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Deep UV sensing of the interaction of porphyrin with bovine
serum albumin protein

Abstract

The interaction of meso-tetrakis(p-sulfonatophenyl)porphyrin (TPPS) with bovine serum albumin
(BSA) in neutral solution (pH 7.4) has been studied by means of absorption, steady-state fluorescence
and time-resolved fluorescence spectroscopy. The formation of TPPS-BSA complex was monitored by
spectroscopic characteristic changes in Soret band absorption and fluorescence emission of TPPS.
Applying the time-correlated single-photon counting (TCSPC) method, BSA-TPPS interaction was also
investigated by the fluorescence lifetime of tryptophan residues in BSA. The results demonstrate that
deep UV laser-based fluorescence lifetime microscopy is useful for sensitive identification of protein
interaction using intrinsic fluorescence.
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The interaction of meso-tetrakis(p-sulfonatophenyl)porphyrin (TPPS) with bovine 

serum albumin (BSA) in neutral solution (pH 7.4) has been studied by means of 

absorption, steady-state fluorescence and time-resolved fluorescence spectroscopy. The 

formation of TPPS-BSA complex was monitored by spectroscopic characteristic 

changes in Soret band absorption and fluorescence emission of TPPS. Applying the 

time-correlated single-photon counting (TCSPC) method, BSA-TPPS interaction was 

also investigated by the fluorescence lifetime of tryptophan residues in BSA. The results 

demonstrate that deep UV laser-based fluorescence lifetime microscopy is useful for 

sensitive identification of protein interaction using intrinsic fluorescence. 
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1. Introduction 

Photodynamic therapy is one of the most promising new agents for the treatment of 

cancers, in which light-activated sensitizers are used to selectively destroy abnormal 

tissues [1, 2]. In recent years there has been a growing interest in the use of porphyrins 

and related compounds as therapeutic drugs. They are applied in medicine on important 

areas as cancer detection and photosensitizers in photodynamic therapy of cancer [3-6]. 

Potential applications of porphyrins have recently appeared in the treatment of 

nonmalignant conditions such as psoriasis, atheromatous plaque, viral and bacterial 

infections including HIV [7, 8], and blood substitutes [9]. 

Meso-tetrakis(p-sulfonatophenyl)porphyrin (TPPS) is a water soluble porphyrin. In 

neutral solutions TPPS exists in deprotonated form possessing negative charges on four 

sulfonic residuals. When the acidity and/or ionic strength increases (pH < 4.8), two 

protons bind to central nitrogen atoms inducing partial positive charge in the center of 

the porphyrin ring. At even higher acidity (pH < 2), additional protons can bind to SO3
−

 

groups and shield their negative charge. J-aggregates are formed via electrostatic 

interaction between positively charged porphyrin center and negatively charged SO3
−
 

groups of neighboring TPPS. The J-aggregation of TPPS at low pH and/or high ionic 

strength has been studied extensively. The structure, aggregation number, absorption 

spectra, quantum yield and excited state of TPPS J-aggregates in acidic aqueous 

solution have been reported so far [10-18]. 

Deprotonated and protonated monomeric forms of TPPS have different absorption and 

fluorescence spectra [19, 20] (Table 1), At pH 7, the absorption spectra of deprotonated 

species exhibits features of D2h symmetry with Soret band at 413 nm and Q-band at 516, 

553, 579, 633 nm. However, at high acidity symmetry of the protonated increases to D4h 
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featuring a shift of the Soret band from 413 to 434 nm and the nonsplitting of the Q-

bands (594 and 645 nm). Two new absorption bands, a sharp excitonic band at ∼ 490 

nm and the second one at ∼ 705 nm, appear simultaneously by increasing the acidity 

(pH < 2). These two new bands have been assigned to the formation of J-aggregates of 

TPPS protonated form. The narrowed absorption band observed for J-aggregates is due 

to the coherent delocalization of excitions over an aggregate caused by the 

intermolecular interaction between transition dipole moments of TPPS molecules [21].  

