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Abstract

A central problem in machine learning involves

modeling complex data-sets using highly flexi-

ble families of probability distributions in which

learning, sampling, inference, and evaluation

are still analytically or computationally tractable.

Here, we develop an approach that simultane-

ously achieves both flexibility and tractability.

The essential idea, inspired by non-equilibrium

statistical physics, is to systematically and slowly

destroy structure in a data distribution through

an iterative forward diffusion process. We then

learn a reverse diffusion process that restores

structure in data, yielding a highly flexible and

tractable generative model of the data. This ap-

proach allows us to rapidly learn, sample from,

and evaluate probabilities in deep generative

models with thousands of layers or time steps,

as well as to compute conditional and posterior

probabilities under the learned model. We addi-

tionally release an open source reference imple-

mentation of the algorithm.

1. Introduction

Historically, probabilistic models suffer from a tradeoff be-

tween two conflicting objectives: tractability and flexibil-

ity. Models that are tractable can be analytically evaluated

and easily fit to data (e.g. a Gaussian or Laplace). However,
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these models are unable to aptly describe structure in rich

datasets. On the other hand, models that are flexible can be

molded to fit structure in arbitrary data. For example, we

can define models in terms of any (non-negative) function

φ(x) yielding the flexible distribution p (x) = φ(x)
Z

, where

Z is a normalization constant. However, computing this

normalization constant is generally intractable. Evaluating,

training, or drawing samples from such flexible models typ-

ically requires a very expensive Monte Carlo process.

A variety of analytic approximations exist which amelio-

rate, but do not remove, this tradeoff–for instance mean

field theory and its expansions (T, 1982; Tanaka, 1998),

variational Bayes (Jordan et al., 1999), contrastive diver-

gence (Welling & Hinton, 2002; Hinton, 2002), minimum

probability flow (Sohl-Dickstein et al., 2011b;a), minimum

KL contraction (Lyu, 2011), proper scoring rules (Gneit-

ing & Raftery, 2007; Parry et al., 2012), score matching

(Hyvärinen, 2005), pseudolikelihood (Besag, 1975), loopy

belief propagation (Murphy et al., 1999), and many, many

more. Non-parametric methods (Gershman & Blei, 2012)

can also be very effective1.

1.1. Diffusion probabilistic models

We present a novel way to define probabilistic models that

allows:

1. extreme flexibility in model structure,

2. exact sampling,

1Non-parametric methods can be seen as transitioning
smoothly between tractable and flexible models. For instance,
a non-parametric Gaussian mixture model will represent a small
amount of data using a single Gaussian, but may represent infinite
data as a mixture of an infinite number of Gaussians.
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3. easy multiplication with other distributions, e.g. in or-

der to compute a posterior, and

4. the model log likelihood, and the probability of indi-

vidual states, to be cheaply evaluated.

Our method uses a Markov chain to gradually convert one

distribution into another, an idea used in non-equilibrium

statistical physics (Jarzynski, 1997) and sequential Monte

Carlo (Neal, 2001). We build a generative Markov chain

which converts a simple known distribution (e.g. a Gaus-

sian) into a target (data) distribution using a diffusion pro-

cess. Rather than use this Markov chain to approximately

evaluate a model which has been otherwise defined, we ex-

plicitly define the probabilistic model as the endpoint of the

Markov chain. Since each step in the diffusion chain has an

analytically evaluable probability, the full chain can also be

analytically evaluated.

Learning in this framework involves estimating small per-

turbations to a diffusion process. Estimating small pertur-

bations is more tractable than explicitly describing the full

distribution with a single, non-analytically-normalizable,

potential function. Furthermore, since a diffusion process

exists for any smooth target distribution, this method can

capture data distributions of arbitrary form.

We demonstrate the utility of these diffusion probabilistic

models by training high log likelihood models for a two-

dimensional swiss roll, binary sequence, handwritten digit

(MNIST), and several natural image (CIFAR-10, bark, and

dead leaves) datasets.

1.2. Relationship to other work

The wake-sleep algorithm (Hinton, 1995; Dayan et al.,

1995) introduced the idea of training inference and gen-

erative probabilistic models against each other. This

approach remained largely unexplored for nearly two

decades, though with some exceptions (Sminchisescu et al.,

2006; Kavukcuoglu et al., 2010). There has been a re-

cent explosion of work developing this idea. In (Kingma

& Welling, 2013; Gregor et al., 2013; Rezende et al., 2014;

Ozair & Bengio, 2014) variational learning and inference

algorithms were developed which allow a flexible genera-

tive model and posterior distribution over latent variables

to be directly trained against each other.

The variational bound in these papers is similar to the one

used in our training objective and in the earlier work of

(Sminchisescu et al., 2006). However, our motivation and

model form are both quite different, and the present work

retains the following differences and advantages relative to

these techniques:

1. We develop our framework using ideas from physics,

quasi-static processes, and annealed importance sam-

pling rather than from variational Bayesian methods.

2. We show how to easily multiply the learned distribu-

tion with another probability distribution (eg with a

conditional distribution in order to compute a poste-

rior)

3. We address the difficulty that training the inference

model can prove particularly challenging in varia-

tional inference methods, due to the asymmetry in the

objective between the inference and generative mod-

els. We restrict the forward (inference) process to a

simple functional form, in such a way that the re-

verse (generative) process will have the same func-

tional form.

4. We train models with thousands of layers (or time

steps), rather than only a handful of layers.

5. We provide upper and lower bounds on the entropy

production in each layer (or time step)

There are a number of related techniques for training prob-

abilistic models (summarized below) that develop highly

flexible forms for generative models, train stochastic tra-

jectories, or learn the reversal of a Bayesian network.

Reweighted wake-sleep (Bornschein & Bengio, 2015) de-

velops extensions and improved learning rules for the orig-

inal wake-sleep algorithm. Generative stochastic networks

(Bengio & Thibodeau-Laufer, 2013; Yao et al., 2014) train

a Markov kernel to match its equilibrium distribution to

the data distribution. Neural autoregressive distribution

estimators (Larochelle & Murray, 2011) (and their recur-

rent (Uria et al., 2013a) and deep (Uria et al., 2013b) ex-

tensions) decompose a joint distribution into a sequence

of tractable conditional distributions over each dimension.

