
1

Deep Unsupervised Embedding for Remotely

Sensed Images based on Spatially Augmented

Momentum Contrast

Jian Kang, Member, IEEE, Ruben Fernandez-Beltran, Member, IEEE,

Puhong Duan, Student Member, IEEE, Sicong Liu, Member, IEEE, and Antonio

Plaza, Fellow, IEEE

Abstract

Convolutional neural networks (CNNs) have achieved great success when characterizing remote

sensing (RS) images. However, the lack of sufficient annotated data (together with the high complexity of

the RS image domain) often make supervised and transfer learning schemes limited from an operational

perspective. Despite the fact that unsupervised methods can potentially relieve these limitations, they

are frequently unable to effectively exploit relevant prior knowledge about the RS domain, which

may eventually constrain their final performance. In order to address these challenges, this paper

presents a new unsupervised deep metric learning model, called spatially augmented momentum contrast

(SauMoCo), which has been specially designed to characterize unlabeled RS scenes. Based on the first

law of geography, the proposed approach defines a spatial augmentation criteria to uncover semantic

relationships among land cover tiles. Then, a queue of deep embeddings is constructed to enhance the
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semantic variety of RS tiles within the considered contrastive learning process, where an auxiliary CNN

model serves as an updating mechanism. Our experimental comparison, including different state-of-the-

art techniques and benchmark RS image archives, reveals that the proposed approach obtains remarkable

performance gains when characterizing unlabeled scenes, since it is able to substantially enhance the

discrimination ability among complex land cover categories. The source codes of this paper will be

made available to the RS community for reproducible research.

Index Terms

Deep learning, metric learning, self-supervised learning, unsupervised learning, remote sensing,

scene characterization.

I. INTRODUCTION

With the growing development of deep learning (DL) technologies, these kinds of methods

have achieved tremendous success in many important Remote Sensing (RS) applications [1],

[2], such as scene classification [3]–[7], object localization [8]–[12] and change detection [13]–

[15], owing to their prominent capabilities to uncover highly representative features from RS

scenes [16]. In general, DL techniques aim at projecting the visual content of input images

onto a particular label space, using a hierarchy of nonlinear layers to generate a high-level

semantic abstraction that is very useful to characterize RS data. Most available DL-based image

characterization methods in the RS field rely on a supervised learning scheme, in which a large

amount of labeled scenes is required to properly train the models and prevent over-fitting [17].

However, the task of obtaining relevant annotations for vast volumes of RS data can be very

difficult and time consuming. This may severely constrain the applicability and potential of the

supervised DL paradigm in operational RS environments, especially under the most challenging

conditions [18].

In order to mitigate the need for labeled RS data, different strategies have been effectively

explored in the literature, e.g. [19]–[22]. One of the most popular schemes is based on the

use of pre-trained convolutional neural networks (CNNs) [23], where different pre-defined CNN

architectures (e.g. AlexNet [24], VGGNet [25], GoogleNet [26] and ResNet [27]), trained on

large-scale computer vision datasets (e.g. ImageNet [28]) are directly used as feature extraction

methods for RS data. Despite its remarkable success [29]–[32], the existing limitations on the

number of spectral bands and the data complexity make this transfer learning scheme unable to

fully exploit the advantages of RS imagery [33]. An attractive option to relieve these limitations
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consists of using unsupervised methods to characterize unlabeled RS scenes. As a result, different

methods have been successfully proposed within and outside the DL field [34]–[37]. However,

the general unsupervised framework is often unable to introduce appropriate prior knowledge

about the RS image domain, eventually constraining the resulting performance. Although a

recently developed deep metric learning method –the Tile2Vec [38]– is certainly able to obtain

promising results by using the geospatial information as prior knowledge, the unprecedented

availability of massive RS archives, together with the constant development of the acquisition

technology, still make unsupervised DL-based image characterization a major challenge in RS.

Note that the integration of the unsupervised mode into the deep metric learning approach [39] is

highly limited by the contrasting land cover types that can be sampled in a single batch, which

may eventually reduce the capacity of the model to distinguish a broader range of complex

RS categories, and also motivates the development of novel techniques useful to deal with the

large-scale variance complexity of the RS image domain [40].

With all these considerations in mind, this paper proposes a new unsupervised deep met-

ric learning approach, called spatially augmented momentum contrast (SauMoCo), which has

been specially designed to characterize unlabeled RS scenes. Inspired by Tobler’s first law of

geography [41], the proposed approach provides a new perspective on unsupervised land cover

characterization in which not only the semantic similarities among nearby scenes are exploited to

learn the corresponding feature embeddings, but also the inherent diversity within RS semantic

concepts. To achieve this goal, we define a spatial augmentation criteria to uncover enhanced

semantic relationships among RS tiles for the embedding space. Then, we build a queue of deep

embeddings, where the size of queue is forced to be larger than the batch size in order to further

increase the semantic variety of contrasting land cover tiles during the training process. Moreover,

we introduce an auxiliary CNN into our model to consistently update the deep embeddings of

the RS tiles in the queue. With the objective of validating the proposed approach, we conduct a

comprehensive experimental comparison, using two benchmark datasets and different state-of-

the-art characterization techniques, which demonstrates the superior performance of the presented

method in the task of categorizing RS scenes without using any land cover class information.

In short, the main contributions of this paper can be summarized as follows:

1) We propose a new unsupervised deep metric learning model (SauMoCo) to characterize

unlabeled RS images. The presented approach pursues to exploit not only the semantic

similarities among nearby geospatial locations, but also the inherent diversity within land
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cover concepts, by using a newly defined spatial augmentation criteria with a contrastive

loss formulation and a momentum update-based optimization.

2) We investigate how the proposed SauMoCo model performs with large-scale training data,

which gives us important insights about the working mechanism and practical advantages

of the proposed method with respect to other unsupervised RS image characterization tech-

niques available in the literature. The codes of this work will be released for reproducible

research inside the research community.

