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Abstract

We present Deep Voice, a production-quality

text-to-speech system constructed entirely from

deep neural networks. Deep Voice lays the

groundwork for truly end-to-end neural speech

synthesis. The system comprises five ma-

jor building blocks: a segmentation model for

locating phoneme boundaries, a grapheme-to-

phoneme conversion model, a phoneme duration

prediction model, a fundamental frequency pre-

diction model, and an audio synthesis model.

For the segmentation model, we propose a novel

way of performing phoneme boundary detection

with deep neural networks using connectionist

temporal classification (CTC) loss. For the au-

dio synthesis model, we implement a variant

of WaveNet that requires fewer parameters and

trains faster than the original. By using a neu-

ral network for each component, our system is

simpler and more flexible than traditional text-to-

speech systems, where each component requires

laborious feature engineering and extensive do-

main expertise. Finally, we show that inference

with our system can be performed faster than real

time and describe optimized WaveNet inference

kernels on both CPU and GPU that achieve up to

400x speedups over existing implementations.

1. Introduction

Synthesizing artificial human speech from text, commonly

known as text-to-speech (TTS), is an essential component

in many applications such as speech-enabled devices, navi-

gation systems, and accessibility for the visually-impaired.
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Fundamentally, it allows human-technology interaction

without requiring visual interfaces. Modern TTS systems

are based on complex, multi-stage processing pipelines,

each of which may rely on hand-engineered features and

heuristics. Due to this complexity, developing new TTS

systems can be very labor intensive and difficult.

Deep Voice is inspired by traditional text-to-speech

pipelines and adopts the same structure, while replacing all

components with neural networks and using simpler fea-

tures: first we convert text to phoneme and then use an

audio synthesis model to convert linguistic features into

speech (Taylor, 2009). Unlike prior work (which uses

hand-engineered features such as spectral envelope, spec-

tral parameters, aperiodic parameters, etc.), our only fea-

tures are phonemes with stress annotations, phoneme du-

rations, and fundamental frequency (F0). This choice of

features makes our system more readily applicable to new

datasets, voices, and domains without any manual data an-

notation or additional feature engineering. We demonstrate

this claim by retraining our entire pipeline without any hy-

perparameter changes on an entirely new dataset that con-

tains solely audio and unaligned textual transcriptions and

generating relatively high quality speech. In a conventional

TTS system this adaptation requires days to weeks of tun-

ing, whereas Deep Voice allows you to do it in only a few

hours of manual effort and the time it takes models to train.

Real-time inference is a requirement for a production-

quality TTS system; without it, the system is unusable for

most applications of TTS. Prior work has demonstrated that

a WaveNet (van den Oord et al., 2016) can generate close to

human-level speech. However, WaveNet inference poses a

daunting computational problem due to the high-frequency,

autoregressive nature of the model, and it has been hitherto

unknown whether such models can be used in a produc-

tion system. We answer this question in the affirmative and

demonstrate efficient, faster-than-real-time WaveNet infer-

ence kernels that produce high-quality 16 kHz audio and

realize a 400X speedup over previous WaveNet inference

implementations (Paine et al., 2016).
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2. Related Work

Previous work uses neural networks as substitutes for

several TTS system components, including grapheme-to-

phoneme conversion models (Rao et al., 2015; Yao &

Zweig, 2015), phoneme duration prediction models (Zen

& Sak, 2015), fundamental frequency prediction models

(Pascual & Bonafonte, 2016; Ronanki et al., 2016), and

audio synthesis models (van den Oord et al., 2016; Mehri

et al., 2016). Unlike Deep Voice, however, none of these

systems solve the entire problem of TTS and many of them

use specialized hand-engineered features developed specif-

ically for their domain.

Most recently, there has been a lot of work in paramet-

ric audio synthesis, notably WaveNet, SampleRNN, and

Char2Wav (van den Oord et al., 2016; Mehri et al., 2016;

Sotelo et al., 2017). While WaveNet can be used for

both conditional and unconditional audio generation, Sam-

pleRNN is only used for unconditional audio generation.

Char2Wav extends SampleRNN with an attention-based

phoneme duration model and the equivalent of an F0 pre-

diction model, effectively providing local conditioning in-

formation to a SampleRNN-based vocoder.