The formation of TPPS J-aggregates was reported occurring not only in pure aqueous 

medium but also in mixed solutions such as surfactants [22-25], proteins [19, 20, 26-

29], polypeptides [30, 31], and cyclodextrins [32] at higher acidity (pH < 2). 

Bovine Serum Albumin (BSA), also known as "Fraction V", is a very interesting 

molecule in terms of biochemistry and biophysics and has been studied intensively over 

the last few decades. It is the major protein species found in bovine blood plasma and 

has applications in life science disciplines such as cell culture, in-vitro diagnostics, 

human and veterinary pharmaceuticals, molecular biology, serology and general 

research. In restriction digests, BSA is used to stabilize some enzymes during digestion 

of DNA and to prevent adhesion of the enzyme to reaction tubes and other vessels [33]. 

The primary structure of BSA is very well known consisting of 583 amino acid 

residues, whereas its secondary structure contains 67% of alpha helix and 17 disulfide 

bridges that confer to the protein a remarkable stability [33, 34]. BSA displays native 

fluorescence when excited in the UV region of 260 to 280 nm [35], it contains two 

tryptophan residues which are located at positions 134 and 213 of the chain. 

Ultrasensitive protein detection can be achieved by using highly efficient fluorescence 

labels. However, the labeling procedure is usually time consuming and expensive, the 

introduction of fluorophores may change the proteins physical properties, such as 
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charge, hydrophobic/hydrophilic character and structure. In order to avoid these 

disadvantages, direct ultrasensitive measurements of native fluorescence of proteins 

have been developed [36-39]. Recently we could show for the first time the single 

molecule and single protein detection without any labeling using deep UV laser-based 

fluorescence lifetime microscopy [40-42]. This method is also quite useful for sensitive 

identification of protein interactions and for direct analysis of protein in one-

dimensional separation coupled with miniaturized PAA gel electrophoresis [43, 44]. 

The photobiological activity of porphyrin depends on its physico-chemical properties. 

Activation of the porphyrin photosensitizer leads to the formation of porphyrin triplet 

states and singlet oxygen, the main cell killer in photodynamic therapy. The water 

soluble porphyrin of TPPS exhibits a high quantum yield of singlet oxygen, equal to 

0.62 in water [32]. In clinical application, the approach that utilizes pre-association of a 

sensitizer with endogenous carriers such as serum albumin in blood followed by 

dissociation of the complex inside the cell during the metabolic processes seems to be 

particularly appealing. Porphyrins are usually introduced in the blood as relatively 

concentrated solution, which may diminish its action or even cause adverse effects. For 

instance, the formation of protein complexes reduces the quantum yield of singlet 

oxygen photogenerated by TPPS, which changes the photobiological activity of TPPS 

[45]. Hence, deep understanding of interaction between TPPS and protein in different 

acidity solution is crucial for further progress in photodynamic therapy of tumours. 

The influence of proteins on the formation of J-aggregates of TPPS in aqueous acid 

solution (pH < 2) has been investigated [19, 20, 26-29]. In the present work, we aim to 

investigate the interaction of TPPS with BSA in physiological environment (pH 7.4). 

The binding characteristics were studied by absorption, steady-state and time-resolved 

deep UV fluorescence spectroscopy. A global analysis fitting revealed the formation of 
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BSA-TPPS complex in PBS buffer solution (pH 7.4). The mean fluorescence lifetime 

between BSA and TPPS bound BSA decreases dramatically, which can be used for 

sensitivity detection of BSA-TPPS interaction. 

 

2. Experimental  

 

2.1 Materials 

The pure BSA and N-Acetyl-L-tryptophanamide (NATA) were purchased from Sigma 

and TPPS was obtained from Fluka. BSA was solved and diluted in phosphate buffered 

saline solution (PBS, pH 7.4), NATA and TPPS were solved and diluted in double 

distilled water. All other chemicals were of analytical grade. 