The rest of this paper is organized as follows. Section II reviews some related works on RS

scene characterization while highlighting their main limitations. Section III details the proposed

unsupervised deep metric learning model for RS images. Section IV presents the experimental

part of the work. Finally, Section V concludes the paper with some remarks and hints at plausible

future research lines.

II. RELATED WORK

Different strategies have been successfully adopted within the RS field to relieve the need for

labeled data when characterizing aerial scenes. This section reviews some of the most relevant

trends, including pre-trained (Section II-A), unsupervised (Section II-B) and deep metric learning-

based (Section II-C) methods. Additionally, we also analyze their main limitations in the context

of RS problems (Section II-D).

A. Pre-trained Methods

One of the most popular schemes to characterize RS data is based on the use of pre-trained

convolutional neural networks (CNNs). In more details, these approaches make use of pre-defined

CNN models, such as AlexNet [24], VGGNet [25], GoogleNet [26] or ResNet [27], which are

pre-trained on large-scale computer vision datasets, such as the ImageNet [28] collection. In

this way, the amount of labeled RS scenes can be substantially reduced by transferring the

knowledge from the standard image domain to the RS field. For instance, Hu et al. define in

[42] two different schemes to take advantage of the VGGNet model pre-trained on ImageNet. In

the first scheme, the authors employ the last fully connected layers as image descriptors. In the

second one, an additional encoding procedure is used to fuse the last convolutional feature maps.

In both cases, a support vector machine (SVM) is adopted to finally classify the RS images.

Precisely, Marmanis et al. analyze in [29] the effectiveness of classifying remotely sensed scenes
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using different CNN-based representations transferred from ImageNet. Similarly, Li et al. present

in [31] a multi-layer feature fusion framework which integrates several pre-trained DL models for

RS scene classification. Zheng et al. build in [43] a holistic representation of RS images using a

multi-scale pooling over pre-trained features. Kang et al. also combine in [44] several pre-trained

CNN architectures to define a building-instance level land-use classification framework. In [30],

the authors propose using a sparse autoencoder (AE) over pre-trained features to generate the

final representation of RS scenes.

Despite the remarkable performance achieved by these and other pre-trained models, there

are still some important limitations that substantially reduce the applicability of such transfer

learning strategies within the RS field. On the one hand, standard image collections, such as

ImageNet, are often made up of RGB imagery, which makes existing pre-trained networks

unable to take advantage of the additional spectral bands provided by air-borne and space-borne

optical sensors [45]. Note that RS instruments are often designed to provide valuable informa-

tion outside the visible spectrum, and these data are essential in may important applications,

such as biophysical parameter analysis [46] and land cover material study [47]. On the other

hand, standard images often contain natural object-centric photographs that hardly represent the

complexity of RS scenes, comprising fully focused multi-band shots of the Earth surface with

plenty of complex spatio-spectral details within the same acquisition frame [48]. Precisely, these

important differences often make necessary to consider broader strategies than pre-tranined DL

models.

B. Unsupervised Methods

A more general option to relieve the need for annotated RS data is based on using unsupervised

image characterization methods. In more details, these techniques work for characterizing aerial

scenes without using any class label information, which becomes particularly attractive in RS

problems [18]. Consequently, different unsupervised models (both within and outside the DL

field) have been proposed to learn informative representations from unlabeled RS scenes. For

instance, Cheriyadat presented in [49] a feature learning approach for aerial scenes which adopts

a sparse coding framework to generate unsupervised data representations based on a set of basis

functions derived from low-level measurements. Following this idea, other authors proposed

using different unsupervised decomposition frameworks instead. This is the case of the works

presented in [37], [50], [51], which make use of probabilistic topic models to represent the
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RS data as probability distributions of feature patterns. In [52], Zhang et al. exploit a sparse

AE to effectively learn saliency-guided unsupervised features for RS scenes. Analogously, Hu

et al. utilize in [35] a spectral clustering procedure to uncover the intrinsic structures among

image patches. Romero et al. introduce in [34] a greedy layer-wise unsupervised pre-training

method for learning sparse features from aerial images. In the case of [36], the authors define a

shallow weighted deconvolution network for extracting features from RS scenes by minimizing

the Euclidean distance between the original and the reconstructed images. Alternatively, some

works in the literature also show the utility of convolutional generative adversarial networks to

characterize standard and remotely sensed imagery [53], [54].

C. Unsupervised Deep Metric Learning

Notwithstanding the positive results of these and other important unsupervised methods, all

these works mainly rely on generic clustering, decomposition or encoding procedures that

are often unable to introduce relevant prior knowledge about the RS domain without using

supervised information. Among all the conducted research, one of the most promising trends

to adequately characterize RS images is based on the so-called deep metric learning approach

[39]. In particular, deep metric learning aims at learning a low-dimensional metric space based

on CNN models, where the feature embeddings of similar images should be close, and those

of dissimilar images should be separated. Despite its great potential in RS problems [55]–[58],

how to effectively define such semantic relationships for unlabeled aerial scenes is still an open-

ended issue. However, this situation has undergone an important change with the latest research

on unsupervised deep metric learning. Specifically, Jean et al. develop in [38] the Tile2Vec,

which is an algorithm to learn vector representations of RS images by using their geospatial

information as prior knowledge. In more details, it is based on the observation that those RS

image tiles which are spatially closer on the Earth surface are more likely to comprise similar

semantics, and consequently representations, than tiles which are far apart and hence expected

to comprise dissimilar semantics. In this way, Jean et al. propose learning a deep metric space

where the feature embeddings of nearby RS image tiles should be close, and those of distant

tiles should be separated, according to Tobler’s first law of geography [41].
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Fig. 1. Graphical illustration of the proposed unsupervised deep metric learning framework (SauMoCo), which has been specially

designed to characterize unlabeled RS scenes. With the proposed approach, we aim to encode RS images into the learned metric

space through the anchor CNN model, where nearby cropped tiles are grouped together and distant tiles are separated. The

momentum CNN model is used to update the queue of deep embeddings.

