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Abstract

Deep learning for biometrics has increasingly gained attention over the last years.
The expansion of computational power and the increasing dataset sizes, increased
verification performances. However, large datasets are not available for every ap-
plication. We introduce Deep Verification Learning, to reduce network complex-
ity and train on smaller datasets. Deep Verification Learning takes two images
to be verified at the input of a network, and trains directly towards a verification
score. We applied Deep Verification Learning on the face verification task, also
it could be extended to other biometric modalities.

1 Introduction

Deep learning face recognition has been extensively studied during the last years and
has obtained impressive results [1, 2, 3, 4]. The increasing availability of computational
power and training data allows for the training of deeper networks. We introduce Deep
Verification Learning to reduce the network complexity and enable training on smaller
datasets (see Figure 1). Most of the state-of-the-art deep learning face recognition
systems use convolutional networks. For face verification, commonly a framework based
on multi-class classification is used [4] (see Figure 2). We define this type of learning as
‘Identification Learning’. One of the challenges in deep learning face recognition is data
bias [4]. The availability of training data is limited for applications that do not utilize
public web images (see Table 1). For those applications it is interesting to investigate
less complex deep learning architectures. We propose a Deep Verification Learning
system, directly trained for a verification score (see Section 3). We applied Deep
Verification Learning on the task of face recognition and it could be extended towards
other biometric modalities. Deep Verification Learning offers several advantages over
Identification Learning. Training a network in pairs enables the creation of extra
training samples. Providing two images as input of the network enables it to learn face
similarities and differences directly at the first layers. Training towards a verification
score instead of multi-class classification reduces the number of network parameters
drastically. Given these advantages, we hypothesize that our network can train more
effectively on small datasets.

We investigate the ability of Deep Verification Learning by comparing Deep Verifi-
cation Learning with Identification Learning (see Section 4). We explore the benefits
of increasing the dataset size in a controlled manner. The research questions addressed
in this paper are:

ConvNet
Verification
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Figure 1: Deep Verification Learning. Two images are presented as input of the net-
work and the system is directly trained towards a verification score. Face images are
preprocessed images from the FRGC dataset [5].
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Figure 2: Identification Learning convolutional network. Left: Training for multi-class
classification. Right: Two networks are replicated in verification setting. The networks
have the same fixed weights W . A new top-layer is trained.

Dataset #Images #Subjects Access Source

LFW [6] 13,233 5,749 Public Celebrity search
CelebFaces+ [7] 202,599 10,177 Public Celebrity search
CASIA-WebFace [8] 494,414 10,575 Public Celebrity search
MS-Celeb-1M [9] 10M 100K Public Celebrity search
Social Face Classification [1] 4.4M 4,030 Private Facebook
Google [3] 100-200M 8M Private Undefined
Megvii Face Classification [4] 5M 20K Private Celebrity search
FRGC [5] 39,328 568 Public Photo sessions

Table 1: Datasets used for training deep learning face recognition networks and their
characteristics.

1. Can Deep Verification Learning result in similar or better face verification per-
formance then Identification Learning?

2. What is the effect of the number of images in a dataset on the face verification
performance of both Deep Verification Learning and Identification Learning?

Related background is described in Section 2. We explain Deep Verification Learn-
ing in Section 3, followed by our experiments. Finally we present our conclusions.

2 Related Work

Deep learning face verification systems commonly use a framework based on multi-class
classification [4]. The networks are trained for subject identification. The identification
layer is removed and a feature vector remains. A similarity measure is added for
verification (see Figure 2). Different types of top layers can be used. Examples of
untrained methods are the inner product between two normalized feature vectors [1]
or the L2 norm [4]. Possible trained methods are the weighted-χ2 distance, Joint
Bayesian [10], and a new-trained neural network [10]. Most of the traditional and deep
learning topologies extract the features of two faces separately. Verification signals can
enhance training. DeepID2 [11] combines verification and identification signals into a
joint cost function. FaceNet [3] uses a triplet loss function, which separates genuine
pairs from impostors. Most architectures use the output of a non-final layer as feature
vector for verification. Deep Verification Learning trains directly towards a verification
score, instead of using an intermediate representation. The datasets used for training
these deep networks are commonly large (see Table 1). The trained networks do not
generalize well to new applications [4]. In case of controlled applications, only small
datasets are available. Deep Verification Learning reduces the number of parameters
significantly: for a dataset of N subjects, the last layer of an Identification Learning
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Figure 3: System architecture of the hybrid ConvNet-RBM model, proposed by Sun
et al.. Image from [12].
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Figure 4: Deep Verification Learning network. At the input two grayscale images are
presented. The network is directly trained towards a verification score. Topology based
on [12].

network is an N -way softmax-layer. With K the length of the second last layer, K ·N
parameters need to be trained. For Deep Verification Learning this number is only
2 ·K parameters.