 

2.2 Sample preparation 

For absorption and steady-state fluorescence experiments TPPS concentration was kept 

constant at 2 µM, while BSA concentration was varied to reach TPSS:BSA molar ratios 

from 1:0.01 to 1:20. Absorption spectra of solutions were measured with UV/VIS/NIR-

spectroscopy Lambda 900 (Perkin Elmer). Steady-state fluorescence spectra were 

obtained in standard quartz cuvettes with a luminescence spectrometer LB 50B (Perkin 

Elmer) equipped with a red-sensitive photomultiplier tube (Hamamatsu R-928).  Time-

resolved fluorescence spectroscopy of BSA and BSA-TPPS complex solutions were 

measured with home-made UV Fluorescence Lifetime Microscopy by putting 100 µl 

sample on quartz cover slides which glued to aluminum slabs with six
 
reaction vessels 

containing a volumetric capacity of 300 µl. The experiments have been performed at a 

constant BSA concentration of 1 µM and TPPS concentration was varied. Prior to use 

the quartz cover slides (SPI Supplies, 170 µm thickness) were cleaned for 60 min in 
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CHCl3 in an ultrasonic bath followed by washing with double distilled water and then 

dried in nitrogen flow. The fluorescence of NATA shows a single-exponential decay 

with lifetime of 2.85 ± 0.05 ns [46], which was used as standard to calibrate the 

instrument response. For the data analysis commercial software FluoFit by PicoQuant 

was used. The experimental data were analyzed using Marquardt-Levenberg algorithm. 

The decay parameters were determined by least-squares deconvolution using multi-

exponential models, and their quality was judged by the reduced χ2
 value and the 

randomness of the weighted residuals. All experiments were done at room temperature. 

 

2.3 UV Fluorescence Lifetime Microscopy.  

The time-resolved fluorescence studies were carried out with UV fluorescence lifetime 

microscopy described elsewhere[40, 41]. It consists of a 266 nm UV mode-locked 

diode-pumped picosecond laser (GE-100-XHP-FHG, Time-Bandwidth Products Inc., 

Switzerland). The laser system provides pulses with a duration of less than 10 ps and 

with a repetition rate of 40 MHz, maximum output power is 20 mW. The polarized laser 

beam was split 50/50 by a beam splitter (Laser components GmbH, Germany) sending 

50% into a high speed photodiode module (PHD-400, Becker & Hickl GmbH, Berlin, 

Germany) which is used as deriving the synchronization signal for triggering of the 

time-correlated single photon counting module. The second beam passed an excitation 

filter (254WB25, Omega Optical) and is directed into the quartz microscope objective 

(40×, NA = 0.80, Partec GmbH, Münster, Germany) by a dichroic beamsplitter 

(290DCLP, Omega Optical). The laser power was adjusted by inserting different neutral 

density filters (Melles Griot). An automatic beam shutter is incorporated to minimize 

the unnecessary exposure time which prevented the protein from bleaching. The 

fluorescence light was collected by the same objective and transmitted through the 

dichroic mirror. An achromatic lens (LAU-25-200, OFR Inc., 200 mm focal distance) 
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focuses the light onto a pinhole. After the pinhole, the fluorescence emission is detected 

by a high speed photomultiplier tube (PMT) detector head (PMH-100-6, Becker & 

Hickl GmbH, Berlin, Germany). Two emission bandpass filters (330WB60, Omega 

Optical), one positioned directly after the lens, the other directly in front of the detector, 

discriminate fluorescence against scattered light. The signal pulses of the PMT was fed 

into a time-correlated single-photon counting (TCSPC) PC interface card (SPC-630, 

Becker & Hickl GmbH, Berlin, Germany) to acquire time-resolved data. The time-

correlated single-photon counting was performed in the reversed mode, i.e. the signal of 

the PMT was used to start the clock of the time-to-amplitude converter and the 

reference signal of the laser from high speed photodiode was used as stop signal. The 

instrument response function (IRF) was measured by replacing the sample with a 

scattering dispersion of colloidal silicon dioxide particles in water (particle size 11 nm), 

and then recording the Rayleigh scattering of the excitation light without two emission 

filters. With this setup an IRF of 240 ps (FWHM) was measured. The fluorescence 

decay time constants were obtained by deconvoluting the instrument response function. 