Deep Voice differs from these systems in several key as-

pects that notably increase the scope of the problem. First,

Deep Voice is completely standalone; training a new Deep

Voice system does not require a pre-existing TTS system,

and can be done from scratch using a dataset of short au-

dio clips and corresponding textual transcripts. In contrast,

reproducing either of the aforementioned systems requires

access and understanding of a pre-existing TTS system, be-

cause they use features from another TTS system either at

training or inference time.

Second, Deep Voice minimizes the use of hand-engineered

features; it uses one-hot encoded characters for grapheme

to phoneme conversion, one-hot encoded phonemes and

stresses, phoneme durations in milliseconds, and normal-

ized log fundamental frequency that can be computed from

waveforms using any F0 estimation algorithm. All of these

can easily be obtained from audio and transcripts with min-

imal effort. In contrast, prior works use a much more com-

plex feature representation, that effectively makes repro-

ducing the system impossible without a pre-existing TTS

system. WaveNet uses several features from a TTS system

(Zen et al., 2013), that include values such as the number

of syllables in a word, position of syllables in the phrase,

position of the current frame in the phoneme, and dynamic

features of the speech spectrum like spectral and excitation

parameters, as well as their time derivatives. Char2Wav

relies on vocoder features from the WORLD TTS system

(Morise et al., 2016) for pre-training their alignment mod-

ule which include F0, spectral envelope, and aperiodic pa-

rameters.

Finally, we focus on creating a production-ready system,

which requires that our models run in real-time for infer-

ence. Deep Voice can synthesize audio in fractions of a

second, and offers a tunable trade-off between synthesis

speed and audio quality. In contrast, previous results with

WaveNet require several minutes of runtime to synthesize

one second of audio. We are unaware of similar bench-

marks for SampleRNN, but the 3-tier architecture as de-

scribed in the original publication requires approximately

4-5X as much compute during inference as our largest

WaveNet models, so running the model in real-time may

prove challenging.

3. TTS System Components

As shown in Fig. 1, the TTS system consists of five major

building blocks:

• The grapheme-to-phoneme model converts from

written text (English characters) to phonemes (en-

coded using a phonemic alphabet such as ARPABET).

• The segmentation model locates phoneme bound-

aries in the voice dataset. Given an audio file and a

phoneme-by-phoneme transcription of the audio, the

segmentation model identifies where in the audio each

phoneme begins and ends.

• The phoneme duration model predicts the temporal

duration of every phoneme in a phoneme sequence (an

utterance).

• The fundamental frequency model predicts whether

a phoneme is voiced. If it is, the model pre-

dicts the fundamental frequency (F0) throughout the

phoneme’s duration.

• The audio synthesis model combines the outputs

of the grapheme-to-phoneme, phoneme duration, and

fundamental frequency prediction models and synthe-

sizes audio at a high sampling rate, corresponding to

the desired text.

During inference, text is fed through the grapheme-to-

phoneme model or a phoneme dictionary to generate

phonemes. Next, the phonemes are provided as inputs to

the phoneme duration model and F0 prediction model to

assign durations to each phoneme and generate an F0 con-

tour. Finally, the phonemes, phoneme durations, and F0

are used as local conditioning input features to the audio

synthesis model, which generates the final utterance.

Unlike the other models, the segmentation model is not

used during inference. Instead, it is used to annotate

the training voice data with phoneme boundaries. The

phoneme boundaries imply durations, which can be used

to train the phoneme duration model. The audio, anno-

tated with phonemes and phoneme durations as well as

fundamental frequency, is used to train the audio synthe-

sis model.
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Figure 1. System diagram depicting (a) training procedure and (b) inference procedure, with inputs on the left and outputs on the right.

In our system, the duration prediction model and the F0 prediction model are performed by a single neural network trained with a joint

loss. The grapheme-to-phoneme model is used as a fallback for words that are not present in a phoneme dictionary, such as CMUDict.

Dotted lines denote non-learned components.

In the following sections, we describe all the building

blocks in detail.

3.1. Grapheme-to-Phoneme Model

Our grapheme-to-phoneme model is based on the encoder-

decoder architecture developed by (Yao & Zweig, 2015).

However, we use a multi-layer bidirectional encoder with

a gated recurrent unit (GRU) nonlinearity and an equally

deep unidirectional GRU decoder (Chung et al., 2014). The

initial state of every decoder layer is initialized to the final

hidden state of the corresponding encoder forward layer.