Adversarial networks (Goodfellow et al., 2014) train a gen-

erative model against a classifier which attempts to dis-

tinguish generated samples from true data. A similar ob-

jective in (Schmidhuber, 1992) learns a two-way map-

ping to a representation with marginally independent units.

In (Rippel & Adams, 2013; Dinh et al., 2014) bijective

deterministic maps are learned to a latent representation

with a simple factorial density function. In (Stuhlmüller

et al., 2013) stochastic inverses are learned for Bayesian

networks. Mixtures of conditional Gaussian scale mix-

tures (MCGSMs) (Theis et al., 2012) describe a dataset

using Gaussian scale mixtures, with parameters which de-

pend on a sequence of causal neighborhoods. There is

additionally significant work learning flexible generative

mappings from simple latent distributions to data distribu-

tions – early examples including (MacKay, 1995) where

neural networks are introduced as generative models, and

(Bishop et al., 1998) where a stochastic manifold mapping

is learned from a latent space to the data space. We will

compare experimentally against adversarial networks and

MCGSMs.

Related ideas from physics include the Jarzynski equal-

ity (Jarzynski, 1997), known in machine learning as An-
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory

q
(

x
(0···T )

)

. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
(

x
(0···T )

)

. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back

into the data distribution (left). The bottom row shows the drift term, fµ

(

x
(t), t

)

− x
(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which

uses a Markov chain which slowly converts one distribu-

tion into another to compute a ratio of normalizing con-

stants. In (Burda et al., 2014) it is shown that AIS can also

be performed using the reverse rather than forward trajec-

tory. Langevin dynamics (Langevin, 1908), which are the

stochastic realization of the Fokker-Planck equation, show

how to define a Gaussian diffusion process which has any

target distribution as its equilibrium. In (Suykens & Vande-

walle, 1995) the Fokker-Planck equation is used to perform

stochastic optimization. Finally, the Kolmogorov forward

and backward equations (Feller, 1949) show that for many

forward diffusion processes, the reverse diffusion processes

can be described using the same functional form.

2. Algorithm

Our goal is to define a forward (or inference) diffusion pro-

cess which converts any complex data distribution into a

simple, tractable, distribution, and then learn a finite-time

reversal of this diffusion process which defines our gener-

ative model distribution (See Figure 1). We first describe

the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained

and used to evaluate probabilities. We also derive entropy

bounds for the reverse process, and show how the learned

distributions can be multiplied by any second distribution

(e.g. as would be done to compute a posterior when in-

painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
(

x(0)
)

. The data distribu-

tion is gradually converted into a well behaved (analyti-

cally tractable) distribution π (y) by repeated application

of a Markov diffusion kernel Tπ (y|y′;β) for π (y), where

β is the diffusion rate,

π (y) =

∫

dy′Tπ (y|y′;β)π (y′) (1)

q
(

x(t)|x(t−1)
)

= Tπ

(

x(t)|x(t−1);βt

)

. (2)
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Figure 2. Binary sequence learning via binomial diffusion. A binomial diffusion model was trained on binary ‘heartbeat’ data, where a

pulse occurs every 5th bin. Generated samples (left) are identical to the training data. The sampling procedure consists of initialization

at independent binomial noise (right), which is then transformed into the data distribution by a binomial diffusion process, with trained

bit flip probabilities. Each row contains an independent sample. For ease of visualization, all samples have been shifted so that a pulse

occurs in the first column. In the raw sequence data, the first pulse is uniformly distributed over the first five bins.

(a) (b)

(c) (d)

Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (a) Example holdout data (similar

to training data). (b) Holdout data corrupted with Gaussian noise of variance 1 (SNR = 1). (c) Denoised images, generated by sampling

from the posterior distribution over denoised images conditioned on the images in (b). (d) Samples generated by the diffusion model.

The forward trajectory, corresponding to starting at the data

distribution and performing T steps of diffusion, is thus

q
(

x(0···T )
)

= q
(

x(0)
)

T
∏

t=1

q
(

x(t)|x(t−1)
)

(3)

For the experiments shown below, q
(

x(t)|x(t−1)
)

corre-

sponds to either Gaussian diffusion into a Gaussian distri-

bution with identity-covariance, or binomial diffusion into

an independent binomial distribution. Table App.1 gives

the diffusion kernels for both Gaussian and binomial distri-

butions.
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2.2. Reverse Trajectory

The generative distribution will be trained to describe the

same trajectory, but in reverse,

p
(

x(T )
)

= π
(

x(T )
)

(4)

p
(

x(0···T )
)

= p
(

x(T )
)

T
∏

t=1

p
(

x(t−1)|x(t)
)

. (5)

For both Gaussian and binomial diffusion, for continuous

diffusion (limit of small step size β) the reversal of the

diffusion process has the identical functional form as the

forward process (Feller, 1949). Since q
(

x(t)|x(t−1)
)

is a

Gaussian (binomial) distribution, and if βt is small, then

q
(

x(t−1)|x(t)
)

will also be a Gaussian (binomial) distribu-

tion. The longer the trajectory the smaller the diffusion rate

β can be made.

During learning only the mean and covariance for a Gaus-

sian diffusion kernel, or the bit flip probability for a bi-

nomial kernel, need be estimated. As shown in Table

App.1, fµ
(

x(t), t
)

and fΣ
(

x(t), t
)

are functions defining

the mean and covariance of the reverse Markov transitions

for a Gaussian, and fb
(

x(t), t
)

is a function providing the

bit flip probability for a binomial distribution. The compu-

tational cost of running this algorithm is the cost of these

functions, times the number of time-steps. For all results in

this paper, multi-layer perceptrons are used to define these

functions. A wide range of regression or function fitting

techniques would be applicable however, including nonpa-

rameteric methods.