D. Current Limitations in RS

Certainly, the Tile2Vec algorithm sets a path for learning more informative CNN-based char-

acterizations of RS data from a completely unsupervised perspective. However, the task of

generating highly meaningful representations of aerial scenes without using any kind of class

label information still remains a very important challenge in RS [59], [60]. The recent availability

of massive data archives, together with the constant development of the airborne and space

acquisition technology, are steadily increasing the complexity of RS data and, hence, their

semantic understanding. Precisely, this growing complexity often produces a huge within-class

diversity and between-class similarity that introduce important limitations within the aforemen-

tioned learning scheme [39]. When integrating the unsupervised mode into the deep metric

learning approach [38], it is logically necessary to train the CNN model by sampling negative

RS image tiles within each batch. However, this strategy significantly reduces the capacity of the

model to distinguish between a broader range of contrasting land cover types, since the learning

process is constrained by the tiles that can be sampled in a single batch. Note that this point may

become particularly critical in complex large-scale archives, which stimulates the development of

more advanced unsupervised characterization techniques within the RS field [18], and ultimately

motivates the research conducted in this work.
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E. Novelty of the Proposed Method

To address all these challenges, this paper proposes a new unsupervised deep metric learning

model that jointly exploits two different aspects: a spatially augmented contrastive loss and a

momentum update-based optimization. In contrast to Tile2Vec [38], the proposed approach inte-

grates a new spatial augmentation criteria that allows considering not only semantic similarities

among nearby RS scenes but also the inherent semantic diversity of land cover concepts when

learning the corresponding metric space in an unsupervised fashion. Note that this within-class

variability has not yet been exploited in the context of characterizing unlabelled RS scenes

despite the fact it may become very useful to relieve the large-scale variance problem of RS

data [40]. Using this methodological improvement, the proposed approach is able to avoid the

triplet loss limitations with scalable data while also taking advantage of additional contrastive RS

image pairs during training. In order to further improve such contrasting land cover variety, the

proposed approach also utilizes a momentum update-based optimization [61]. The general idea

behind the momentum update is based on managing a dynamic dictionary of encoders to enhance

the contrastive learning process. Following this idea, we build a queue of deep embeddings of

RS scenes in order to force the length of such queue to be larger than the mini-batch size.

Unlike the standard momentum scheme which shows limited results with large-scale data [61],

the proposed end-to-end approach is designed to exploit vast unlabeled RS archives by using

a CNN-based backbone architecture to jointly characterize land cover scenes and update the

queue. Compared with different state-of-the-art methods to characterize unlabelled RS scenes,

the proposed approach is able to achieve a better performance than the methods in [29], [38],

[54], [62], which also reveals the novelty and advantages provided by this work for the RS

community.

III. SPATIALLY AUGMENTED MOMENTUM CONTRAST

Our newly proposed end-to-end unsupervised deep metric learning model for characterizing

unlabeled RS scenes (SauMoCo) can be summarized in the following three parts:

• A backbone architecture (called anchor CNN) which is used to generate the corresponding

feature embedding of the input RS scenes. Note that this CNN architecture can be de-

fined according to a specific off-the-shelf topology, such as AlexNet [24], VGGNet [25],

GoogleNet [26] and ResNet [27].
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• A spatially augmented loss, based on the contrastive loss formulation and a newly defined

spatial augmentation criteria, which exploits not only the semantic similarities among nearby

RS scenes but also the inherent diversity within land cover semantic concepts.

• The corresponding optimization algorithm, which learns the proposed model parameters

using a momentum contrast update. To achieve this goal, a queue of deep embeddings is

constructed, and an additional CNN model (called momentum CNN) is introduced to update

such queue. It is important to highlight that this network should be defined with the same

architecture with regards to the one of the anchor CNN for a scalable training.

Figure 1 illustrates in a graphical manner the proposed unsupervised deep metric learning

framework. In the following sections, we detail the newly defined loss function and the considered

optimization algorithm.

A. Spatially Augmented Loss

Let X = {x1, · · · ,xM} be a collected RS dataset that consists of M images. From each image

xi, an anchor patch x
a
i (located in its center) can be cropped with a certain size W ×W . With a

certain distance d of the anchor patch x
a
i , a neighborhood patch cropped from xi is defined as its

spatial augmentation, which is x
n
i . If the distance is 100 pixels (in both vertical and horizontal

directions), the center of x
n
i should be within 100 pixels with respect to the center of x

a
i . Let

f
a
i ∈ R

D denote the deep embedding of xa
i obtained by a CNN model F(·; θ) on the unit sphere

(i.e., fai = F(xa
i ; θ)/‖F(x

a
i ; θ)‖2), where D is its dimension and θ represents the parameters of

the CNN model. We identify this model as anchor CNN.

As noted by the first law of geography [41], everything is related to everything else, but

nearby things are more related than distant things. Following this rule, the proposed method

relies on the assumption that images that are geographic neighbors should be semantically more

similar than distant images [38]. Therefore, the embeddings of nearby images should be closer

than those of distant images in the metric space. However, it is important to highlight that

the proposed spatial augmentation criteria is different from the one considered in other works,

such as in [38]. Specifically, we do not fix the position of the spatially augmented patches to a

specific neighbour position, but to a neighbourhood region of the anchor patch. As a result, our

augmentation criteria allows certain spatial variations on the cropped areas in order to increase

the variety of spatially augmented patches that are extracted on-line. To achieve this in a scalable
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way, we adopt a contrastive learning mechanism [63], [64], where the contrastive loss of xa
i can

be defined as:

Li = − log
exp(〈fai , f

n
i 〉/τ)∑M

j=1 exp(〈f
a
i , f

a
j 〉/τ)

. (1)

In this equation, the inner product 〈fai , f
n
i 〉 measures the cosine similarity between the em-

bedding f
a
i of the anchor patch x

a
i and the one f

n
i of its spatial augmented patch x

n
i . Besides, τ

represents a temperature parameter controlling the concentration level of the sample distribution

[65]. Intuitively, Equation (1) describes the log-likelihood of the spatial augmented patch, which

can be classified as its anchor patch among all the anchor patches in X . Then, the corresponding

contrastive loss over the whole dataset can be formally expressed as:

L =
M∑

i=1

Li. (2)

By optimizing Equation (2), we can obtain the deep embeddings of X and the trained CNN

model, which is useful for characterizing unlabeled RS scenes and conducting the corresponding

downstreaming land-cover categorization tasks.