Sun et al. [12] proposed a similar verification learning architecture (see Figure
3). They train networks for twelve different face regions, each containing five different
convolutional networks and average the output of eight different input modi. On top
of these networks they train a classification RBM. They train on a large dataset. Our
aim is to design a less complex network that can train on smaller datasets. Therefore
we propose a simplified version of the architecture proposed by Sun et al., containing
a basis of their proposed network.

3 Deep Verification Learning

We introduce a Deep Verification Learning network, based on the architecture proposed
by Sun et al. [12]. The network trains directly trained towards a verification score
(see Figure 4). Max-pooling layers and the ReLU activation function are used. Two
grayscale images (31x39) are presented as input of the network, each in a separate
channel. The output layer is a 2-way softmax layer, predicting a verification score.
Using grayscale images reduces the number of trainable parameters and does not reduce
face recognition performance [13]. The number of parameters in the network, excluding
the final softmax-layer, is 13,612. The softmax-layer adds 160 parameters. In the
case of Indentification Learning, the final softmax-layer adds 80 ·N parameters, which
increases the trainable parameters in the network immensely.
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Figure 5: Training the convolutional network for multi-class classification. A N-way
softmax-layer calculates a probability score for N subject input classes.
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Figure 6: Identification Learned convolutional network for face verification. The feature
vectors of both images are taken as input for a two-way softmax-top-layer.

4 Experiments

4.1 Experiment setup

The architectures of both systems to be compared are identical, except for the input
and output layer. The Deep Verification Learning network is discussed in Section 3.
The Identification Learned network is trained for classification (see Figure 5). After
training, the classification layer is removed and a feature vector is obtained. Two
feature vectors of the images to be compared are normalized to zero mean and unit
variance and taken as input for a new-trained two-way softmax-layer. With xA and xB

referring to normalized feature vectors, the input for the softmax-layer is |xA−xB| (see
Figure 6). Normalized input vectors resulted in higher verification performances in our
experiments, probably because the ReLU expects the input data to be zero centered.

The networks are trained using SGD and a mini-batch size of 32 and learning rate
of 0.005. Before every epoch, the training samples are shuffled. The cost function is
the negative log-likelihood and normalized to the number of samples in target class
t, to compensate for an unbalanced dataset. Xavier initialization [14] is used. Early
stopping is applied, to prevent the networks from overfitting. A validation set is cre-
ated with pairs of face images. The Identification Learning validation set contains
single face images from the N training classes. During an epoch, the validation cost
is evaluated after ten mini-batches. The parameters resulting in the lowest validation
cost are saved as ‘best’. When training does not improve the validation cost, training
is stopped and the saved ‘best’ are taken as final model. For Identification Learning
the rank-1 recognition score is used for early stopping.

The first experiment is performed using the controlled images of the FRGC dataset
[5], which contains 24,614 controlled images, from 568 subjects. The second and third
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experiment use a combination of twelve different public datasets, merged and used by
Zeng et al [15], containing 438,319 images of 13,671 subjects. Training and validation
is split 50-50 on subjects. The validation set is used for both the model evaluation and
in the early stopping algorithm. This adds a bias to the results in deciding when the
network start to overfit. The validation set is not used for updating the parameters itself
and thus the learned features. For a particular training set and network combination
we expect that the network starts overfitting around the same number of training
iterations when tests are repeated. Therefore we expect the bias to be small and to
have no influence on the comparison.

The input images are converted to grayscale values and registered on the eyes, using
annotated coordinates. The images are cropped to a fixed box around the eyes’ and
scaled to a fixed size of 31x39 pixels. Thereafter the images are histogram equalized
and converted to have zero mean. Data augmentation is applied in the training set, by
adding all possible modi (horizontal flipped and different order).

4.2 Performance comparison

The two architectures are compared on their verification performance using the con-
trolled images of the FRGC dataset. The subjects are randomly split in training and
validation sets (284 subjects each). Training set contains 32,136 pairs from 11,920
images. Identification validation set contains 1,192 images and verification validation
set 10,000 pairs from 12,694 images. The training set contains genuine pairs for every
subject, with a maximum of 66 pairs per subject. In the validation set the genuine
pairs are equally distributed. The initialization and training of both networks is re-
peated five times. The ROC curves of all ten tests are shown in Figure 7. Identification
Learning networks show a higher variance in performance. The variance in the Area
Under Curve (AUC) is 1.4 × 10−6 and 3.0 × 10−8, respectively. We re-training the
top layer for a fixed network five times, to explore the cause of this variance. The
results are shown in Figure 8 and the variance in the AUC is 3.0× 10−9. We conclude
that the variance in performance is created when training the network for multi-class
classification.