2.3. Model Probability

The probability the generative model assigns to the data is

p
(

x(0)
)

=

∫

dx(1···T )p
(

x(0···T )
)

. (6)

Naively this integral is intractable – but taking a cue from

annealed importance sampling and the Jarzynski equality,

we instead evaluate the relative probability of the forward

and reverse trajectories, averaged over forward trajectories,

p
(

x(0)
)

=

∫

dx(1···T )p
(

x(0···T )
) q
(

x(1···T )|x(0)
)

q
(

x(1···T )|x(0)
) (7)

=

∫

dx(1···T )q
(

x(1···T )|x(0)
) p

(

x(0···T )
)

q
(

x(1···T )|x(0)
)

(8)

=

∫

dx(1···T )q
(

x(1···T )|x(0)
)

·

p
(

x(T )
)

T
∏

t=1

p
(

x(t−1)|x(t)
)

q
(

x(t)|x(t−1)
) . (9)

This can be evaluated rapidly by averaging over samples

from the forward trajectory q
(

x(1···T )|x(0)
)

. For infinites-

imal β the forward and reverse distribution over trajecto-

ries can be made identical (see Section 2.2). If they are

identical then only a single sample from q
(

x(1···T )|x(0)
)

is required to exactly evaluate the above integral, as can

be seen by substitution. This corresponds to the case of a

quasi-static process in statistical physics (Spinney & Ford,

2013; Jarzynski, 2011).

2.4. Training

Training amounts to maximizing the model log likelihood,

L =

∫

dx(0)q
(

x(0)
)

log p
(

x(0)
)

(10)

=

∫

dx(0)q
(

x(0)
)

·

log





∫

dx(1···T )q
(

x(1···T )|x(0)
)

·
p
(

x(T )
)
∏T

t=1

p(x(t−1)|x(t))
q(x(t)|x(t−1))



 , (11)

which has a lower bound provided by Jensen’s inequality,

L ≥
∫

dx(0···T )q
(

x(0···T )
)

·

log

[

p
(

x(T )
)

T
∏

t=1

p
(

x(t−1)|x(t)
)

q
(

x(t)|x(t−1)
)

]

. (12)

As described in Appendix B, for our diffusion trajectories

this reduces to,

L ≥ K (13)

K =−
T
∑

t=2

∫

dx(0)dx(t)q
(

x(0),x(t)
)

·

DKL

(

q
(

x(t−1)|x(t),x(0)
)∣

∣

∣

∣

∣

∣p
(

x(t−1)|x(t)
))

+Hq

(

X(T )|X(0)
)

−Hq

(

X(1)|X(0)
)

−Hp

(

X(T )
)

.

(14)

where the entropies and KL divergences can be analyt-

ically computed. The derivation of this bound parallels

the derivation of the log likelihood bound in variational

Bayesian methods.

As in Section 2.3 if the forward and reverse trajectories are

identical, corresponding to a quasi-static process, then the

inequality in Equation 13 becomes an equality.

Training consists of finding the reverse Markov transitions

which maximize this lower bound on the log likelihood,

p̂
(

x(t−1)|x(t)
)

= argmax
p(x(t−1)|x(t))

K. (15)
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The specific targets of estimation for Gaussian and bino-

mial diffusion are given in Table App.1.

Thus, the task of estimating a probability distribution has

been reduced to the task of performing regression on the

functions which set the mean and covariance of a sequence

of Gaussians (or set the state flip probability for a sequence

of Bernoulli trials).

2.4.1. SETTING THE DIFFUSION RATE βt

The choice of βt in the forward trajectory is important for

the performance of the trained model. In AIS, the right

schedule of intermediate distributions can greatly improve

the accuracy of the log partition function estimate (Grosse

et al., 2013). In thermodynamics the schedule taken when

moving between equilibrium distributions determines how

much free energy is lost (Spinney & Ford, 2013; Jarzynski,

2011).

In the case of Gaussian diffusion, we learn2 the forward

diffusion schedule β2···T by gradient ascent on K. The

variance β1 of the first step is fixed to a small constant

to prevent overfitting. The dependence of samples from

q
(

x(1···T )|x(0)
)

on β1···T is made explicit by using ‘frozen

noise’ – as in (Kingma & Welling, 2013) the noise is treated

as an additional auxiliary variable, and held constant while

computing partial derivatives of K with respect to the pa-

rameters.

For binomial diffusion, the discrete state space makes gra-

dient ascent with frozen noise impossible. We instead

choose the forward diffusion schedule β1···T to erase a con-

stant fraction 1
T

of the original signal per diffusion step,

yielding a diffusion rate of βt = (T − t+ 1)
−1

.

2.5. Multiplying Distributions, and Computing

Posteriors

Tasks such as computing a posterior in order to do signal

denoising or inference of missing values requires multipli-

cation of the model distribution p
(

x(0)
)

with a second dis-

tribution, or bounded positive function, r
(

x(0)
)

, producing

a new distribution p̃
(

x(0)
)

∝ p
(

x(0)
)

r
(

x(0)
)

.

Multiplying distributions is costly and difficult for many

techniques, including variational autoencoders, GSNs,

NADEs, and most graphical models. However, under a dif-

fusion model it is straightforward, since the second distri-

bution can be treated either as a small perturbation to each

step in the diffusion process, or often exactly multiplied

into each diffusion step. Figures 3 and 5 demonstrate the

use of a diffusion model to perform denoising and inpaint-

ing of natural images. The following sections describe how

2Recent experiments suggest that it is just as effective to in-
stead use the same fixed βt schedule as for binomial diffusion.

to multiply distributions in the context of diffusion proba-

bilistic models.

2.5.1. MODIFIED MARGINAL DISTRIBUTIONS

First, in order to compute p̃
(

x(0)
)

, we multiply each of

the intermediate distributions by a corresponding function

r
(

x(t)
)

. We use a tilde above a distribution or Markov

transition to denote that it belongs to a trajectory that has

been modified in this way. p̃
(

x(0···T )
)

is the modified re-

verse trajectory, which starts at the distribution p̃
(

x(T )
)

=
1
Z̃T

p
(

x(T )
)

r
(

x(T )
)

and proceeds through the sequence of

intermediate distributions

p̃
(

x(t)
)

=
1

Z̃t

p
(

x(t)
)

r
(

x(t)
)

, (16)

where Z̃t is the normalizing constant for the tth intermedi-

ate distribution.