B. Optimization via Momentum Update

In order to sufficiently train the CNN model based on Equation (2) in an unsupervised fashion,

a scalable dataset is logically required to be fed into the deep model. For scalable datasets, how

to sufficiently sample the negative patches, (i.e., x
a
j ) with respect to x

a
i should be carefully

defined, since the number of spatially augmented patches and their consistency are both critical

aspects within the proposed contrastive unsupervised learning scheme.

One common strategy adopted in the literature is based on sampling the negative patches

within each mini-batch [39]. However, this optimization mechanism has important limitations

for training our deep model with scalable spatially augmented data. In more details, this mini-

batch sampling process assumes that each patch can be seen once during one epoch of training

and hence x
a
i only exists in one mini-batch for the current iteration. Consequently, the CNN

model is only able to see its corresponding negative patches x
a
j belonging this mini-batch, while

other important samples outside the mini-batch cannot be considered. Precisely, this fact can

substantially reduce the semantic variety of contrasting land cover types during training, which
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is a key factor to allow learning more informative RS image representations from an unsupervised

perspective.

To solve this problem, we adopt the momentum update rule [61], [66] for training our newly

proposed unsupervised RS image characterization model. Specifically, a queue of the deep

embeddings of image patches xa
j is constructed, where the size of the queue is forced to be larger

than that of the mini-batch. In this way, the unsupervised learning process can be substantially

enhanced by considering contrasting patches beyond a single batch. During the training phase,

the embeddings of the current mini-batch are compared with the ones in the queue, as they are

progressively replaced. The embeddings of the current mini-batch are enqueued and the oldest

ones are dequeued. Moreover, in order to consistently update the deep embeddings in the queue,

an auxiliary CNN model with parameter set θaux is introduced. We identify the θaux model as

momentum CNN and it is updated as follows:

θ(t+1)
aux ← mθ(t)aux + (1−m)θ(t), (3)

where m ∈ [0, 1) is a momentum coefficient. It is worth noting that only the CNN with θ

is updated by means of back-propagation. The momentum CNN with parameters θaux can be

evolved more smoothly than the CNN with θ. Then, the embeddings in the queue (encoded by

the momentum CNN) are updated by:

f̂
(t+1)
i ← f̂

(t)
i . (4)

In this expression, f̂i denotes the features generated by the momentum CNN. In other words,

the embeddings in the queue are replaced by the ones encoded by the momentum CNN after each

training epoch. To this end, the proposed optimization mechanism is detailed in Algorithm 1.

IV. EXPERIMENTS

A. Dataset Description

In this work, we use two benchmark RS image datasets to validate the effectiveness of the

proposed method. A detailed description of the datasets is provided below:

1) NAIP [38]: This dataset was generated for validating the Tile2Vec framework [38]. Specifi-

cally, it was collected from high-resolution RS images provided by the National Agriculture

Imagery Program (NAIP) from United States Department of Agriculture (USDA). All the
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Algorithm 1 Optimization mechanism of SauMoCo.

Require: xi

1: Initialize θ, θaux, τ , W , d, and D. Randomly initialize the queue.

2: for t = 0 to maxEpoch do

3: Sample a mini-batch of xi.

4: Within xi, randomly generate the center pixels of xn
i .

5: Crop the patches x
n
i and x

a
i online.

6: Obtain f
(t)
i based on CNN with θ(t).

7: Obtain f̂
(t)
i based on the momentum CNN with θ

(t)
aux.

8: Calculate the loss in Equation (1) over the mini-batch and back-propagate the gradients.

9: Update the parameters θaux of the momentum CNN via (3).

10: Update the embeddings in the queue via Equation (4).

11: end for

− 124 − 122 − 120 − 118 − 116 − 114

Longitude
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a
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d
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(a) (b)

Fig. 2. Geo-locations of the collected training data for the proposed method, evaluated on the NAIP and EuroSAT datasets. (a)

We download 100 NAIP tiles near Fresno, California. (b) 100 Sentinel-2 tiles are downloaded all over the world.

images are located within the latitude from 36.45 to 37.05 and longitudes from −120.25 to

−119.65. In this dataset, there are totally 1000 images with a size of 50×50 pixels, spatial

resolution of 0.6 m and four spectral bands (red, green, blue and infrared). Each image

is labeled using 28 classes obtained from Cropland Data Layer (CDL), which are Corn,

Cotton, Barley, Shrubland, Winter Wheat, Oats, Alfalfa, Grassland, Onions, Tomatoes,
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100

Fig. 3. Creation of a training dataset from the downloaded tile. As an example, we randomly crop one image from a Sentinel-2

tile with size of 264× 264 pixels, since the distance between the centers of the anchor patch and the spatially augmented patch

is 100 pixels.

Fallow, Grapes, Other Tree Crops, Citrus, Almonds, Walnuts, Triticale, Pistachios, Gar-

lic, Oranges, Pomegranates, Dbl Crop WinWht/Corn, Dbl Crop WinWht/Sorghum, Open

Water, Developed/Open Space, Developed/Low Intensity, Developed/Med Intensity and

Developed/High Intensity. The NAIP dataset is publicly available1.

2) EuroSAT [67]: This dataset was created for land-use and land-cover classification based

on multi-spectral RS images. In particular, it consists of 27,000 labeled and geo-referenced

Sentinel-2 images with a size of 64× 64 pixels, spatial resolution of 10 m and 13 spectral

bands covering the wavelength region from 443 to 2190 nm of the electromagnetic spec-

trum. Each image belongs to one class from a total of 10 semantic land-cover categories:

Annual Crop, Forest, Herbaceous Vegetation, Highway, Industrial, Pasture, Permanent

Crop, Residential, River, and Sea Lake. The EuroSAT archive is also publicly available2.