The architecture is trained with teacher forcing and decod-

ing is performed using beam search. We use 3 bidirectional

layers with 1024 units each in the encoder and 3 unidirec-

tional layers of the same size in the decoder and a beam

search with a width of 5 candidates. During training, we

use dropout with probability 0.95 after each recurrent layer.

For training, we use the Adam optimization algorithm with

�1 = 0.9,�2 = 0.999, " = 10−8, a batch size of 64, a

learning rate of 10−3, and an annealing rate of 0.85 applied

every 1000 iterations (Kingma & Ba, 2014).

3.2. Segmentation Model

Our segmentation model is trained to output the align-

ment between a given utterance and a sequence of target

phonemes. This task is similar to the problem of aligning

speech to written output in speech recognition. In that do-

main, the connectionist temporal classification (CTC) loss

function has been shown to focus on character alignments

to learn a mapping between sound and text (Graves et al.,

2006). We adapt the convolutional recurrent neural net-

work architecture from a state-of-the-art speech recogni-

tion system (Amodei et al., 2015) for phoneme boundary

detection.

A network trained with CTC to generate sequences of

phonemes will produce brief peaks for every output

phoneme. Although this is sufficient to roughly align the

phonemes to the audio, it is insufficient to detect precise

phoneme boundaries. To overcome this, we train to predict

sequences of phoneme pairs rather than single phonemes.

The network will then tend to output phoneme pairs at

timesteps close to the boundary between two phonemes in

a pair.

To illustrate our label encoding, consider the string

“Hello!”. To convert this to a sequence of phoneme pair

labels, convert the utterance to phonemes (using a pro-

nunciation dictionary such as CMUDict or a grapheme-to-

phoneme model) and pad the phoneme sequence on either

end with the silence phoneme to get “sil HH EH L OW sil”.

Finally, construct consecutive phoneme pairs and get “(sil,

HH), (HH, EH), (EH, L), (L, OW), (OW, sil)”.

Input audio is featurized by computing 20 Mel-frequency

cepstral coefficients (MFCCs) with a ten millisecond stride.

On top of the input layer, there are two convolution lay-

ers (2D convolutions in time and frequency), three bidirec-

tional recurrent GRU layers, and finally a softmax output

layer. The convolution layers use kernels with unit stride,

height nine (in frequency bins), and width five (in time)

and the recurrent layers use 512 GRU cells (for each di-

rection). Dropout with a probability of 0.95 is applied

after the last convolution and recurrent layers. To com-

pute the phoneme-pair error rate (PPER), we decode using

beam search. To decode phoneme boundaries, we perform

a beam search with width 50 with the constraint that neigh-

boring phoneme pairs overlap by at least one phoneme and

keep track of the positions in the utterance of each phoneme

pair.

For training, we use the Adam optimization algorithm with
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�1 = 0.9,�2 = 0.999, " = 10−8, a batch size of 128, a

learning rate of 10−4, and an annealing rate of 0.95 applied

every 500 iterations (Kingma & Ba, 2014).

3.3. Phoneme Duration and Fundamental Frequency

Model

We use a single architecture to jointly predict phoneme du-

ration and time-dependent fundamental frequency. The in-

put to the model is a sequence of phonemes with stresses,

with each phoneme and stress being encoded as a one-hot

vector. The architecture comprises two fully connected lay-

ers with 256 units each followed by two unidirectional re-

current layers with 128 GRU cells each and finally a fully-

connected output layer. Dropout with a probability of 0.8 is

applied after the initial fully-connected layers and the last

recurrent layer.

The final layer produces three estimations for every input

phoneme: the phoneme duration, the probability that the

phoneme is voiced (i.e. has a fundamental frequency), and

20 time-dependent F0 values, which are sampled uniformly

over the predicted duration.

The model is optimized by minimizing a joint loss that

combines phoneme duration error, fundamental frequency

error, the negative log likelihood of the probability that

the phoneme is voiced, and a penalty term proportional to

the absolute change of F0 with respect to time to impose

smoothness. The specific functional form of the loss func-

tion is described in Appendix B.

