e., we expect to obtain:

arg max
Xp,w∈D

S(Xq,w,Xp,w) (1)
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Figure 2: The architecture of DUBCNs. The left part is a LSTM encoder which is used to represent the input segment. The right
part is a LSTM decoder which is employed to reconstruct the input segment. In the middle, the temporal encoding mechanism,
the clustering loss, and the adversarial loss are shown from top to down.

where D = {Xp,w} is a collection of segments, p denotes
the time index for p-th segment (∀w − 1 ≤ p ≤ T ), T
denotes the total length of time series, and S(·) represents
a similarity measure function. Note that in practise, we can
also use distance measure to retrieve similar segments with
small distance.

LSTM Encoder

To encode the temporal information within a multivariate
time series segment, similar to Seq2Seq model used in ma-
chine translation and video representation (Cho et al. 2014;
Sutskever, Vinyals, and Le 2014; Srivastava, Mansimov, and
Salakhudinov 2015), we adopt a LSTM encoder to repre-
sent the input time series segment. Specifically, given the in-
put sequence xk = (xk

t−w+1, x
k
t−w+2, · · · , x

k
t )

⊤∈ R
w with

xt ∈ R
n, where n is the number of input time series, the

encoder can be applied to learn a mapping from xt−1 to ht

(at time step t) with

ht = LSTMenc(ht−1,xt), (2)

where ht ∈ R
m is the hidden state of the encoder at time

t, m is the size of the hidden state, and LSTMenc is a Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber
1997) unit. Each LSTM unit has a memory cell with the state
st at time t. Access to the memory cell will be controlled by
three sigmoid gates: forget gate ft, input gate it and output
gate ot. The update of an LSTM unit can be summarized as
follows:

ft = σ(Wf [ht−1;xt] + bf ) (3)

it = σ(Wi[ht−1;xt] + bi) (4)

ot = σ(Wo[ht−1;xt] + bo) (5)

st = ft ⊙ st−1 + it ⊙ tanh(Ws[ht−1;xt] + bs) (6)

ht = ot ⊙ tanh(st) (7)

where [ht−1;xt] ∈ R
m+n is a concatenation of the previ-

ous hidden state ht−1 and the current input xt. Wf , Wi,

Wo, Ws ∈ R
m×(m+n), and bf , bi, bo, bs ∈ R

m are pa-
rameters to learn. σ and ⊙ are a logistic sigmoid function
and an element-wise multiplication, respectively. The key
reason for using an LSTM unit is that the cell state sums
activities over time, which can overcome the problem of
vanishing gradients and better capture long-term dependen-
cies of time series. Several previous works (Qin et al. 2017;
Song et al. 2018; Zhang et al. 2019) have shown its effec-
tiveness on modeling time series data.

Temporal Encoding

Although LSTM encoder can capture the temporal informa-
tion within each segment, the temporal order across differ-
ent segments is not modeled explicitly. Based upon the intu-
ition that two consecutive (or very close) segments are more
likely to have similar binary codes, we develop a temporal
encoding mechanism to explicitly encode temporal order of
different segments. Specifically, for a given batch of 2N seg-
ments, we randomly sample half of them and sequentially
sample the other half. Randomly sampled segments are em-
ployed to avoid unstable gradient and improve generaliza-
tion capability. For these segments, a 2-dimensional vector
of zero entries is concatenated with the original hidden fea-
ture vector ht. For sequentially sampled segments, a tempo-
ral encoding (TE) vector (sin(πi

N
),cos(πi

N
)) is employed to

encode the relative temporal position of different segments
with N ≥ i ≥ 0. Therefore, for each batch of segments, the
temporal encoding vector (C,S) can be denoted as:

(C, S) =

{

(0, 0), if the segment is randomly sampled

(sin(πi
N
), cos(πi

N
)), sequential segments

(8)
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Figure 3: Temporal within-batch encoding for (C,S). The
yellow points denote the temporal encoding vectors (C,S)
for the sequentially sampled half batch and the black points
represent the temporal encoding vectors (0,0) for the ran-
domly sampled half batch.

where i is the index of the segment within the sequentially
sampled half batch. The temporal encoding mechanism is
shown in Figure 3.