These two RS archives have been selected to evaluate the performance of the unsupervised RS

image characterization process from a single-source land cover acquisition perspective because

they are two popular benchmark collections that also have available supplementary open access

data for training the models with unlabelled scenes. That is, the NAIP and EuroSAT datasets are

only used for assessment purposes, once the corresponding unsupervised characterization models

have been trained with unlabelled NAIP and Sentinel-2 images, respectively. Specifically, we

1https://github.com/ermongroup/tile2vec

2http://madm.dfki.de/files/sentinel/EuroSATallBands.zip
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build two large-scale unlabelled training sets (one for NAIP and another for EuroSAT) using the

following procedures:

1) In the case of NAIP, we download 100 NAIP full-scenes located in Central Valley areas

near Fresno, California through the USGS EarthExplorer3 tool. The geo-locations of the

downloaded scenes are inside the orange rectangle in Figure 2(a). Then, we randomly

select a total of 100,000 images (with a size of 250 × 250 pixels) from the downloaded

tiles.

2) In the case of EuroSAT, we downloaded 100 Sentinel-2 Level-1C image products which

have been globally sampled from the entire globe. Figure 2(b) illustrates the geo-locations

of the downloaded Sentinel-2 products. Then, we select 100,000 random images (with a

size of 264× 264 pixels) from the downloaded products.

Figure 3 gives an example of the creation of the training dataset. From one Sentinel-2 tile,

we randomly crop one image (with size of 264× 264 pixels), considering that the sizes of the

anchor and spatially augmented patches are of 64 × 64 pixels, and the distance between their

centers is 100 pixels, according to the defined spatial augmentation criteria.

B. Experimental Setup

The proposed method is implemented in PyTorch [68]. The ResNet18 [27] network has been

selected as elemental backbone architecture for extracting the corresponding deep embeddings of

the RS images. That is, we use the ResNet18 model on both the anchor and momentum CNNs

of the proposed approach. It is important to note that other architectures, such as ResNet50 or

ResNet101, can be used within the proposed framework. Nonetheless, the ResNet18 model has

been selected in this work because it usually provides a positive balance between complexity

and performance in many different RS applications. During the training phase, the anchor and

spatially augmented patches cropped from NAIP and Sentinel-2 images are with size of 50× 50

and 64 × 64 pixels, respectively, in order to be consistent with the benchmark datasets. Ran-

domFlip and RandomRotation are adopted for the data augmentation. Regarding the considered

parameters, τ and D are set to 0.25 and 128, respectively. Additionally, the distance parameter

d is set to 100 following the settings used in [38] and after constrasting this configuration on

the NAIP dataset. The Stochastic Gradient Descent (SGD) optimizer is adopted for training. The

3https://earthexplorer.usgs.gov/
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initial learning rate is set to 0.01 and it is decayed by 0.5 every 30 epochs. The batch size is 256,

and we totally train the CNN model for 100 epochs. In order to validate the effectiveness of the

proposed approach with respect to different state-of-the-art methods, we include three different

RS image characterization techniques in the experimental comparison: 1) the deep convolutional

generative adversarial network (DCGAN) [54], 2) MARTA GAN [62], 3) the ResNet18 model

pre-trained on ImageNet while considering the most discriminating principal components (pre-

trained CNN+PCA) [29] and 4) the Tile2Vec [38]. In the case of the pre-trained CNN+PCA, it

is important to highlight that we make use of the PCA method after extracting the pre-trained

features to generate the corresponding deep embeddings with the same dimensionality as the

other methods. All the experiments are conducted on an NVIDIA Tesla P100 graphics processing

unit (GPU).

To measure the effectiveness of the proposed approach as compared with the other methods,

we extract the deep embeddings for the NAIP and EuroSAT collections after training. Then, we

use the available annotations to compute the corresponding classification results for each dataset.

In more details, we provide five different experiments for validating and analyzing the results

from several perspectives:

1) Evaluation of deep embeddings based on random forest (RF) classification: We first utilize

the random forest (RF) classifier to measure the classification performance based on the extracted

feature embeddings of the two datasets obtained by the considered methods. For each dataset,

we randomly select 80% images for training the classifier and evaluate its performance on the

rest 20% images. In order to obtain a mean score of the overall accuracy, a total of 100 trials are

conducted. Then, we calculate the mean and standard deviation values of the obtained accuracy

scores.

2) Visualization of image retrieval: In this experiment, we conduct a retrieval test to explore,

from a qualitative perspective, the performance of the considered characterization methods. In

particular, we extract one query image patch from a complete NAIP scene. Then, we use the pre-

trained CNN+PCA, Tile2Vec and SauMoCo models to obtain the deep embeddings of the selected

patch as well as the rest of the patches in the scene. Finally, we calculate their corresponding

similarity maps with respect to the query and retrieve the 10 nearest neighbor patches within

the whole scene.

3) Evaluation of CNN model initialization: In this experiment, we utilize the ResNet18

network as classifier by training this model with two different initializations, the pre-trained
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ImageNet parameters and the parameters pre-trained by our SauMoCo method. The objective is

to evaluate the effectiveness of the proposed method as CNN model initialization. Specifically,

we train the ResNet18 model on the EuroSAT dataset using 80% of the images for training

and 20% of the images for testing. To quantify the corresponding performance, we calculate the

overall accuracy on the test set after each training epoch and observe the corresponding learning

curve.

4) Hyperparameter analysis of SauMoCo: We investigate the sensitivity of the proposed

model to the τ parameter. For each dataset, we test eight different values in a range from 0.05

to 0.5. Then, we calculate the corresponding RF-based classification accuracy considering 80%

of the images for training and 20% of the images for testing.