For training, we use the Adam optimization algorithm with

�1 = 0.9,�2 = 0.999, " = 10−8, a batch size of 128, a

learning rate of 3 × 10−4, and an annealing rate of 0.9886

applied every 400 iterations (Kingma & Ba, 2014).

3.4. Audio Synthesis Model

Our audio synthesis model is a variant of WaveNet.

WaveNet consists of a conditioning network, which up-

samples linguistic features to the desired frequency, and

an autoregressive network, which generates a probabil-

ity distribution P(y) over discretized audio samples y ∈

{0, 1, . . . , 255}. We vary the number of layers `, the num-

ber of residual channels r (dimension of the hidden state of

every layer), and the number of skip channels s (the dimen-

sion to which layer outputs are projected prior to the output

layer).

WaveNet consists of an upsampling and conditioning net-

work, followed by ` 2×1 convolution layers with r residual

output channels and gated tanh nonlinearities. We break

the convolution into two matrix multiplies per timestep

with Wprev and Wcur. These layers are connected with

residual connections. The hidden state of every layer is

concatenated to an `r vector and projected to s skip chan-

nels with Wskip, followed by two layers of 1 × 1 convolu-

tions (with weights Wrelu and Wout) with relu nonlineari-

ties.

WaveNet uses transposed convolutions for upsampling and

conditioning. We find that our models perform better, train

faster, and require fewer parameters if we instead first en-

code the inputs with a stack of bidirectional quasi-RNN

(QRNN) layers (Bradbury et al., 2016) and then perform

upsampling by repetition to the desired frequency.

Our highest-quality final model uses ` = 40 layers, r = 64
residual channels, and s = 256 skip channels. For train-

ing, we use the Adam optimization algorithm with �1 =
0.9,�2 = 0.999, " = 10−8, a batch size of 8, a learning

rate of 10−3, and an annealing rate of 0.9886 applied every

1,000 iterations (Kingma & Ba, 2014).

Please refer to Appendix A for full details of our WaveNet

architecture and the QRNN layers we use.

4. Results

We train our models on an internal English speech database

containing approximately 20 hours of speech data seg-

mented into 13,079 utterances. In addition, we present

audio synthesis results for our models trained on a subset

of the Blizzard 2013 data (Prahallad et al., 2013). Both

datasets are spoken by a professional female speaker.

All of our models are implemented using the TensorFlow

framework (Abadi et al., 2015).

4.1. Segmentation Results

We train on 8 TitanX Maxwell GPUs, splitting each batch

equally among the GPUs and using a ring all-reduce to av-

erage gradients computed on different GPUs, with each

iteration taking approximately 1300 milliseconds. After

approximately 14,000 iterations, the model converges to a

phoneme pair error rate of 7%. We also find that phoneme

boundaries do not have to be precise, and randomly shift-

ing phoneme boundaries by 10-30 milliseconds makes no

difference in the audio quality, and so suspect that audio

quality is insensitive to the phoneme pair error rate past a

certain point.

4.2. Grapheme-to-Phoneme Results

We train a grapheme-to-phoneme model on data obtained

from CMUDict (Weide, 2008). We strip out all words that

do not start with a letter, contain numbers, or have multiple

pronunciations, which leaves 124,978 out of the original

133,854 grapheme-phoneme sequence pairs.

We train on a single TitanX Maxwell GPU with each it-

eration taking approximately 150 milliseconds. After ap-
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proximately 20,000 iterations, the model converges to a

phoneme error rate of 5.8% and a word error rate of 28.7%,

which are on par with previous reported results (Yao &

Zweig, 2015). Unlike prior work, we do not use a language

model during decoding and do not include words with mul-

tiple pronunciations in our data set.

4.3. Phoneme Duration and Fundamental Frequency

Results

We train on a single TitanX Maxwell GPU with each itera-

tion taking approximately 120 milliseconds. After approx-

imately 20,000 iterations, the model converges to a mean

absolute error of 38 milliseconds (for phoneme duration)

and 29.4 Hz (for fundamental frequency).

4.4. Audio Synthesis Results

We divide the utterances in our audio dataset into one

second chunks with a quarter second of context for each

chunk, padding each utterance with a quarter second of si-

lence at the beginning. We filter out chunks that are pre-

dominantly silence and end up with 74,348 total chunks.