The performance of Identification Learning is highly dependent on the multi-class
classification training, which we expect is caused by the high number of parameters.
The Deep Verification Learning model has only 13,772 parameters to train, as opposed
to the 36,316 parameters of the Identification Learning network. With a dataset of only
10,728 training images, it is likely that the multi-class classification network overfits.
Deep Verification Learning performs substantially better than Identification Learning
in our experiments. However, some remarks have to be made. Only one type of
newly-trained top layer for Identification Learning is evaluated. The dataset used for
testing has its limitations. The number of images is low compared to the number of
parameters in the networks, especially in the case of Identification Learning this can
lead to overfitting. Further experiments should be done on datasets with a higher
variety.

4.3 Dataset configuration comparison

Increasing the amount of training data typically improves the performance. Datasets
could be expanded by adding more subjects to a dataset and/or by adding more images
per subject. We attempt to evaluate the effect of both aspects separately. The vali-
dation set is kept the same in every test, containing 20,000 pairs from 221,562 images
of 6,835 subjects. The networks are trained on the datasets specified in Table 2 and
tests are repeated three times. The Area Under Curve values of these tests are shown
in Figures 9 & 10. Contrary to the expected increase in performance, the performance
in fact declines, which we expect is caused by the network strongly overfitting on the
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Figure 7: ROC curves for the
five Deep Verification Learned net-
works (black) and the five Identifi-
cation Learned networks (gray) on
the FRGC controlled dataset.

Figure 8: ROC curves for the five
re-trained top layers with the same
fixed convolutional network.

Increasing number of images per subject

#Subjects #Images per subject #Images total #Gen. pairs per subject #Training pairs
211 20 4,220 190 80,180
211 40 8,440 780 329,160
211 80 16,880 3,160 1,333,520
211 160 33,760 12,720 5,367,840

Increasing number of subjects

#Subjects #Images per subject #Images total #Gen. pairs per subject #Training pairs
211 20 4,220 190 80,180
422 20 8,440 190 160,360
844 20 16,880 190 320,720
1688 20 33,760 190 641,440

Table 2: Dataset details for testing with increasing number of images per subject,
increasing number of subjects in the dataset, and the validation set.

Figure 9: Area Under Curve values
for the Deep Verification Learned
networks (x) and the Identification
Learned networks (o), for different
number of images per subjects in
the dataset.

Figure 10: Area Under Curve
values for the Deep Verification
Learned networks (x) and the
Identification Learned networks
(o), for different number of sub-
jects in the dataset.
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Test Imp. different datasets Imp. same datasets

80 Images per subject 0.729 0.469 0.693 0.719 0.735
160 Images per subject 0.542 0.514 0.684 0.718
844 subjects 0.899 0.898 0.902 0.898 0.900
1688 subjects 0.897 0.899 0.897 0.904

Table 3: AUC values for Deep Verification Learning network for different imposter pair
construction in the trainingset. Imposters are formed within all the possible datasets
(left) or imposter pair forming is restricted to subjects within the same dataset (right).

training data. The Deep Verification Learning performance is more affected by this
than Identification Learning is. Only subjects with 160 images or more are used in the
training set, creating a bias. It turned out subjects from only two datasets, met this
requirement and were sampled into the training set. This causes overfitting to these
types of data. We recommend repeating these experiments on a larger homogeneous
dataset.

Another remarkable result is found when increasing the number of subjects in the
training set. For Deep Verification Learning the performance declines when too many
subjects are added, which may be caused by the way the network learns. When training
in pairs it is possible to learn to compare type of images instead of recognizing faces;
different type of images are unlikely to form a genuine pair. This could cause overfitting
to the type of images represented in the training set. To investigate this hypothesis,
with the imposter pairs only formed within a dataset. We found a small increase in
performance (see Table 3), but not sufficient enough to draw conclusions. Therefore
more experiments should be performed.

5 Conclusions & Recommendations

We introduced Deep Verification Learning and applied it to face verification. We com-
pared Deep Verification Learning with a network trained for multi-class classification
on the FRGC dataset and evaluated the effect of different dataset-sizes on verification
performance. We found a notable improvement when Deep Verification Learning is
used instead of Identification Learning. Increasing the dataset-sizes does not improve
the verification performances as expected. Care must be taken in training set selection,
to prevent the networks from overfitting.

Despite the promising results, more extensive experiments should be performed,
with a separate validation set for the early stopping algorithm. We recommend the
use of cross-validation and more different types of datasets. The network should be
compared to state-of-the-art face recognition systems. The tests regarding the influence
of different dataset sizes, should be performed in a way that dataset bias is not possible.
The learning process is important for the final network performance. More insight
into the current working of the network should be obtained. We concentrated on the
simplicity of our network and advise to investigate advanced techniques that are found
to enhance performance and learning. Effort should be made to obtain a training set
with the same type of images as is used in the final application. The optimal number
of images per subject and number of genuine/imposter pairs compared to the number
of subjects in the dataset should be found. Data augmentation could be extended to
increase the dataset size.
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