After temporal encoding, a fully connected layer is em-
ployed to obtain a feature vector g ∈ R

m. Then, the hyper-
bolic tangent function is used to generate the approximated
binary code tanh(g). Finally, another fully connected layer
is used to get the feature vector h′

t ∈ R
m which serves as the

input of LSTM decoder. The detailed procedure is shown in
Figure 2.

Note that although the idea of TE is similar to Positional
Encoding (PE) in Transformer (Vaswani et al. 2017), they
are essentially different. This is because, similar to LSTMs,
PE encodes the temporal information within the segment
while TE focuses on capturing the temporal order of dif-
ferent segments.

Clustering Loss

With the intuition that input multivariate time segments may
exhibit different properties (such as uptrend, downtrend,
etc.), it is rational to explore the nonlinear hidden feature
structure of the input time series segments and encourage
those segments falling into the same cluster to have more
similar features than those segments falling into different
clusters. In this way, the generated binary code can also pre-
serve the discriminative information among clusters. For this
purpose, assuming the initial cluster centroids {µj}

k
j=1 are

available in the hidden space, we can compute a soft assign-
ment between the hidden feature points gi and the cluster
centroids, i.e.,

qij =
(1 + ||gi − µj ||/α)

− α+1
2

∑k

j=1(1 + ||gi − µj ||/α)−
α+1

2

, (9)

where gi ∈ R
m is the hidden feature obtained after a fully

connected layer based upon TE. α are the degrees of free-
dom for the Student’s t-distribution (Maaten and Hinton
2008). qij represents the probability of assigning segment
i to cluster j. For simplicity, we set α = 1 for all experi-
ments. In practical applications, the initial cluster centroids
{µj}

k
j=1 are obtained based upon centroids in the raw space

with k-means algorithm.

Inspired by DEC (Xie, Girshick, and Farhadi 2016), we
adopt a clustering objective based upon KL divergence loss
between the soft assignments qi and the auxiliary target dis-
tribution pi:

Lcluster =

N
∑

i=1

k
∑

j=1

pij log
pij
qij

. (10)

Since we expect the target distribution to improve cluster pu-
rity, put more emphasis on segments assigned with high con-
fidence, and prevent large clusters from distorting the hidden
feature space, pij can be calculated with

pij =
q2ij/zj

∑

j′ q
2
ij′/z

′
j

, (11)

where zj =
∑

i qij denotes soft cluster counts.

Adversarial Loss

When exploring clustering in the hidden feature space of
DUBCNs, one of the potential issues is overfitting. This is
because the training is conducted over the batch level and the
sampled segments in each batch could be biased. To over-
come this issue, we employ an adversarial loss to enhance
the generalization capability of DUBCNs. Specifically, an
adversarial loss (Goodfellow et al. 2014; Mirza and Osin-
dero 2014) is employed

Ladv =Eg∼pdata(g)[logD(g)]+

Ez∼pdata(z)[log(1−D(G([g + z; c])))],
(12)

where G(·) denotes a generator which tries to generate a fea-
ture vector that looks similar to feature vectors from the raw
input segments, while D(·) aims to distinguish between the
generated samples G(·) and real feature vector g ∈ R

m. z
is a random noise vector of dimension m draw from a nor-
mal distribution. Here, instead of using a generator purely
based upon z, we use g + z and concatenate the clustering
membership c ∈ R

k since it helps to generalize the hidden
features within a specific cluster.

Specifically, G(·) consists of two fully connected layers
with an output dimension of m. D(·) also consists of two
fully connected layers. The output dimension of these two
layers is m and 1, respectively.

LSTM Decoder

The feature vector h′
t ∈ R

m serves as the context feature
vector for LSTM decoder at time 0, i.e., b′0 = h′

t. Specifi-
cally, LSTM decoder is defined as

d′
t = LSTMdec(d

′
t−1,x

′
t−1), (13)

where dt is updated as:

f ′
t = σ(W′

f [d
′
t−1;x

′
t−1] + b′f ) (14)

i′t = σ(W′
i[d

′
t−1;x

′
t−1] + b′i) (15)

o′
t = σ(W′

o[d
′
t−1;x

′
t−1] + b′o) (16)

s′t = f ′
t ⊙ s′t−1 + i′t ⊙ tanh(W′

s[d
′
t−1;x

′
t−1] + b′s) (17)
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dt = o′
t ⊙ tanh(s′t), (18)

where [d′
t−1;x

′
t−1] ∈ R

m+n is a concatenation of the previ-

ous hidden state d′
t−1 and the decoder input x′

t−1. W′
f , W′

i,

W′
o, W′

s ∈ R
m×(m+n), and b′f , b′i, b

′
o, b′s ∈ R

m are param-

eters to learn. σ and ⊙ are a logistic sigmoid function and an
element-wise multiplication, respectively.