5) Comparison of different CNN backbone architectures for SauMoCo: In the above ex-

periments, we utilize ResNet18 as the CNN backbone architecture for extracting the feature

embeddings. For evaluating the scene characterization performance by using different CNN

backbone architectures of SauMoCo, we also utilize ResNet50 on the RF classification carried

on the NAIP dataset. The experiment setup is consistent with Section IV-B1.
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Fig. 4. RF classification performances based on the deep embeddings extracted from the NAIP (a) and EuroSAT (b) datasets

via the proposed method (SauMoCo), Tile2Vec, and DCGAN (during the training phase).

C. Experimental Results

1) Evaluation of deep embeddings based on random forest (RF) classification: In order

to monitor the learning effectiveness, Figure 4 illustrates the RF performances based on the

deep embeddings extracted via the proposed SauMoCo, Tile2Vec, DCGAN and MARTA GAN
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Fig. 5. Given the deep embedding of one image patch in a NAIP tile, similarity heatmaps can be obtained by calculating the

similarities between the query patch and the rest of patches in the scene. The NAIP tile and one query image patch are shown

in (a). The similarity heatmaps of SauMoCo, Tile2Vec and the pre-trained CNN+PCA are given in (b), (c) and (d). (e) displays

the top 10 nearest neighbors with respect to the query image.
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Fig. 6. Learning curves of the ResNet18 model on the EuroSAT dataset when the model is initialized with different parameters,

i.e. the pre-trained parameters (via SauMoCo) and the ones from the pre-trained ResNet18 model on ImageNet.
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TABLE I

RF CLASSIFICATION PERFORMANCES BASED ON THE DEEP EMBEDDINGS EXTRACTED FROM THE CONSIDERED METHODS:

DCGAN, MARTA GAN, PRE-TRAINED CNN+PCA, TILE2VEC AND SAUMOCO.

NAIP EuroSAT

DCGAN 62.2±2.8 63.9±0.6

MARTA GAN 60.2±2.9 72.6±0.6

Pre-trained+PCA 62.6±3.5 73.7±0.5

Tile2Vec 66.1±3.3 74.5±0.6

SauMoCo 73.5±2.9 76.5±0.5

TABLE II

CLASS-WISE F1 SCORES OBTAINED BY THE RF CLASSIFIER (WITH THE CONSIDERED UNSUPERVISED LEARNING METHODS)

ON THE EUROSAT DATASET.

DCGAN
MARTA Pre-trained

Tile2Vec SauMoCo
GAN CNN+PCA

Annual Crop 67.15 67.01 72.89 69.64 72.60

Forest 83.20 86.54 89.78 92.17 91.35

Herb. Vegetation 69.69 68.60 78.37 75.54 77.45

Highway 29.50 34.47 40.15 41.68 36.43

Industrial 78.52 79.63 82.53 75.73 84.04

Pasture 65.63 66.31 73.73 75.96 74.09

Permanent Crop 63.84 62.32 67.43 64.24 70.83

Residential 68.18 63.41 71.55 66.82 69.79

River 77.73 90.11 81.93 84.83 80.22

Sea Lake 97.42 99.67 98.84 99.42 99.10

models during the training phase. That is, after each training epoch, we use the generated deep

embeddings to calculate the corresponding RF-based classification results. As it is possible to

observe, the deep embeddings based on SauMoCo outperform those extracted from the other

compared methods in the training phases when the RF classification is applied. Regarding the

DCGAN and MARTA GAN, this model provides the most unstable results while also leading to a

clearly lower performance than both SauMoCo and Tile2Vec, which consistently achieve the best

January 11, 2021 DRAFT



19

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5

68

70

72

74

76
RF

-A
cc

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5

72

73

74

75

76

77

RF
-A
cc

(b)

Fig. 7. Sensitivity analysis of τ on the two benchmark datasets: (a) NAIP and (b) EuroSAT, where we calculated the mean and

standard deviation values of the RF classification results.
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Fig. 8. RF classification performances based on the deep embeddings encoded by different CNN architectures (ResNet18 and

ResNet50) on the NAIP dataset under the training mechanism of SauMoCo.

and second best performances. In the case of Tile2Vec, the triplet loss makes this model highly

demanding because it requires a set of triplets with about O(|X |3) samples, which becomes

unaffordable for scalable datasets. Precisely, this limitation may lead to a constrained training of

the model, so that the learned deep embeddings cannot properly represent a broader variety of

land cover semantic concepts. In the proposed approach, the semantic similarities are calculated

based on the images within each mini-batch, and also all the other images in the dataset, due

to the use a queue of deep embeddigs. Then, the SauMoCo model can be trained by capturing

all the possible distance metrics among the RS images in X . Moreover, the spatially augmented

images are cropped on-line, which also provides additional advantages as data augmentation
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strategy. By doing so, a higher semantic variety of similar images can be generated during the

training phase (with respect to the anchor images). In comparison, the triplet set utilized in

Tile2Vec is constructed beforehand and it does not exhibit any data augmentation capability

during the training. Therefore, the proposed approach can also take advantage of the proposed

spatial augmentation criteria.

Table I tabulates the RF classification performances using the considered RS image characteri-

zation methods, where the mean accuracy and the standard deviation scores are carried out based

on 100 trials. From the reported results, it is possible to make to some important observations.

Specifically, it can be seen that SauMoCo achieves a remarkable improvement with respect

to all the compared methods, being the accuracy gains between 7% and 10% for NAIP and

between 2% to 12% for EuroSAT. In more details, Tile2Vec consistently obtains the second

best performance, followed by the pre-trained CNN+PCA, DCGAN and MARTA GAN. On the

NAIP dataset, DCGAN achieves a similar performance with regards to the one achieved by the

pre-trained CNN+PCA, while Tile2Vec and, especially, SauMoCo are able to provide superior

results. On EuroSAT, the pre-trained CNN+PCA and MARTA GAN performs significantly

better than DCGAN. Compared with DCGAN, the introduced multiple-layer feature-matching in

MARTA GAN can improve the encoding performance of images via the discriminative model.