 

3. Results and discussion 

The absorption spectra of TPPS in PBS solution and in the presence of different 

concentration of BSA at pH 7.4 are shown in Figure 1. As was shown earlier [19, 20], in 

the absence of BSA the absorption spectra consisted of Soret band at 413 nm and Q-

band at 516, 552, 579, 635 nm, which belong to a deprotonated monomeric form TPPS. 

Titrations of TPPS solutions at a fixed TPPS concentration (2 µM) and varying BSA 

were performed in PBS buffer solution at pH 7.4. The addition of BSA changes 

position, width, and intensity of the bands in absorption spectra of TPPS. The intensity 

of Soret band decreased in the presence of BSA at small ratios (TPPS:BSA, 1:0.1 to 
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1:0.3). With the decreased intensity a slight red shift of Soret band and the broadening 

of its red side were observed (insert Figure 1). With continued increase of BSA 

concentration in mixed solutions(TPPS:BSA, 1:0.5 to 1:20), the absorbance of Soret 

band increases and reaches its maximum values within TPPS:BSA molar ratios range 

from 1:10 to 1:20 together with a red shift of this band from 413 to 422 nm. The similar 

changes in Q-bands were obtained with increase of BSA concentration, the maxima of 

those bands shifted to 518, 553, 593, and 648 nm when molar ratio of TPPS:BSA = 

1:20. Protonated monomeric and J-aggregated forms of TPPS have not been observed in 

the PBS solution at pH 7.4.  

Using absorption spectra, it is possible to decompose TPPS Soret band in a sum of three 

Gaussian functions indicated as dot-dashed, dotted and dashed lines in Figure 2. The left 

component (dot-dashed line) centered at ∼405 nm almost keeps the same absorption 

intensity in the absence and presence of different concentration of BSA, which is the 

shoulder of the Soret band absorption. The middle and right component (dotted and 

dashed lines) have maximum absorption at 413 and 422 nm, respectively. The increase 

of BSA concentration reduces the contribution of the middle component, the absorption 

intensity becomes zero when the molar ratio of TPPS:BSA is 1:20. Thus, the middle 

component can be assigned to free TPPS. However, the contribution of the right 

component increases when the concentration of BSA increases, the absorption intensity 

of this component reaches maximum at TPPS:BSA = 1:20. We can ascribe this 

component to BSA bound TPPS form. The absorption intensity of the middle and right 

components plotted versus the BSA protein concentration shows the growth of the 

bound TPPS forms and the decrease of the free TPPS forms (Figure 3). The Q bands 

which located at 510-650 nm are not fitted due to weak absorbance compared to the 

Soret band.  
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Figure 3 shows a nonlinear relationship between the absorbance of bound TPPS and the 

amount of BSA added, which indicates either that there is more than one class of 

binding sites or that the binding of each successive molecule alters the association 

constant of the next molecule. A similar behavior has been observed for binding of 

TPPS with human serum albumin (HSA) [20]. The value of binding constant K is quite 

high at all pHs, which indicates important electrostatic interactions in the TPPS-HAS 

complex. We use same equation (Eq. 1 in Ref. 20) to determine the binding parameters, 

the value of n is 1.2 ± 0.3 with the binding constant K of (4.5 ± 0.9) × 10
6
 M

-1
. 

Two excitation wavelengths were chosen for recording the fluorescence emission 

spectra since the absorption peak changes observed in the absence and presence of BSA 

solution. The fluorescence emission spectra for the different molar ratios of TPPS:BSA 

at excitation wavelength 413 and 422 nm are shown in Figure 4, respectively.  Under 

both excitation wavelengths, the fluorescence spectra for the free TPPS form manifested 

a single fluorescence band with a peak at 639 nm. Increasing the molar ratio of 

TPPS:BSA (from 1:0.1 to 1:50), the fluorescence emission peak shifted to longer 

wavelengths and finally is located at 648 nm. The fluorescence emission spectra kept 

unchanged within TPPS:BSA molar ratios range from 1:10 to 1:20, we can assign these 

fluorescence spectra to the BSA bound TPPS form. However, the fluorescence emission 

intensity shows different characteristic. The intensity decreases at 413 nm excitation and 

increases at 422 nm excitation when the concentration of BAS solution increases, which 

in accordance with absorption data because of decreasing of the free TPPS form and 

increasing of the BSA bound TPPS form in the titration procedure. 