The reconstructed input at each time step is produced by

x̂t = d′
tWout + bout, (19)

where Wout ∈ R
m×n and bout ∈ R

n. Finally, the Mean
Square Error (MSE) is used as the objective for LSTM
Encoder-Decoder, i.e.,

LMSE =
1

N

N
∑

i=1

‖X̂
i

t,w − Xi
t,w‖

2
F, (20)

where i is the index for a segment and N is the number of
segments in a batch.

Objective and Training Procedure

The full objective of DUBCNs is given by

L = LMSE + λ1Lcluster + λ2Ladv, (21)

where λ1 ≥ 0 and λ2 ≥ 0 are hyper-parameters to control
the importance of clustering loss as well as adversarial loss.
To optimize this objective, we need to solve a two-player
Minimax game

G∗, D∗ = argmin
G

max
D

L(G,D). (22)

Therefore, we optimize the generator G(·) and discrimina-
tor D(·) iteratively. Specifically, when optimizing D(·), we
only focus on the two fully connected layers of D(·), while
optimizing G(·), we also update the network parameters via
MSE loss LMSE as well as clustering loss Ladv.

We use Adam optimizer (Kingma and Ba 2014) to train
the model. The size of the mini-batch is 128.

Experiments

In this section, we first introduce three datasets used in our
evaluation. Next, we present parameter settings and evalu-
ation metrics. Finally, we compare the proposed DUBCNs
with 5 different baselines, study its efficiency, parameter
sensitivity and model complexity.

Datasets

We consider three real-world multivariate time series
datasets, i.e., EEG Eye State, Internet of Things (IoT), and
Twitter. The detailed statistics of these datasets are shown in
Table 1.

• EEG Eye State dataset 1 is collected with the Emotiv EEG
Neuroheadset. The eye state is detected via a camera dur-
ing the EEG measurement. ‘1’ indicates the eye-closed
and ‘0’ denotes the eye-open state. In our experiment, we
sequentially sample 7,488 segments with the size of win-
dow w=5 and interval 2.

1https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State

Table 1: The statistics of three multivariate time series
datasets. N.A. denotes not available.

Dataset # of time series Length # of classes

EEG Eye State 14 14,980 2

IoT 4 20,000 4

Twitter 77 583,250 N.A.

• IoT dataset is collected to monitor the GPU fan status
(normal, eccentric, break, and stop). In our experiments,
9998 segments are sequentially sampled with the size of
window w=5 and interval 2.

• Twitter dataset 2 does not contain class information and
is originally used for Buzz prediction. Here, we use it for
multivariate time series retrieval and sequentially generate
58,323 segments with window size w=20 and interval 10.

For those segments in each dataset, the first half is used
for training, the next 10% are used for validation, and the
last 40% are used for the test in our empirical studies.

Parameter Settings and Evaluation Metrics

DUBCNs contain 6 hyper-parameters. For simplicity, we
fix mini-batch size as 128 in all experiments. The learn-
ing rate is selected from {10−6,10−5,10−4,10−3}. In ad-
dition, we set the hidden feature dimension of LSTM en-
coder/decoder as m = 64, 128, 256 to obtain different
lengths of binary codes. For those two hyper-parameters λ1

and λ2 in the objective Eq 21, they are optimized based
upon grid search over λ1 = {10−3, 10−2, 10−1, 1} and
λ2 = {10−5, 10−4, 10−3, 10−2} when the number of clus-
ter varies k = {2, 4, 8}. To determine the optimal network
parameters for test, we conduct 5 trials on each parameter
combination and the combination which achieves best aver-
age MAP on the validation set is utilized for test. DUBCNs
is implemented with TensorFlow and trained on a server
with Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz and
4 NVIDIA GTX 1080 Ti graphics cards.