2.5.2. MODIFIED DIFFUSION STEPS

The Markov kernel p
(

x(t) | x(t+1)
)

for the reverse diffu-

sion process obeys the equilibrium condition

p
(

x(t
)

=

∫

dx(t+1)p
(

xt) | x(t+1)
)

p
(

xt+1)
)

. (17)

We wish the perturbed Markov kernel p̃
(

x(t) | x(t+1)
)

to

instead obey the equilibrium condition for the perturbed

distribution,

p̃
(

x(t)
)

=

∫

dx(t+1)p̃
(

x(t) | x(t+1)
)

p̃
(

xt+1)
)

,

(18)

p
(

x(t)
)

r
(

x(t)
)

Z̃t

=

∫

dx(t+1)p̃
(

x(t) | x(t+1)
)

·

p
(

x(t+1)
)

r
(

x(t+1)
)

Z̃t+1

, (19)

p
(

x(t)
)

=

∫

dx(t+1)p̃
(

x(t) | x(t+1)
)

·

Z̃tr
(

x(t+1)
)

Z̃t+1r
(

x(t)
)p
(

x(t+1)
)

.

(20)

Equation 20 will be satisfied if

p̃
(

x(t)|x(t+1)
)

= p
(

x(t)|x(t+1)
) Z̃t+1r

(

x(t)
)

Z̃tr
(

x(t+1)
) . (21)

Equation 21 may not correspond to a normalized proba-

bility distribution, so we choose p̃
(

x(t)|x(t+1)
)

to be the

corresponding normalized distribution

p̃
(

x(t)|x(t+1)
)

=
1

Z̃t

(

x(t+1)
)p
(

x(t)|x(t+1)
)

r
(

x(t)
)

,

(22)
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Figure 4. The proposed framework trained on dead leaf images (Jeulin, 1997; Lee et al., 2001). (a) Example training image. (b) A sample

from the previous state of the art natural image model (Theis et al., 2012) trained on identical data, reproduced here with permission.

(c) A sample generated by the diffusion model. Note that it demonstrates fairly consistent occlusion relationships, displays a multiscale

distribution over object sizes, and produces circle-like objects, especially at smaller scales. As shown in Table 2, the diffusion model has

the highest log likelihood on the test set.

where Z̃t

(

x(t+1)
)

is the normalization constant.

For a Gaussian, each diffusion step is typically very sharply

peaked relative to r
(

x(t)
)

, due to its small variance. This

means that
r(x(t))

r(x(t+1))
can be treated as a small perturbation

to p
(

x(t)|x(t+1)
)

. A small perturbation to a Gaussian ef-

fects the mean, but not the normalization constant, so in

this case Equations 21 and 22 are equivalent (see Appendix

C).

2.5.3. APPLYING r
(

x(t)
)

If r
(

x(t)
)

is sufficiently smooth, then it can be treated

as a small perturbation to the reverse diffusion kernel

p
(

x(t)|x(t+1)
)

. In this case p̃
(

x(t)|x(t+1)
)

will have an

identical functional form to p
(

x(t)|x(t+1)
)

, but with per-

turbed mean for the Gaussian kernel, or with perturbed flip

rate for the binomial kernel. The perturbed diffusion ker-

nels are given in Table App.1, and are derived for the Gaus-

sian in Appendix C.

If r
(

x(t)
)

can be multiplied with a Gaussian (or binomial)

distribution in closed form, then it can be directly multi-

plied with the reverse diffusion kernel p
(

x(t)|x(t+1)
)

in

closed form. This applies in the case where r
(

x(t)
)

con-

sists of a delta function for some subset of coordinates, as

in the inpainting example in Figure 5.

2.5.4. CHOOSING r
(

x(t)
)

Typically, r
(

x(t)
)

should be chosen to change slowly over

the course of the trajectory. For the experiments in this

paper we chose it to be constant,

r
(

x(t)
)

= r
(

x(0)
)

. (23)

Another convenient choice is r
(

x(t)
)

= r
(

x(0)
)

T−t
T . Un-

der this second choice r
(

x(t)
)

makes no contribution to the

starting distribution for the reverse trajectory. This guaran-

tees that drawing the initial sample from p̃
(

x(T )
)

for the

reverse trajectory remains straightforward.

2.6. Entropy of Reverse Process

Since the forward process is known, we can derive upper

and lower bounds on the conditional entropy of each step

in the reverse trajectory, and thus on the log likelihood,

Hq

(

X(t)|X(t−1)
)

+Hq

(

X(t−1)|X(0)
)

−Hq

(

X(t)|X(0)
)

≤ Hq

(

X(t−1)|X(t)
)

≤ Hq

(

X(t)|X(t−1)
)

,

(24)

where both the upper and lower bounds depend only on

q
(

x(1···T )|x(0)
)

, and can be analytically computed. The

derivation is provided in Appendix A.

3. Experiments

We train diffusion probabilistic models on a variety of con-

tinuous datasets, and a binary dataset. We then demonstrate

sampling from the trained model and inpainting of miss-

ing data, and compare model performance against other

techniques. In all cases the objective function and gradi-

ent were computed using Theano (Bergstra & Breuleux,

2010). Model training was with SFO (Sohl-Dickstein et al.,

2014), except for CIFAR-10. CIFAR-10 results used the

3 An earlier version of this paper reported higher log likeli-
hood bounds on CIFAR-10. These were the result of the model
learning the 8-bit quantization of pixel values in the CIFAR-10
dataset. The log likelihood bounds reported here are instead for
data that has been pre-processed by adding uniform noise to re-
move pixel quantization, as recommended in (Theis et al., 2015).
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Figure 5. Inpainting. (a) A bark image from (Lazebnik et al., 2005). (b) The same image with the central 100×100 pixel region replaced

with isotropic Gaussian noise. This is the initialization p̃
(

x
(T )

)

for the reverse trajectory. (c) The central 100×100 region has been

inpainted using a diffusion probabilistic model trained on images of bark, by sampling from the posterior distribution over the missing

region conditioned on the rest of the image. Note the long-range spatial structure, for instance in the crack entering on the left side of the

inpainted region. The sample from the posterior was generated as described in Section 2.5, where r
(

x
(0)

)

was set to a delta function

for known data, and a constant for missing data.