We trained models with varying depth, including 10, 20,

30, and 40 layers in the residual layer stack. We find that

models below 20 layers result in poor quality audio. The

20, 30, and 40 layer models all produce high quality rec-

ognizable speech, but the 40 layer models have less noise

than the 20 layer models, which can be detected with high-

quality over-ear headphones.

Previous work has emphasized the importance of receptive

field size in determining model quality. Indeed, the 20 layer

models have half the receptive field as the 40 layer mod-

els. However, when run at 48 kHz, models with 40 layers

have only 83 milliseconds of receptive field, but still gen-

erate high quality audio. This suggests the receptive field

of the 20 layer models is sufficient, and we conjecture the

difference in audio quality is due to some other factor than

receptive field size.

We train on 8 TitanX Maxwell GPUs with one chunk per

GPU, using a ring allreduce to average gradients computed

on different GPUs. Each iteration takes approximately 450

milliseconds. Our model converges after approximately

300,000 iterations. We find that a single 1.25s chunk is suf-

ficient to saturate the compute on the GPU and that batch-

ing does not increase training efficiency.

As is common with high-dimensional generative models

(Theis et al., 2015), model loss is somewhat uncorrelated

with perceptual quality of individual samples. While mod-

els with unusually high loss sound distinctly noisy, models

that optimize below a certain threshold do not have a loss

indicative of their quality. In addition, changes in model

architecture (such as depth and output frequency) can have

a significant impact on model loss while having a small ef-

fect on audio quality.

To estimate perceptual quality of the individual stages of

our TTS pipeline, we crowdsourced mean opinion score

(MOS) ratings (ratings between one and five, higher values

being better) from Mechanical Turk using the CrowdMOS

toolkit and methodology (Ribeiro et al., 2011). In order to

separate the effect of the audio preprocessing, the WaveNet

model quality, and the phoneme duration and fundamental

frequency model quality, we present MOS scores for a va-

riety of utterance types, including synthesis results where

the WaveNet inputs (duration and F0) are extracted from

ground truth audio rather than synthesized by other mod-

els. The results are presented in Table 1. We purposefully

include ground truth samples in every batch of samples that

raters evaluate to highlight the delta from human speech

and allow raters to distinguish finer grained differences be-

tween models; the downside of this approach is that the re-

sulting MOS scores will be significantly lower than if raters

are presented only with synthesized audio samples.

First of all, we find a significant drop in MOS when simply

downsampling the audio stream from 48 kHz to 16 kHz, es-

pecially in combination with µ-law companding and quan-

tization, likely because a 48 kHz sample is presented to the

raters as a baseline for a 5 score, and a low quality noisy

synthesis result is presented as a 1. When used with ground

truth durations and F0, our models score highly, with the

95% confidence intervals of our models intersecting those

of the ground truth samples. However, using synthesized

frequency reduces the MOS, and further including synthe-

sized durations reduces it significantly. We conclude that

the main barrier to progress towards natural TTS lies with

duration and fundamental frequency prediction, and our

systems have not meaningfully progressed past the state of

the art in that regard. Finally, our best models run slightly

slower than real-time (see Table 2), so we demonstrate that

synthesis quality can be traded for inference speed by ad-

justing model size by obtaining scores for models that run

1X and 2X faster than real-time.

We also tested WaveNet models trained on the full set of

features from the original WaveNet publication, but found

no perceptual difference between those models and models

trained on our reduced feature set.

4.5. Blizzard Results

To demonstrate the flexibility of our system, we retrained

all of our models with identical hyperparameters on the

Blizzard 2013 dataset (Prahallad et al., 2013). For our ex-

periments, we used a 20.5 hour subset of the dataset seg-

mented into 9,741 utterances. We evaluated the model us-

ing the procedure described in Section 4.4, which encour-

ages raters to compare synthesized audio directly with the
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Type Model Size MOS±CI

Ground Truth (48 kHz) None 4.75± 0.12
Ground Truth None 4.45± 0.16
Ground Truth (companded and expanded) None 4.34± 0.18
Synthesized ` = 40, r = 64, s = 256 3.94± 0.26
Synthesized (48 kHz) ` = 40, r = 64, s = 256 3.84± 0.24
Synthesized (Synthesized F0) ` = 40, r = 64, s = 256 2.76± 0.31
Synthesized (Synthesized Duration and F0) ` = 40, r = 64, s = 256 2.00± 0.23
Synthesized (2X real-time inference) ` = 20, r = 32, s = 128 2.74± 0.32
Synthesized (1X real-time inference) ` = 20, r = 64, s = 128 3.35± 0.31