To measure the effectiveness of unsupervised multivariate
time series retrieval, given a query segment, we first calcu-
late its K Nearest Neighbors (KNN) based upon Euclidean
distance in the raw space (by comparing to historical data)
and use KNN as the ground truth. Then, after getting the
binary codes, we retrieve similar segments (in the historical
data) based upon the Hamming distance and employ three
evaluation metrics, i.e., Mean Average Precision (MAP),
precision at top-K positions (Precision@K), and recall at
top-K positions (Recall@K), to measure the effectiveness.

Results

We evaluate the effectiveness of DUBCNs for unsupervised
multivariate time series retrieval tasks based upon three dif-
ferent datasets.

2https://archive.ics.uci.edu/ml/datasets/Buzz+in+social+
media+#
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Table 2: Unsupervised multivariate time series retrieval performance (MAP) on EEG Eye State (KNN=100), IoT (KNN=100),
and Twitter (KNN=500) when m = 64, 128, and 256. The best MAP is displayed in bold-face type.

Algorithms EEG Eye State IoT Twitter

♯ Bits 64 128 256 64 128 256 64 128 256

LSH 0.1999 0.2561 0.3063 0.3839 0.4833 0.5346 0.0775 0.1159 0.1599

ITQ 0.1558 0.1425 0.1448 0.2199 0.2173 0.2173 0.0575 0.0904 0.1115

DeepBit 0.2725 0.3342 0.3816 0.1789 0.2038 0.2150 0.0711 0.0896 0.1149

HashGAN 0.2732 0.3352 0.3706 0.2034 0.2280 0.2452 0.0808 0.1010 0.1139

LSTM-ED 0.2832 0.3585 0.3870 0.3844 0.4972 0.5211 0.1015 0.1331 0.1562

DUBCNs(Clustering) 0.2915 0.3648 0.3979 0.4091 0.4950 0.5416 0.1057 0.1349 0.1601

DUBCNs(TE+Clustering) 0.2926 0.3640 0.4103 0.4117 0.4954 0.5446 0.1077 0.1337 0.1607

DUBCNs(TE+Clustering+Adv) 0.2972 0.3669 0.4279 0.4406 0.5210 0.5646 0.1080 0.1371 0.1615

(a) Precision@K on EEG Eye State (b) Precision@K on IoT (c) Precision@K on Twitter

Figure 4: Precision@K with 64 binary bits on EEG Eye State, IoT, and Twitter.

Baselines. We compare DUBCNs with 5 different base-
line methods. Among these baseline methods, two are
unsupervised shallow methods, including one randomized
method Locality-Sensitive Hashing (LSH) (Andoni and In-
dyk 2008) and one linear projection method Iterative Quan-
tization (ITQ) (Gong et al. 2012). The other three are unsu-
pervised deep binary coding approaches, i.e., DeepBit (Lin
et al. 2016), HashGAN (Ghasedi Dizaji et al. 2018), and
LSTM Encoder-Decoder (LSTM-ED) (Srivastava, Mansi-
mov, and Salakhudinov 2015). All experiments are repeated
5 times and the average performance (MAP, Precision@K,
Recall@K) is reported for comparison. Note that LSH and
ITQ employ the vectorized raw time series segment as the
input while unsupervised deep binary coding approaches
DeepBit, HashGAN, and LSTM-ED directly utilize the raw
multivariate time series segment Xt,w as the input.

Effectiveness. The MAP of DUBCNs as well as 5 base-
line approaches for unsupervised multivariate time series re-
trieval are shown in Table 2. We notice that unsupervised
deep binary coding approaches, i.e., DeepBit and Hash-
GAN, outperform shallow unsupervised approaches, i.e.,
LSH and ITQ, on EEG Eye State and Twitter. This is be-
cause DeepBit and HashGAN can obtain good binary rep-
resentations via deep neural networks. Meanwhile, we ob-
serve that LSTM-ED consistently outperforms DeepBit and
HashGAN over three different datasets. This may be due
to that DeepBit and HashGAN are specially designed for
images and cannot explicitly capture the temporal dynam-

ics in the input segment which could be essential for bi-
nary coding. Finally, we find that the proposed DUBCNs
(TE+Clustering+Adv) consistently outperform all baseline
approaches on three datasets. This justifies the effectiveness
of the proposed technique.