Dataset K K − Lnull

Swiss Roll 2.35 bits 6.45 bits

Binary Heartbeat -2.414 bits/seq. 12.024 bits/seq.

Bark -0.55 bits/pixel 1.5 bits/pixel

Dead Leaves 1.489 bits/pixel 3.536 bits/pixel

CIFAR-103 5.4± 0.2 bits/pixel 11.5± 0.2 bits/pixel

MNIST See table 2

Table 1. The lower bound K on the log likelihood, computed on a

holdout set, for each of the trained models. See Equation 12. The

right column is the improvement relative to an isotropic Gaussian

or independent binomial distribution. Lnull is the log likelihood

of π
(

x
(0)

)

. All datasets except for Binary Heartbeat were scaled

by a constant to give them variance 1 before computing log like-

lihood.

open source implementation of the algorithm, and RM-

Sprop for optimization. The lower bound on the log like-

lihood provided by our model is reported for all datasets

in Table 1. A reference implementation of the algorithm

utilizing Blocks (van Merriënboer et al., 2015) is avail-

able at https://github.com/Sohl-Dickstein/

Diffusion-Probabilistic-Models.

3.1. Toy Problems

3.1.1. SWISS ROLL

A diffusion probabilistic model was built of a two dimen-

sional swiss roll distribution, using a radial basis function

network to generate fµ
(

x(t), t
)

and fΣ
(

x(t), t
)

. As illus-

trated in Figure 1, the swiss roll distribution was success-

fully learned. See Appendix Section D.1.1 for more details.

Model Log Likelihood

Dead Leaves

MCGSM 1.244 bits/pixel

Diffusion 1.489 bits/pixel

MNIST

Stacked CAE 174± 2.3 bits

DBN 199± 2.9 bits

Deep GSN 309± 1.6 bits

Diffusion 317± 2.7 bits

Adversarial net 325± 2.9 bits

Perfect model 349± 3.3 bits

Table 2. Log likelihood comparisons to other algorithms. Dead

leaves images were evaluated using identical training and test data

as in (Theis et al., 2012). MNIST log likelihoods were estimated

using the Parzen-window code from (Goodfellow et al., 2014),

with values given in bits, and show that our performance is com-

parable to other recent techniques. The perfect model entry was

computed by applying the Parzen code to samples from the train-

ing data.

3.1.2. BINARY HEARTBEAT DISTRIBUTION

A diffusion probabilistic model was trained on simple bi-

nary sequences of length 20, where a 1 occurs every 5th

time bin, and the remainder of the bins are 0, using a multi-

layer perceptron to generate the Bernoulli rates fb
(

x(t), t
)

of the reverse trajectory. The log likelihood under the true

distribution is log2
(

1
5

)

= −2.322 bits per sequence. As

can be seen in Figure 2 and Table 1 learning was nearly

perfect. See Appendix Section D.1.2 for more details.

3.2. Images

We trained Gaussian diffusion probabilistic models on sev-

eral image datasets. The multi-scale convolutional archi-

https://github.com/Sohl-Dickstein/Diffusion-Probabilistic-Models
https://github.com/Sohl-Dickstein/Diffusion-Probabilistic-Models
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tecture shared by these experiments is described in Ap-

pendix Section D.2.1, and illustrated in Figure D.1.

3.2.1. DATASETS

MNIST In order to allow a direct comparison against

previous work on a simple dataset, we trained on MNIST

digits (LeCun & Cortes, 1998). Log likelihoods relative to

(Bengio et al., 2012; Bengio & Thibodeau-Laufer, 2013;

Goodfellow et al., 2014) are given in Table 2. Samples

from the MNIST model are given in Appendix Figure

App.1. Our training algorithm provides an asymptotically

consistent lower bound on the log likelihood. However

most previous reported results on continuous MNIST log

likelihood rely on Parzen-window based estimates com-

puted from model samples. For this comparison we there-

fore estimate MNIST log likelihood using the Parzen-

window code released with (Goodfellow et al., 2014).

CIFAR-10 A probabilistic model was fit to the training

images for the CIFAR-10 challenge dataset (Krizhevsky &

Hinton, 2009). Samples from the trained model are pro-

vided in Figure 3.

Dead Leaf Images Dead leaf images (Jeulin, 1997; Lee

et al., 2001) consist of layered occluding circles, drawn

from a power law distribution over scales. They have an an-

alytically tractable structure, but capture many of the statis-

tical complexities of natural images, and therefore provide

a compelling test case for natural image models. As illus-

trated in Table 2 and Figure 4, we achieve state of the art

performance on the dead leaves dataset.

Bark Texture Images A probabilistic model was trained

on bark texture images (T01-T04) from (Lazebnik et al.,

2005). For this dataset we demonstrate that it is straightfor-

ward to evaluate or generate from a posterior distribution,

by inpainting a large region of missing data using a sample

from the model posterior in Figure 5.

4. Conclusion

We have introduced a novel algorithm for modeling proba-

bility distributions that enables exact sampling and evalua-

tion of probabilities and demonstrated its effectiveness on a

variety of toy and real datasets, including challenging natu-

ral image datasets. For each of these tests we used a similar

basic algorithm, showing that our method can accurately

model a wide variety of distributions. Most existing den-

sity estimation techniques must sacrifice modeling power

in order to stay tractable and efficient, and sampling or

evaluation are often extremely expensive. The core of our

algorithm consists of estimating the reversal of a Markov

diffusion chain which maps data to a noise distribution; as

the number of steps is made large, the reversal distribution

of each diffusion step becomes simple and easy to estimate.