Table 1. Mean Opinion Scores (MOS) and 95% confidence intervals (CIs) for utterances. This MOS score is a relative MOS score

obtained by showing raters the same utterance across all the model types (which encourages comparative rating and allows the raters

to distinguish finer grained differences). Every batch of samples also includes the ground truth 48 kHz recording, which makes all our

ratings comparative to natural human voices. 474 ratings were collected for every sample. Unless otherwise mentioned, models used

phoneme durations and F0 extracted from the ground truth, rather than synthesized by the duration prediction and frequency prediction

models, as well as a 16384 Hz audio sampling rate.

Model Platform Data Type Number of Threads Speed-up Over Real-time

` = 20, r = 32, s = 128 CPU float32 6 2.7

` = 20, r = 32, s = 128 CPU float32 2 2.05

` = 20, r = 64, s = 128 CPU int16 2 1.2

` = 20, r = 64, s = 128 CPU float32 6 1.11

` = 20, r = 64, s = 128 CPU float32 2 0.79

` = 40, r = 64, s = 256 CPU int16 2 0.67

` = 40, r = 64, s = 256 CPU float32 6 0.61

` = 40, r = 64, s = 256 CPU float32 2 0.35

` = 20, r = 32, s = 128 GPU float32 N/A 0.39

` = 20, r = 64, s = 128 GPU float32 N/A 0.29

` = 40, r = 32, s = 128 GPU float32 N/A 0.23

` = 40, r = 64, s = 128 GPU float32 N/A 0.17

Table 2. CPU and GPU inference kernel benchmarks for different models in float32 and int16. At least one main and one auxiliary

thread were used for all CPU kernels. These kernels operate on a single utterance with no batching. CPU results are from a Intel Xeon

E5-2660 v3 Haswell processor clocked at 2.6 GHz and GPU results are from a GeForce GTX Titan X Maxwell GPU.

ground truth. On the held out set, 16 kHz companded and

expanded audio receives a MOS score of 4.65±0.13, while

our synthesized audio received a MOS score of 2.67±0.37.

5. Optimizing Inference

Although WaveNet has shown promise in generating high-

quality synthesized speech, initial experiments reported

generation times of many minutes or hours for short ut-

terances. WaveNet inference poses an incredibly challeng-

ing computational problem due to the high-frequency, au-

toregressive nature of the model, which requires orders of

magnitude more timesteps than traditional recurrent neural

networks. When generating audio, a single sample must

be generated in approximately 60 µs (for 16 kHz audio) or

20 µs (for 48 kHz audio). For our 40 layer models, this

means that a single layer (consisting of several matrix mul-

tiplies and nonlinearities) must complete in approximately

1.5 µs. For comparison, accessing a value that resides

in main memory on a CPU can take 0.1 µs. In order to

perform inference at real-time, we must take great care to

never recompute any results, store the entire model in the

processor cache (as opposed to main memory), and opti-

mally utilize the available computational units. These same

techniques could be used to accelerate image synthesis with

PixelCNN (Oord et al., 2016) to fractions of a second per

image.

Synthesizing one second of audio with our 40 layer

WaveNet model takes approximately 55×109 floating point

operations (FLOPs). The activations in any given layer de-

pend on the activations in the previous layer and the pre-

vious timestep, so inference must be done one timestep

and one layer at a time. A single layer requires only

42 × 103 FLOPs, which makes achieving meaningful par-

allelism difficult. In addition to the compute requirements,
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the model has approximately 1.6 × 106 parameters, which

equate to about 6.4 MB if represented in single precision.

(See Appendix E for a complete performance model.)

On CPU, a single Haswell or Broadwell core has a peak

single-precision throughput of approximately 77 × 109

FLOPs and an L2-to-L1 cache bandwidth of approximately

140 GB/s (assuming two 8-wide AVX FMA instructions

every cycle and an L2-to-L1 bandwidth of 64 bytes per

cycle.). The model must be loaded from cache once per

timestep, which requires a bandwidth of 100 GB/s. Even

if the model were to fit in L2 cache, the implementation

would need to utilize 70% of the maximum bandwidth and

70% of the peak FLOPS in order to do inference in real-

time on a single core. Splitting the calculations across

multiple cores reduces the difficulty of the problem, but

nonetheless it remains challenging as inference must op-

erate at a significant fraction of maximum memory band-

width and peak FLOPs and while keeping threads synchro-

nized.