However, Tile2Vec improves all these classification results and the proposed approach remarkably

achieves the best performance. The results obtained in both collections reveal a similar trend

concerning the good performance of Tile2Vec and the superior effectiveness of SauMoCo when

characterizing unlabeled RS scenes.

To analyze the differences between Tile2Vec and SauMoCo in more details, Table II provides

the corresponding class-wise F1 scores obtained by the RF classifier on the EuroSAT dataset,

where the two best results are highlighted in bold and gray-shaded font. As it is possible to

observe, the proposed approach obtains the best and second best performances in 2 and 5 land-

cover classes, respectively. Although Tile2Vec also exhibits positive results in 5 categories, the

performance for the rest of the classes is rather limited, being even worse than that of the

pre-trained CNN+PCA and MARTA GAN in some cases. Precisely, these important differences

make SauMoCo more stable and accurate from a global perspective, indicating that the proposed

approach is able to extract more relevant information about a wider range of semantic concepts.

2) Visualization of image retrieval: As shown in Figure 5, we extract one query image patch

from a NAIP tile. Then, we obtain its deep embedding and the ones of the rest of the patches in
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the tile based on the considered methods. Subsequently, we calculate their similarities and obtain

the corresponding heatmaps for SauMoCo (b), Tile2Vec (c) and the pre-trained CNN+PCA (d),

where brighter colors denote a higher similarity in the embedding space. Additionally, the 10

nearest neighbor patches are illustrated in (e). As it is possible to observe in the heatmaps, the

locations of the most similar patches with respect to the query can be more clearly identified in

(b). Precisely, these results indicate that the semantic information of the RS scene is not properly

encoded based on Tile2Vec and the pre-trained CNN+PCA model, since there are larger parts in

the image that are considered to be similar to the query in the embedding space. Regarding the

nearest neighbor results, it is possible to see that the image patches retrieved from the embedding

space generated by SauMoCo are the most visually similar with regards to the query. That is,

the proposed approach is able to model the semantic content of the query more accurately than

the other methods, since all the retrieved images display similar land-cover patterns.

3) Evaluation of CNN model initialization: Figure 6 shows the learning curves of the ResNet18

model over the EuroSAT collection when using two different initialization strategies: with the

parameters obtained by the proposed approach and with the pre-trained ImageNet parameters.

According to the displayed results, it can be seen that the classification accuracy can be slightly

improved when the parameters of the CNN model are initialized via the proposed approach.

Although the pre-trained ImageNet initialization exhibits higher classification accuracies at the

beginning of the training process, SauMoCo is able to consistently achieve better results after 30

epochs. This fact reveals that the proposed approach is able to capture richer semantic information

in the corresponding embedding space, since a better minimum location of the loss function can

be discovered by the parameters pre-trained via SauMoCo.

4) Hyperparameter analysis of SauMoCo: An important hyperparameter of the proposed

approach is τ , which controls the concentration level of the sample distribution. To investigate the

sensitivity of the proposed model to τ , we conduct several additional classification experiments

on the embedding spaces generated by different hyperparameter values. In particular, Figure 7

demonstrates the effectiveness of the RF classification based on SauMoCo with respect to eight

different values of τ on the two benchmark datasets: (a) NAIP and (b) EuroSAT. As it is possible

to observe, the best classification performance in both datasets can be achieved when τ is 0.25.

Nonetheless, the corresponding classification results are very consistent in the range from 0.15

to 0.4, which also indicates an adequate stability of the proposed approach with respect to the

τ hyperparameter.
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TABLE III

RF CLASSIFICATION PERFORMANCES BASED ON THE DEEP EMBEDDINGS ENCODED BY RESNET18 AND RESNET50 ON THE

NAIP DATASET.

RF

SauMoCo-ResNet18 73.5±2.9

SauMoCo-ResNet50 74.0±2.8

5) Comparison of different CNN backbone architectures for SauMoCo: Figure 8 displays

the RF classification performances based on the deep embeddings encoded by different CNN

architectures (ResNet18 and ResNet50) on the NAIP dataset under the training mechanism

of SauMoCo. It can be observed that the quality of the feature embeddings extracted from

ResNet50 is slightly improved in comparison with ResNet18. As shown in Table III, compared

with ResNet18, the classification accuracy based on the deep embeddings from ResNet50 can

be improved with a score of 0.5% on the NAIP dataset.

V. CONCLUSIONS AND FUTURE LINES

This paper presents a new unsupervised deep metric learning framework (SauMoCo) to char-

acterize unlabeled RS scenes. Specifically, the proposed approach initially defines a spatial

augmentation criterion to uncover semantically similar RS images based on the the first law

of geography. Then, a queue of deep embeddings is built such that the size of queue is forced

to be substantially larger than the batch size, to improve the semantic variety of contrasting

land cover types during the training. To achieve this goal, an auxiliary CNN model is also

used to consistently update the deep embeddings in the queue. The experimental part of the

work, conducted over two benchmark datasets and based on the use of different characterization

methods, reveals that the proposed unsupervised deep metric learning model is able to provide

competitive advantages with respect to other state-of-the-art techniques in the task of representing

unlabeled RS images.

One of the main conclusions that arises from this work is the relevance of considering a

broader variety of land cover types when learning unsupervised RS image characterizations.

In this regard, the proposed approach takes advantage of the defined spatial augmentation

criteria and the considered queue of deep embeddings to enrich the semantic information of

different RS categories during the contrastive learning process. Precisely, this feature allows our
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SauMoCo to enhance the global discrimination ability among unsupervised land-cover classes,

and also to provide a more robust behavior with different datasets and settings. Owing to the

remarkable performance achieved by the presented method, our future work will be directed

towards adapting it to inter-sensor data and other important RS tasks, such as dimensionality

reduction of hyperspectral imagery or fine-grained land-use categorization.
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[44] J. Kang, M. Körner, Y. Wang, H. Taubenböck, and X. X. Zhu, “Building instance classification using street view images,”

ISPRS journal of photogrammetry and remote sensing, vol. 145, pp. 44–59, 2018.