The result is an algorithm that can learn a fit to any data dis-

tribution, but which remains tractable to train, exactly sam-

ple from, and evaluate, and under which it is straightfor-

ward to manipulate conditional and posterior distributions.
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Appendix

A. Conditional Entropy Bounds Derivation

The conditional entropy Hq

(

X(t−1)|X(t)
)

of a step in the reverse trajectory is

Hq

(

X(t−1),X(t)
)

= Hq

(

X(t),X(t−1)
)

(25)

Hq

(

X(t−1)|X(t)
)

+Hq

(

X(t)
)

= Hq

(

X(t)|X(t−1)
)

+Hq

(

X(t−1)
)

(26)

Hq

(

X(t−1)|X(t)
)

= Hq

(

X(t)|X(t−1)
)

+Hq

(

X(t−1)
)

−Hq

(

X(t)
)

(27)

An upper bound on the entropy change can be constructed by observing that π (y) is the maximum entropy distribution.

This holds without qualification for the binomial distribution, and holds for variance 1 training data for the Gaussian case.

For the Gaussian case, training data must therefore be scaled to have unit norm for the following equalities to hold. It need

not be whitened. The upper bound is derived as follows,

Hq

(

X(t)
)

≥ Hq

(

X(t−1)
)

(28)

Hq

(

X(t−1)
)

−Hq

(

X(t)
)

≤ 0 (29)

Hq

(

X(t−1)|X(t)
)

≤ Hq

(

X(t)|X(t−1)
)

. (30)

A lower bound on the entropy difference can be established by observing that additional steps in a Markov chain do not

increase the information available about the initial state in the chain, and thus do not decrease the conditional entropy of

the initial state,

Hq

(

X(0)|X(t)
)

≥ Hq

(

X(0)|X(t−1)
)

(31)

Hq

(

X(t−1)
)

−Hq

(

X(t)
)

≥ Hq

(

X(0)|X(t−1)
)

+Hq

(

X(t−1)
)

−Hq

(

X(0)|X(t)
)

−Hq

(

X(t)
)

(32)

Hq

(

X(t−1)
)

−Hq

(

X(t)
)

≥ Hq

(

X(0),X(t−1)
)

−Hq

(

X(0),X(t)
)

(33)

Hq

(

X(t−1)
)

−Hq

(

X(t)
)

≥ Hq

(

X(t−1)|X(0)
)

−Hq

(

X(t)|X(0)
)

(34)

Hq

(

X(t−1)|X(t)
)

≥ Hq

(

X(t)|X(t−1)
)

+Hq

(

X(t−1)|X(0)
)

−Hq

(

X(t)|X(0)
)

. (35)

Combining these expressions, we bound the conditional entropy for a single step,

Hq

(

X(t)|X(t−1)
)

≥ Hq

(

X(t−1)|X(t)
)

≥ Hq

(

X(t)|X(t−1)
)

+Hq

(

X(t−1)|X(0)
)

−Hq

(

X(t)|X(0)
)

, (36)

where both the upper and lower bounds depend only on the conditional forward trajectory q
(

x(1···T )|x(0)
)

, and can be

analytically computed.

B. Log Likelihood Lower Bound

The lower bound on the log likelihood is

L ≥ K (37)

K =

∫

dx(0···T )q
(

x(0···T )
)

log

[

p
(

x(T )
)

T
∏

t=1

p
(

x(t−1)|x(t)
)

q
(

x(t)|x(t−1)
)

]

(38)

(39)
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B.1. Entropy of p
(

X(T )
)

We can peel off the contribution from p
(

X(T )
)

, and rewrite it as an entropy,

K =

∫

dx(0···T )q
(

x(0···T )
)

T
∑

t=1

log

[

p
(

x(t−1)|x(t)
)

q
(

x(t)|x(t−1)
)

]

+

∫

dx(T )q
(

x(T )
)

log p
(

x(T )
)

(40)

=

∫

dx(0···T )q
(

x(0···T )
)

T
∑

t=1

log

[

p
(

x(t−1)|x(t)
)

q
(

x(t)|x(t−1)
)

]

+

∫

dx(T )q
(

x(T )
)

log π
(

xT
)

(41)

. (42)

By design, the cross entropy to π
(

x(t)
)

is constant under our diffusion kernels, and equal to the entropy of p
(

x(T )
)

.

Therefore,

K =

T
∑

t=1

∫

dx(0···T )q
(

x(0···T )
)

log

[

p
(

x(t−1)|x(t)
)

q
(

x(t)|x(t−1)
)

]

−Hp

(

X(T )
)

. (43)

B.2. Remove the edge effect at t = 0

In order to avoid edge effects, we set the final step of the reverse trajectory to be identical to the corresponding forward

diffusion step,

p
(

x(0)|x(1)
)

= q
(

x(1)|x(0)
) π

(

x(0)
)

π
(

x(1)
) = Tπ

(

x(0)|x(1);β1

)

. (44)

We then use this equivalence to remove the contribution of the first time-step in the sum,

K =

T
∑

t=2

∫

dx(0···T )q
(

x(0···T )
)

log

[

p
(

x(t−1)|x(t)
)

q
(

x(t)|x(t−1)
)

]

+

∫

dx(0)dx(1)q
(

x(0),x(1)
)

log

[

q
(

x(1)|x(0)
)

π
(

x(0)
)

q
(

x(1)|x(0)
)

π
(

x(1)
)

]

−Hp

(

X(T )
)

(45)

=

T
∑

t=2

∫

dx(0···T )q
(

x(0···T )
)

log

[

p
(

x(t−1)|x(t)
)

q
(

x(t)|x(t−1)
)

]

−Hp

(

X(T )
)

, (46)

where we again used the fact that by design −
∫

dx(t)q
(

x(t)
)

log π
(

x(t)
)

= Hp

(

X(T )
)

is a constant for all t.