We also compare DUBCNs (m=64 bits) with 5 base-
line methods based upon Precision@K and Recall@K in
Figure 4 and Figure 5, respectively. We observe DUBCNs
(TE+Clustering+Adv) generally outperform baseline ap-
proaches. This is because DUBCNs not only encode the
temporal order of different segments but also capture the
hidden feature structure and can generalize well.

Ablation study. To further investigate how each com-
ponent of DUBCNs help to improve the unsuper-
vised retrieval task, we also compare the full DUBCNs
(TE+Clustering+Adv), with its variants, i.e., DUBCNs
(Clustering) in which both clustering loss and MSE
loss is considered, and DUBCNs (TE+Clustering) in
which Temporal Encoding (TE) mechanism, clustering
loss, and MSE loss are all applied. In Table 2, we
notice that DUBCNs (Clustering) generally outperforms
LSTM-ED. This suggests that modeling the hidden fea-
ture structure appropriately is helpful for retrieval tasks.
We also observe that DUBCNs (TE+Clustering) con-
sistently outperform DUBCNs (Clustering). It indicates
the necessity of the Temporal Encoding (TE) mecha-
nism. Finally, DUBCNs (TE+Clustering+Adv) outperform
DUBCNs (TE+Clustering) in general. This suggests that
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(a) Recall@K on EEG Eye State (b) Recall@K on IoT (c) Recall@K on Twitter

Figure 5: Recall@K with 64 binary bits on EEG Eye State, IoT, and Twitter.

(a) EEG Eye State (b) IoT (c) Twitter

Figure 6: Parameter sensitivity study on 256 binary bits on EEG Eye State, IoT, and Twitter.

adversarial loss can help enhance the generalization of
DUBCNs.

Efficiency. We examine query time for DUBCNs when
m = 64 bits on EEG Eye State dataset. Given a query
segment, the average binary code generation time for an in-
put segment is 1.65×10−5 seconds and the average query
time to obtain the top 100 relevant examples (on CPU) is
5.05×10−4 seconds. For the EU, the average query time
is 1.22×10−3 seconds and it will linearly increase as the
length of the query segment increases. While for DUBCNs,
the query time will not change as long as the length of the
binary code is fixed. For IoT and Twitter datasets, the results
are similar.

Parameter Sensitivity and Model Complexity

We study the sensitivity of DUBCNs with respect to
the parameters λ1 = {10−3, 10−2, 10−1, 1} and λ2 =
{10−5, 10−4, 10−3, 10−2} for three datasets when m = 256
bits and k=8. The other parameters are fixed. We plot the
MAP with respect to λ1 and λ2 in Figure 6 and can ob-
serve that the performance of DUBCNs is relatively stable
on three datasets when λ1 and λ2 varies.

We also study the effect of k (the number of clusters) in
Table 3 when m = 256 bits, and λ1 and λ2 are fixed. We no-
tice that the performance of DUBCNs is gradually increas-
ing when k varies from 2, 4, to 8 on three different datasets.

When m = 64, the number of model param-
eters for LSTM-ED, DUBCNs (Clustering), DUBCNs
(TE+Clustering), and DUBCNs (TE+Clustering+Adv) are

Dataset k = 2 k = 4 k = 8

EEG Eye State 0.3913 0.4028 0.4279

IoT 0.5178 0.5252 0.5646

Twitter 0.1502 0.1510 0.1615

Table 3: The parameter sensitivity of k. MAP of k vs dataset

164800, 164800, 164928, and 173825 for EEG; 153280,
153280, 153408, and 162305 for IoT; 237376, 237376,
237504, and 246401 for Twitter. Compared to LSTM-ED,
DUBCNs (TE+Clustering+Adv) only increases the number
of parameters around 5%.

Conclusion

In this paper, we introduced Deep Unsupervised Binary
Coding Networks (DUBCNs) to perform multivariate time
series retrieval. DUBCNs are essentially a Long Short-Term
Memory (LSTM) encoder-decoder framework consisting of
three key components, a temporal encoding mechanism to
encode the temporal order of different segments within a
mini-batch, a clustering loss on the hidden feature space
to capture the nonlinear hidden feature structure and en-
hance the discriminative property of generated binary codes,
and an adversarial loss to improve the generalization ca-
pability of the generated binary codes. Our experiment re-
sults on three public datasets demonstrated that the pro-
posed DUBCNs can outperform state-of-the-art binary cod-
ing techniques.
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