The fluorescence spectra of this titration procedure also can be decomposed to two 

Gaussian distributions as shown in Figure 5 for TPPS:BSA molar ratio of 1:0.5 at 

excitation wavelength of 413 and 422 nm, respectively. The left component (dotted line) 
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has its maximum emission at 639 nm. The contribution of this component decreases 

with increasing BSA concentration (insert Figure 4), the emission intensity becomes 

zero when the molar ratio of TPPS:BSA is 1:20. Thus, the left component can be 

assigned to the fluorescence emission of free TPPS. However, the contribution of the 

right component (centered at 648 nm) increases with increasing of BSA molar ratios 

(insert Figure 4), the emission intensity of this component reaches its maximum at high 

TPPS concentration. We can ascribe this component to the fluorescence emission of 

BSA bound TPPS form. 

Andrade and coworks [20] investigated the fluorescence decay of TPPS in the presence 

of human serum albumin (HSA) protein at pH 7 upon excitation at 425 nm and emission 

at 650 nm, a global analysis fitting shows two lifetime components at 9.8 and 12.9 ns. 

They assigned the shorter lifetime component to deprotonated free TPPS and the long-

lived component to the HSA-TPPS complex. Our deep UV fluorescence lifetime 

microscopy has a fixed excitation wavelength at 266 nm, i.e. we have had to measure 

BSA as a probe, because TPPS excitation wavelength doesn’t match with the emission 

of our setup. Upon excitation at 266 nm, BSA displays an intrinsic fluorescence 

emission band around 340 nm mainly due to tryptophan residues. The fluorescence 

decay characterization of BSA in absence and presence of TPPS in PBS buffer solution 

at pH 7.4 is shown in Figure 6. The lifetime, relative amplitudes and χ2
 of the decay of 

BSA-TPPS system obtained by global analysis with three-exponential fit are listed in 

Table 2. Figure 7(a) shows the fluorescence decay of pure BSA in PBS buffer solution 

to together with the IRF of our instrument. The decay is of single-exponential type with 

lifetime of 5.21 ns. The fluorescence decay of BSA in presence of TPPS with molar 

ratio of BSA:TPPS = 1:3 is shown in Figure 7(b). The analysis of the fluorescence 

decay data show three components with different decay times 5.21, 3.86, and 0.55 ns. 
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The long lifetime component can be assigned to free BSA in the mixture because it has 

the same lifetime as pure BSA solution without added TPPS. The medium and short 

lifetime components have been obtained with keeping BSA at constant concentration 

(1µM) and varying the TPPS concentration, these two components can be assigned to 

the TPPS bound BSA species. When BSA:TPPS molar ratio reach the value 1:20, the 

fluorescence decay shows only two components (3.86 and 0.55 ns) and the amplitude of 

the long lifetime (τ1 = 5.21 ns) component comes close to zero (Figure 7(c)). The 

equilibrium constant of BSA and TPPS interaction is (5.0 ± 1.8) × 10
6
 M

-1
 [26, 47], the 

amount of TPPS was sufficient to ensure total BSA binding to TPPS at this molar ratio. 

The insert of Figure 6 shows the amplitude changes of each lifetime in this titration 

process. The fluorescence lifetime distribution of free BSA and TPPS bound BSA 

indicates a conformation change of BSA induced by TPPS. The tryptophan residues are 

located in a different microenvironment before and after binding to TPPS. 

The mean fluorescence lifetime of BSA and TPPS bound BSA is 5.21 and 2.71 ns, 

respectively. This decrease in the mean lifetime was used to quantify the sensitivity of 

our method for the BSA-TPPS interaction. The mean fluorescence lifetime changes 

between free BSA and the BSA-TPPS complex measured by keeping the molar ratio of 

BSA:TPPS at 1:20 and varying the BSA concentration. We are able to detect 

fluorescence lifetime changes with BSA concentrations down to nanomolar 

concentration range. 