A GPU has higher memory bandwidth and peak FLOPs

than a CPU but provides a more specialized and hence

restrictive computational model. A naive implementation

that launches a single kernel for every layer or timestep is

untenable, but an implementation based on the persistent

RNN technique (Diamos et al., 2016) may be able to take

advantage of the throughput offered by GPUs.

We implement high-speed optimized inference kernels for

both CPU and GPU and demonstrate that WaveNet infer-

ence at faster-than-real-time speeds is achievable. Table 2

lists the CPU and GPU inference speeds for different mod-

els. In both cases, the benchmarks include only the au-

toregressive, high-frequency audio generation and do not

include the generation of linguistic conditioning features

(which can be done in parallel for the entire utterance). Our

CPU kernels run at real-time or faster-than-real-time for a

subset of models, while the GPU models do not yet match

this performance.

5.1. CPU Implementation

We achieve real-time CPU inference by avoiding any re-

computation, doing cache-friendly memory accesses, par-

allelizing work via multithreading with efficient synchro-

nization, minimizing nonlinearity FLOPs, avoiding cache

thrashing and thread contention via thread pinning, and us-

ing custom hardware-optimized routines for matrix multi-

plication and convolution.

For the CPU implementation, we split the computation into

the following steps:

1. Sample Embedding: Compute the WaveNet input

causal convolution by doing two sample embeddings,

one for the current timestep and one for the previous

timestep, and summing them with a bias. That is,

x(0) = Wemb,prev · yi−1 +Wemb,cur · yi +Bembed (1)

2. Layer Inference: For every layer j from j = 1 to `

with dilation width d:

(a) Compute the left half of the width-two dilated

convolution via a matrix-vector multiply:

a(j)prev = W (j)
prev · x

(j−1)
i−d (2)

(b) Compute the right half of the dilated convolution:

a(j)cur = W (j)
cur · x

(j−1)
i (3)

(c) Compute the hidden state h(j) given the condi-

tioning vector L
(j)
h :

a(j) = a(j)prev + a(j)cur +B
(j)
h + L

(j)
h (4)

h(j) = tanh
⇣

a
(j)
0:r

⌘

· �
⇣

a
(j)
r:2r

⌘

, (5)

where v0:r denotes the first r elements of the vec-

tor v and vr:2r denotes the next r elements. Then,

compute the input to the next layer via a matrix-

vector multiply:

x(j) = W (j)
res · h(j) +B(j)

res (6)

(d) Compute the contribution to the skip-channel

matrix multiply from this layer, accumulating

over all layers, with q(0) = Bskip:

q(j) = q(j−1) +W
(j)
skip · h

(j) (7)

3. Output: Compute the two output 1× 1 convolutions:

zs = relu
⇣

q(`)
⌘

(8)

za = relu (Wrelu · zs +Brelu) (9)

p = softmax (Wout · za +Bout) (10)

Finally, sample yi+1 randomly from the distribution p.

We parallelize these across two groups of threads as de-

picted in Figure 2. A group of main threads computes

x(0), a
(j)
cur , h(j), and x(j), za, and p. A group of auxiliary

threads computes a
(j)
prev, q(j), and zs, with the a

(j)
prev being

computed for the next upcoming timestep while the main

threads compute za and p. Each of these groups can con-

sist of a single thread or of multiple threads; if there are

multiple threads, each thread computes one block of each

matrix-vector multiply, binary operation, or unary opera-

tion, and thread barriers are inserted as needed. Splitting

the model across multiple threads both splits up the com-

pute and can also be used to ensure that the model weights

fit into the processor L2 cache.