B.3. Rewrite in terms of posterior q
(

x(t−1)|x(0)
)

Because the forward trajectory is a Markov process,

K =

T
∑

t=2

∫

dx(0···T )q
(

x(0···T )
)

log

[

p
(

x(t−1)|x(t)
)

q
(

x(t)|x(t−1),x(0)
)

]

−Hp

(

X(T )
)

. (47)

Using Bayes’ rule we can rewrite this in terms of a posterior and marginals from the forward trajectory,

K =

T
∑

t=2

∫

dx(0···T )q
(

x(0···T )
)

log

[

p
(

x(t−1)|x(t)
)

q
(

x(t−1)|x(t),x(0)
)

q
(

x(t−1)|x(0)
)

q
(

x(t)|x(0)
)

]

−Hp

(

X(T )
)

. (48)
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Figure App.1. Samples from a diffusion probabilistic model trained on MNIST digits. Note that unlike many MNIST sample figures,

these are true samples rather than the mean of the Gaussian or binomial distribution from which samples would be drawn.

B.4. Rewrite in terms of KL divergences and entropies

We then recognize that several terms are conditional entropies,

K =
T
∑

t=2

∫

dx(0···T )q
(

x(0···T )
)

log

[

p
(

x(t−1)|x(t)
)

q
(

x(t−1)|x(t),x(0)
)

]

+
T
∑

t=2

[

Hq

(

X(t)|X(0)
)

−Hq

(

X(t−1)|X(0)
)]

−Hp

(

X(T )
)

(49)

=

T
∑

t=2

∫

dx(0···T )q
(

x(0···T )
)

log

[

p
(

x(t−1)|x(t)
)

q
(

x(t−1)|x(t),x(0)
)

]

+Hq

(

X(T )|X(0)
)

−Hq

(

X(1)|X(0)
)

−Hp

(

X(T )
)

.

(50)

Finally we transform the log ratio of probability distributions into a KL divergence,

K = −
T
∑

t=2

∫

dx(0)dx(t)q
(

x(0),x(t)
)

DKL

(

q
(

x(t−1)|x(t),x(0)
)∣

∣

∣

∣

∣

∣p
(

x(t−1)|x(t)
))

(51)

+Hq

(

X(T )|X(0)
)

−Hq

(

X(1)|X(0)
)

−Hp

(

X(T )
)

.

Note that the entropies can be analytically computed, and the KL divergence can be analytically computed given x(0) and

x(t).



Gaussian Binomial

Well behaved (analytically

tractable) distribution

π
(

x(T )
)

= N
(

x(T );0, I
)

B
(

x(T ); 0.5
)

Forward diffusion kernel q
(

x(t)|x(t−1)
)

= N
(

x(t);x(t−1)
√
1− βt, Iβt

)

B
(

x(t);x(t−1) (1− βt) + 0.5βt

)

Reverse diffusion kernel p
(

x(t−1)|x(t)
)

= N
(

x(t−1); fµ
(

x(t), t
)

, fΣ
(

x(t), t
))

B
(

x(t−1); fb
(

x(t), t
))

Training targets fµ
(

x(t), t
)

, fΣ
(

x(t), t
)

, β1···T fb
(

x(t), t
)

Forward distribution q
(

x(0···T )
)

= q
(

x(0)
)
∏T

t=1 q
(

x(t)|x(t−1)
)

Reverse distribution p
(

x(0···T )
)

= π
(

x(T )
)
∏T

t=1 p
(

x(t−1)|x(t)
)

Log likelihood L =
∫

dx(0)q
(

x(0)
)

log p
(

x(0)
)

Lower bound on log likelihood K = −∑T
t=2 Eq(x(0),x(t))

[

DKL

(

q
(

x(t−1)|x(t),x(0)
)∣

∣

∣

∣p
(

x(t−1)|x(t)
))]

+Hq

(

X(T )|X(0)
)

−Hq

(

X(1)|X(0)
)

−Hp

(

X(T )
)

Perturbed reverse diffusion kernel p̃
(

x(t−1)|x(t)
)

= N
(

x(t−1); fµ
(

x(t), t
)

+ fΣ
(

x(t), t
) ∂ log r

(

x
(t−1)′

)

∂x(t−1)′

∣

∣

∣

∣

x(t−1)′=fµ(x(t),t)
, fΣ

(

x(t), t
)

)

B
(

x
(t−1)
i ;

ct−1
i

dt−1
i

xt−1
i

dt−1
i

+(1−ct−1
i

)(1−dt−1
i

)

)

Table App.1. The key equations in this paper for the specific cases of Gaussian and binomial diffusion processes. N (u;µ,Σ) is a Gaussian distribution with mean µ and covariance

Σ. B (u; r) is the distribution for a single Bernoulli trial, with u = 1 occurring with probability r, and u = 0 occurring with probability 1 − r. Finally, for the perturbed Bernoulli

trials bti = x
(t−1) (1− βt) + 0.5βt, c

t
i =

[

fb

(

x
(t+1), t

)]

i
, and dti = r

(

x
(t)
i = 1

)

, and the distribution is given for a single bit i.
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C. Perturbed Gaussian Transition

We wish to compute p̃
(

x(t−1) | x(t)
)

. For notational simplicity, let µ = fµ
(

x(t), t
)

, Σ = fΣ
(

x(t), t
)

, and y = x(t−1).

Using this notation,

p̃
(

y | x(t)
)

∝ p
(

y | x(t)
)

r (y) (52)

= N (y;µ,Σ) r (y) . (53)

We can rewrite this in terms of energy functions, where Er (y) = − log r (y),

p̃
(

y | x(t)
)

∝ exp [−E (y)] (54)

E (y) =
1

2
(y − µ)

T
Σ−1 (y − µ) + Er (y) . (55)

If Er (y) is smooth relative to 1
2 (y − µ)

T
Σ−1 (y − µ), then we can approximate it using its Taylor expansion around µ.