 

4. Conclusion 

We investigated the spectral and kinetic manifestations of interaction BSA with TPPS in 

PBS buffer solution. The analysis of the absorption and fluorescence emission spectra 
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of TPPS shows the formation of BSA bound TPPS complex in the presence of BSA 

solution. The fluorescence decay of BSA in the presence of different concentration of 

TPPS was analyzed by reconstructing the decay time distributions with 

multiexponential models. The effect of binding TPPS to BSA is shown to be a decrease 

of the mean fluorescence lifetime from 5.21 ns to 2.71 ns, the profile of fluorescence 

decay change from single-exponential decay to double-exponential decay. This effect is 

explained by a conformation change of BSA protein induced by TPPS. With the 

molecular system described we have shown that ultrasensitive confocal time-resolved 

deep UV fluorescence microscopy is an ideal tool to study intermolecular interactions at 

very low concentrations. Hence, with this method high information content about 

molecular interactions can be generated with small sample volume and at low 

concentrations respectively.  
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Figure captions 

 
Figure 1. Absorption spectra of 2 µM TPPS in the absence and presence of BSA in PBS 

buffer solution (pH 7.4). The molar ratios of TPPS:BSA (1→7) is 1:0, 1:0.1, 1:0.3, 

1:0.5, 1:1, 1:5, and 1:20, respectively. The insert shows detailed changes for Soret band 

of TPPS (the spectra for molar ratio 1: 0.75, 1:3 and 1:10 are not shown).  

 

Figure 2.  Fitting of absorption spectra of TPPS in the absence and presence of different 

concentrations of BSA in PBS buffer solution (pH 7.4). [TPPS] = 2 µM, the molar 

ratios of TPPS:BSA is 1:0, 1:0.3, 1:1, and 1:20, respectively. The open circles are the 

experimental data. The dotted line indicates absorption of free TPPS, the dashed line is 

absorption of TPPS-BSA complex. The lower panel shows weighted residuals of each 

fitting. 

 

Figure 3.  The absorption intensity dependence on the BSA concentration for the free 

TPPS and BSA bound TPPS species at pH 7.4 obtained by Gaussian decomposition of 

experimental data. [TPPS] = 2 µM. 

 

Figure 4.  The fluorescence emission spectra of TPPS in the absence and presence of 

BSA under excitation at (a) 413 and (b) 422 nm. [TPPS] = 1 µM, the molar ratios of 

TPPS:BSA (1→7) is 1:0, 1:0.1, 1:0.5, 1:1, 1:5, 1:10, and 1:20, respectively. The insert 

shows fluorescence emission dependence on the BSA concentration for the free TPPS 

and BSA bound TPPS species obtained by fitting experimental data using two 

distributions. 
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Figure 5.  Fitting of the fluorescence emission spectra of TPPS in PBS buffer solution 

(pH 7.4) in presence of BSA under excitation at (a) 413 and (b) 422 nm. [TPPS] = 1 

µM, the molar ratio of TPPS:BSA is 1:0.5. The open circles are the experimental data. 

The dotted line indicates the fluorescence emission of free TPPS centered at 639 nm, 

the dashed line is the fluorescence emission of BSA bound TPPS centered at 648 nm. 

The lower panel shows weighted residuals of each fitting. 

 

Figure 6. Time-resolved fluorescence decay of BSA in the absence and presence of 

TPPS in PBS buffer solution (pH 7.4) under excitation at 266 nm. BSA concentration 

was fixed at 1 µM, the molar ratios of BSA:TPPS (1→6) is 1:0, 1:1, 1:2, 1:3, 1:5, and 

1:20, respectively. The insert shows the amplitude changes of each lifetime in this 

titration process.   

 

Figure 7. The fluorescence decay of BSA in the presence of difference of molar ratio 

TPPS in PBS buffer solution (pH 7.4) excited at 266 nm together with the IRF. The 

molar ratio of BSA:TPPS is (a) 1:0, (b) 1:3, and (c) 1:20, respectively. The gray lines 

are the curves to (a) single-, (b) triple-, and (c) double-exponential fluorescence decay. 

The lower panel shows weighted residuals of each fitting. 

 