[45] A. S. Belward and J. O. Skøien, “Who launched what, when and why; trends in global land-cover observation capacity

from civilian earth observation satellites,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 103, pp. 115–128,

2015.

[46] R. Fernandez-Beltran, F. Pla, and A. Plaza, “Sentinel-2 and sentinel-3 intersensor vegetation estimation via constrained

topic modeling,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 10, pp. 1531–1535, 2019.

[47] ——, “Endmember extraction from hyperspectral imagery based on probabilistic tensor moments,” IEEE Geoscience and

Remote Sensing Letters, 2020.

[48] R. Fernandez-Beltran, P. Latorre-Carmona, and F. Pla, “Single-frame super-resolution in remote sensing: a practical

overview,” International journal of remote sensing, vol. 38, no. 1, pp. 314–354, 2017.

[49] A. M. Cheriyadat, “Unsupervised feature learning for aerial scene classification,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 52, no. 1, pp. 439–451, 2014.

[50] B. Zhao, Y. Zhong, G.-S. Xia, and L. Zhang, “Dirichlet-derived multiple topic scene classification model for high spatial

resolution remote sensing imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 4, pp. 2108–2123,

2015.

[51] R. Fernandez-Beltran, J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza, and F. Pla, “Remote sensing image fusion

using hierarchical multimodal probabilistic latent semantic analysis,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 11, no. 12, pp. 4982–4993, 2018.

January 11, 2021 DRAFT



26

[52] F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised feature learning for scene classification,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 53, no. 4, pp. 2175–2184, 2014.

[53] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial

networks,” arXiv preprint arXiv:1511.06434, 2015.

[54] L. Zhu, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Generative adversarial networks for hyperspectral image

classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 9, pp. 5046–5063, 2018.

[55] Y. Wang, L. Zhang, H. Deng, J. Lu, H. Huang, L. Zhang, J. Liu, H. Tang, and X. Xing, “Learning a discriminative distance

metric with label consistency for scene classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55,

no. 8, pp. 4427–4440, 2017.

[56] Z. Gong, P. Zhong, Y. Yu, and W. Hu, “Diversity-promoting deep structural metric learning for remote sensing scene

classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 1, pp. 371–390, 2018.

[57] Y. Xing, M. Wang, S. Yang, and L. Jiao, “Pan-sharpening via deep metric learning,” ISPRS Journal of Photogrammetry

and Remote Sensing, vol. 145, pp. 165–183, 2018.

[58] R. Cao, Q. Zhang, J. Zhu, Q. Li, Q. Li, B. Liu, and G. Qiu, “Enhancing remote sensing image retrieval using a triplet

deep metric learning network,” International Journal of Remote Sensing, vol. 41, no. 2, pp. 740–751, 2020.

[59] B. Wang, X. Lu, X. Zheng, and X. Li, “Semantic descriptions of high-resolution remote sensing images,” IEEE Geoscience

and Remote Sensing Letters, vol. 16, no. 8, pp. 1274–1278, 2019.

[60] P. Zhu, Y. Tan, L. Zhang, Y. Wang, J. Mei, H. Liu, and M. Wu, “Deep learning for multilabel remote sensing image

annotation with dual-level semantic concepts,” IEEE Transactions on Geoscience and Remote Sensing, 2020.

[61] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation learning,”

arXiv preprint arXiv:1911.05722, 2019.

[62] D. Lin, K. Fu, Y. Wang, G. Xu, and X. Sun, “Marta gans: Unsupervised representation learning for remote sensing image

classification,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 11, pp. 2092–2096, 2017.

[63] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant mapping,” in 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2. IEEE, 2006, pp. 1735–1742.

[64] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” arXiv preprint

arXiv:1807.03748, 2018.

[65] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531,

2015.

[66] J. Kang, R. Fernandez-Beltran, Z. Ye, X. Tong, P. Ghamisi, and A. Plaza, “Deep metric learning based on scalable

neighborhood components for remote sensing scene characterization,” IEEE Transactions on Geoscience and Remote

Sensing, pp. 1–14, 2020.

[67] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel dataset and deep learning benchmark for land use and

land cover classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12,

no. 7, pp. 2217–2226, 2019.

[68] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al.,

“Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing

Systems, 2019, pp. 8024–8035.

January 11, 2021 DRAFT



27

Jian Kang (S’16-M’19) received B.S. and M.E. degrees in electronic engineering from Harbin Institute

of Technology (HIT), Harbin, China, in 2013 and 2015, respectively, and Dr.-Ing. degree from Signal

Processing in Earth Observation (SiPEO), Technical University of Munich (TUM), Munich, Germany, in

2019. In August of 2018, he was a guest researcher at Institute of Computer Graphics and Vision (ICG),

TU Graz, Graz, Austria. He is currently with Research Institute of Electronic Engineering Technology,

Harbin Institute of Technology, Harbin, China, and with Faculty of Electrical Engineering and Computer

Science, Technische Universität Berlin (TU Berlin), Berlin, Germany. His research focuses on signal processing and machine

learning, and their applications in remote sensing. In particular, he is interested in multi-dimensional data analysis, geophysical

parameter estimation based on InSAR data, SAR denoising and deep learning based techniques for remote sensing image analysis.

He obtained first place of the best student paper award in EUSAR 2018, Aachen, Germany.

Ruben Fernandez-Beltran (M’20) earned a B.Sc. degree in Computer Science, a M.Sc. in Intelligent

Systems and a Ph.D. degree in Computer Science, from Universitat Jaume I (Castellon de la Plana, Spain)

in 2007, 2011 and 2016, respectively. He is currently a postdoctoral researcher within the Computer Vision

Group of the University Jaume I, as a member of the Institute of New Imaging Technologies. He has

been visiting researcher at the University of Bristol (UK), University of Cáceres (Spain) and Technische
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