One sufficient condition is that the eigenvalues of the Hessian of Er (y) are everywhere much smaller magnitude than the

eigenvalues of Σ−1. We then have

Er (y) ≈ Er (µ) + (y − µ)g (56)

where g =
∂Er(y′)

∂y′

∣

∣

∣

∣

y′=µ

. Plugging this in to the full energy,

E (y) ≈ 1

2
(y − µ)

T
Σ−1 (y − µ) + (y − µ)

T
g + constant (57)

=
1

2
yTΣ−1y − 1

2
yTΣ−1µ− 1

2
µTΣ−1y +

1

2
yTΣ−1Σg +

1

2
gTΣΣ−1y + constant (58)

=
1

2
(y − µ+Σg)

T
Σ−1 (y − µ+Σg) + constant. (59)

This corresponds to a Gaussian,

p̃
(

y | x(t)
)

≈ N (y;µ− Σg,Σ) . (60)

Substituting back in the original formalism, this is,

p̃
(

x(t−1) | x(t)
)

≈ N



x(t−1); fµ

(

x(t), t
)

+ fΣ

(

x(t), t
) ∂ log r

(

x(t−1)′
)

∂x(t−1)′

∣

∣

∣

∣

∣

x(t−1)′=fµ(x(t),t)

, fΣ

(

x(t), t
)



 . (61)
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D. Experimental Details

D.1. Toy Problems

D.1.1. SWISS ROLL

A probabilistic model was built of a two dimensional swiss

roll distribution. The generative model p
(

x(0···T )
)

con-

sisted of 40 time steps of Gaussian diffusion initialized

at an identity-covariance Gaussian distribution. A (nor-

malized) radial basis function network with a single hid-

den layer and 16 hidden units was trained to generate the

mean and covariance functions fµ
(

x(t), t
)

and a diago-

nal fΣ
(

x(t), t
)

for the reverse trajectory. The top, read-

out, layer for each function was learned independently for

each time step, but for all other layers weights were shared

across all time steps and both functions. The top layer out-

put of fΣ
(

x(t), t
)

was passed through a sigmoid to restrict

it between 0 and 1. As can be seen in Figure 1, the swiss

roll distribution was successfully learned.

D.1.2. BINARY HEARTBEAT DISTRIBUTION

A probabilistic model was trained on simple binary se-

quences of length 20, where a 1 occurs every 5th time

bin, and the remainder of the bins are 0. The generative

model consisted of 2000 time steps of binomial diffusion

initialized at an independent binomial distribution with the

same mean activity as the data (p
(

x
(T )
i = 1

)

= 0.2). A

multilayer perceptron with sigmoid nonlinearities, 20 in-

put units and three hidden layers with 50 units each was

trained to generate the Bernoulli rates fb
(

x(t), t
)

of the re-

verse trajectory. The top, readout, layer was learned inde-

pendently for each time step, but for all other layers weights

were shared across all time steps. The top layer output was

passed through a sigmoid to restrict it between 0 and 1. As

can be seen in Figure 2, the heartbeat distribution was suc-

cessfully learned. The log likelihood under the true gener-

ating process is log2
(

1
5

)

= −2.322 bits per sequence. As

can be seen in Figure 2 and Table 1 learning was nearly

perfect.

D.2. Images

D.2.1. ARCHITECTURE

Readout In all cases, a convolutional network was used

to produce a vector of outputs yi ∈ R2J for each image

pixel i. The entries in yi are divided into two equal sized

subsets, yµ and yΣ.

Temporal Dependence The convolution output yµ is

used as per-pixel weighting coefficients in a sum over time-

dependent “bump” functions, generating an output z
µ
i ∈ R

for each pixel i,

z
µ
i =

J
∑

j=1

y
µ
ijgj (t) . (62)

The bump functions consist of

gj (t) =
exp

(

− 1
2w2 (t− τj)

2
)

∑J
k=1 exp

(

− 1
2w2 (t− τk)

2
) , (63)

where τj ∈ (0, T ) is the bump center, and w is the spacing

between bump centers. zΣ is generated in an identical way,

but using yΣ.

For all image experiments a number of timesteps T = 1000
was used, except for the bark dataset which used T = 500.

Mean and Variance Finally, these outputs are combined

to produce a diffusion mean and variance prediction for

each pixel i,

Σii = σ
(

zΣi + σ−1 (βt)
)

, (64)

µi = (xi − z
µ
i ) (1− Σii) + z

µ
i . (65)

where both Σ and µ are parameterized as a perturbation

around the forward diffusion kernel Tπ

(

x(t)|x(t−1);βt

)

,

and z
µ
i is the mean of the equilibrium distribution that

would result from applying p
(

x(t−1)|x(t)
)

many times. Σ
is restricted to be a diagonal matrix.

Multi-Scale Convolution We wish to accomplish goals

that are often achieved with pooling networks – specif-

ically, we wish to discover and make use of long-range

and multi-scale dependencies in the training data. How-

ever, since the network output is a vector of coefficients

for every pixel it is important to generate a full resolution

rather than down-sampled feature map. We therefore define

multi-scale-convolution layers that consist of the following

steps:

1. Perform mean pooling to downsample the image to

multiple scales. Downsampling is performed in pow-

ers of two.

2. Performing convolution at each scale.

3. Upsample all scales to full resolution, and sum the re-

sulting images.

4. Perform a pointwise nonlinear transformation, con-

sisting of a soft relu (log [1 + exp (·)]).

The composition of the first three linear operations resem-

bles convolution by a multiscale convolution kernel, up to

blocking artifacts introduced by upsampling. This method

of achieving multiscale convolution was described in (Bar-

ron et al., 2013).
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Figure D.1. Network architecture for mean function fµ

(

x
(t), t

)

and covariance function fΣ

(

x
(t), t

)

, for experiments in Section

3.2. The input image x
(t) passes through several layers of multi-

scale convolution (Section D.2.1). It then passes through several

convolutional layers with 1 × 1 kernels. This is equivalent to a

dense transformation performed on each pixel. A linear transfor-

mation generates coefficients for readout of both mean µ(t) and

covariance Σ(t) for each pixel. Finally, a time dependent readout

function converts those coefficients into mean and covariance im-

ages, as described in Section D.2.1. For CIFAR-10 a dense (or

fully connected) pathway was used in parallel to the multi-scale

convolutional pathway. For MNIST, the dense pathway was used

to the exclusion of the multi-scale convolutional pathway.

Dense Layers Dense (acting on the full image vector)

and kernel-width-1 convolutional (acting separately on the

feature vector for each pixel) layers share the same form.

They consist of a linear transformation, followed by a tanh

nonlinearity.