Pinning threads to physical cores (or disabling hyper-

threading) is important for avoiding thread contention and

cache thrashing and increases performance by approxi-

mately 30%.
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Main Threads

Auxiliary Threads

Sync Points

a
(1)
cur

x(1)

a
(2)
cur

x(1)
. . . a

(`−1)
cur

x(`−1)

a
(`)
cur

x(`)

q(1) q(2) . . . q(`−1) q(`) a
(1)
prev → a

(2)
prev → . . . → a

(`−1)
prev → a

(`)
prev

zs → za → p x(0)
a
(1)
cur → a

(2)
cur → . . . → a

(`−1)
cur → a

(`)
cur

x(1)
→ x(2)

→ . . . → x(`−1)
→ x(`)

timestep t

timestep t+ 1

Figure 2. Two groups of threads run in parallel. Computation of the Wskip is offloaded to the auxiliary threads while the main threads

progress through the stack of WaveNet layers. While the main threads are computing the output layer, the auxiliary threads prepare the

left Wprev half of the WaveNet layer convolutions for the upcoming timestep. Arrows indicate where one thread group waits on results

from the other thread group, and are implemented as spinlocks.

Depending on model size, the nonlinearities (tanh,

sigmoid, and softmax) can also take a significant frac-

tion of inference time, so we replace all nonlinearities with

high-accuracy approximations, which are detailed in Ap-

pendix C. The maximum absolute error arising from these

approximations is 1.5 × 10−3 for tanh, 2.5 × 10−3 for

sigmoid, and 2.4× 10−5 for ex. With approximate instead

of exact nonlinearities, performance increases by roughly

30%.

We also implement inference with weight matrices quan-

tized to int16 and find no change in perceptual quality

when using quantization. For larger models, quantization

offers a significant speedup when using fewer threads, but

overhead of thread synchronization prevents it from being

useful with a larger number of threads.

Finally, we write custom AVX assembly kernels for matrix-

vector multiplication using PeachPy (Dukhan, 2015) spe-

cialized to our matrix sizes. Inference using our custom

assembly kernels is up to 1.5X faster than Intel MKL and

3.5X faster than OpenBLAS when using float32. Nei-

ther library provides the equivalent int16 operations.

5.2. GPU Implementation

Due to their computational intensity, many neural models

are ultimately deployed on GPUs, which can have a much

higher computational throughput than CPUs. Since our

model is memory bandwidth and FLOP bound, it may seem

like a natural choice to run inference on a GPU, but it turns

out that comes with a different set of challenges.

Usually, code is run on the GPU in a sequence of kernel

invocations, with every matrix multiply or vector operation

being its own kernel. However, the latency for a CUDA

kernel launch (which may be up to 50 µs) combined with

the time needed to load the entire model from GPU mem-

ory are prohibitively large for an approach like this. An

inference kernel in this style ends up being approximately

1000X slower than real-time.

To get close to real-time on a GPU, we instead build a ker-

nel using the techniques of persistent RNNs (Diamos et al.,

2016) which generates all samples in the output audio in a

single kernel launch. The weights for the model are loaded

to registers once and then used without unloading them for

the entire duration of inference. Due to the mismatch be-

tween the CUDA programming model and such persistent

kernels, the resulting kernels are specialized to particular

model sizes and are incredibly labor-intensive to write. Al-

though our GPU inference speeds are not quite real-time

(Table 2), we believe that with these techniques and a bet-

ter implementation we can achieve real-time WaveNet in-

ference on GPUs as well as CPUs. Implementation details

for the persistent GPU kernels are available in Appendix D.

6. Conclusion

In this work, we demonstrate that current Deep Learning

approaches are viable for all the components of a high-

quality text-to-speech engine by building a fully neural sys-

tem. We optimize inference to faster-than-real-time speeds,

showing that these techniques can be applied to gener-

ate audio in real-time in a streaming fashion. Our system

is trainable without any human involvement, dramatically

simplifying the process of creating TTS systems.

Our work opens many new possible directions for explo-

ration. Inference performance can be further improved

through careful optimization, model quantization on GPU,

and int8 quantization on CPU, as well as experiment-

ing with other architectures such as the Xeon Phi. An-

other natural direction is removing the separation between

stages and merging the segmentation, duration prediction,

and fundamental frequency prediction models directly into

the audio synthesis model, thereby turning the problem into

a full sequence-to-sequence model, creating a single end-

to-end trainable TTS system, and allowing us to train the

entire system with no intermediate supervision. In lieu of

fusing the models, improving the duration and frequency

models via larger training datasets or generative modeling

techniques may have an impact on voice naturalness.
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