
DEEP WATERSHED DETECTOR FOR MUSIC OBJECT RECOGNITION

Lukas Tuggener1,3 Ismail Elezi1,2

Jürgen Schmidhuber3 Thilo Stadelmann1

1 ZHAW Datalab, Zurich University of Applied Sciences, Winterthur, Switzerland
2 Dept. of Environmental Sciences, Informatics and Statistics, Ca’Foscari University of Venice, Italy

3 Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland

tugg@zhaw.ch, ismail.elezi@unive.it, juergen@idsia.ch, stdm@zhaw.ch

ABSTRACT

Optical Music Recognition (OMR) is an important and

challenging area within music information retrieval, the

accurate detection of music symbols in digital images is

a core functionality of any OMR pipeline. In this paper,

we introduce a novel object detection method, based on

synthetic energy maps and the watershed transform, called

Deep Watershed Detector (DWD). Our method is specifi-

cally tailored to deal with high resolution images that con-

tain a large number of very small objects and is therefore

able to process full pages of written music. We present

state-of-the-art detection results of common music sym-

bols and show DWD’s ability to work with synthetic scores

equally well as on handwritten music.

1. INTRODUCTION AND PROBLEM STATEMENT

The goal of Optical Music Recognition (OMR) is to trans-

form images of printed or handwritten music scores into

machine readable form, thereby understand the semantic

meaning of music notation [2]. It is an important and

actively researched area within the music information re-

trieval community. The two main challenges of OMR are:

first the accurate detection and classification of music ob-

jects in digital images; and second, the reconstruction of

valid music in some digital format. This work is focusing

solely on the first task, meaning that we recover position

and class (based on the shape only) of every object without

inferring any higher level information.

Recent progress in computer vision [9] thanks to the

adaptation of convolutional neural networks (CNNs) [8,

15] provide a solid foundation for the assumption that

OMR systems can be drastically improved by using CNNs

as well. Initial results of applying deep learning [26] to

heavily restricted settings such as staffline removal [25],

symbol classification [20] or end-to-end OMR for mono-

phonic scores [5], support such expectations.

c© Lukas Tuggener, Ismail Elezi, Jürgen Schmidhuber,

Thilo Stadelmann. Licensed under a Creative Commons Attribution 4.0

International License (CC BY 4.0). Attribution: Lukas Tuggener, Is-

mail Elezi, Jürgen Schmidhuber, Thilo Stadelmann. “Deep Watershed

Detector for Music Object Recognition”, 19th International Society for

Music Information Retrieval Conference, Paris, France, 2018.

In this paper, we introduce a novel general object detec-

tion method called Deep Watershed Detector (DWD) mo-

tivated by the following two hypotheses: a) deep learning

can be used to overcome the classical OMR approach of

having hand-crafted pipelines of many preprocessing steps

[21] by being able to operate in a fully data-driven fashion;

b) deep learning can cope with larger, more complex inputs

than simple glyphs, thereby learning to recognize musical

symbols in their context. This will disambiguate meanings

(e.g., between staccato and augmentation dots) and allow

the system to directly detect a complex alphabet.

DWD operates on full pages of music scores in one pass

without any preprocessing besides interline normalization,

detects handwritten and digitally rendered music symbols

without any restriction on the alphabet of symbols to be

detected. We further show that it learns meaningful rep-

resentation of music notation and achieves state-of-the art

detection rates on common symbols.

The remaining structure of this paper is as follows: Sec.

2 puts our approach in context with existing methods; in

Sec. 3 we derive our original end-to-end model, and give

a detailed explanation on how we use the deep watershed

transform for the task of object recognition; Sec. 4 reports

on experimental results of our system on the DeepScores

digitally rendered dataset in addition to the MUSCIMA++

handwritten dataset before we conclude in Sec. 5 with a

discussion and give pointers for future research.

2. RELATED WORK

The visual detection and recognition of objects is one of

the most central problems in the field of computer vision.

With the recent developments of CNNs, many competing

CNN-based approaches have been proposed to solve the

problem. R-CNNs [10], and in particular their succes-

sors [23], are generally considered to be state-of-the-art

models in object recognition, and many developed recog-

nition systems are based on R-CNN. On the other hand, re-

searchers have also proposed models which are tailored to-

wards computational efficiency instead of detection accu-

racy. YOLO systems [22] and Single-Shot Detectors [18]

while slightly compromising on accuracy, are significantly

faster than R-CNN models, and can even achieve super

real-time performance.

A common aspect of the above-mentioned methods is



Input: N*M*1

Refine-Net

Output Featuremaps:

N*M*256

Energy map Me:

N*M*#energy_levels

Class map Mc:

N*M*#classes

BBox map Mb:

N*M*2
Base Network

= 1x1 convolution

Figure 1. Illustration of the DWD network and its sub-components together with input and outputs. The outputs have been

cropped to improve visibility

that they are specifically developed to work on cases where

the images are relatively small, and where images contain

a small number of relatively large objects [7, 17]. On the

contrary, musical sheets usually have high-resolution, and

contain a very large number of very small objects, making

the mentioned methods not suitable for the task.

The watershed transform is a well understood method

that has been applied to segmentation for decades [4].

Bai and Urtasun [1] were first to propose combining the

strengths of deep learning with the power of this classical

method. They proposed to directly learn the energy for the

watershed transform such that all dividing ridges are at the

same height. As a consequence, the components can be ex-

tracted by a cut at a single energy level without leading to

over-segmentation. The model has been shown to achieve

state of the art performance on object segmentation.

For the most part, OMR detectors have been rule-based

systems working well only within a hard set of constraints

[21]. Typically, they require domain knowledge, and work

well only on simple typeset music scores with a known

music font, and a relatively small number of classes [24].

When faced with low-quality images, complex or even

handwritten scores [3], the performance of these models

quickly degrades, to some degree because errors propagate

from one step to another [20]. Additionally, it is not clear

what to do when the classes change, and in many cases,

this requires building the new model from scratch.

In response to the above mentioned issues some deep

learning based, data driven approaches have been devel-

oped. Hajic and Pecina [13] proposed an adaptation of

Faster R-CNN with a custom region proposal mechanism

based on the morphological skeleton to accurately detect

noteheads, while Choi et al. [6] were able to detect ac-

cidentals in dense piano scores with high accuracy, given

previously detected noteheads, that are being used as input-

features to the network. A big limitation of both ap-

proaches is that the experiments have been done only on

a tiny vocabulary of the musical symbols, and therefore

their scalability remains an open question.

To our knowledge, the best results so far has been re-

ported in the work of Pacha and Choi [19] where they ex-

plored many models on the MUSCIMA++ [11] dataset of

handwritten music notation. They got the best results with

a Faster R-CNN model, achieving an impressive score on

the standard mAP metric. A serious limitation of that work

is that the system was not designed in an end-to-end fash-

ion and needs heavy pre- and post-processing. In particu-

lar, they cropped the images in a context-sensitive way, by

cutting images first vertically and then horizontally, such

that each image contains exactly one staff and has a width-

to-height-ratio of no more than 2 :1, with about 15% hor-

izontal overlap to adjacent slices. In practice, this means

that all objects significantly exceeding the size of such a

cropped region will neither appear in the training nor test-

ing data, as only annotations that have an intersection-over-

area of 0.8 or higher between the object and the cropped

region are considered part of the ground truth. Further-

more, all the intermediate results must be combined to one

concise final prediction, which is a non-trivial task.

3. DEEP WATERSHED DETECTION

In this section we present the Deep Watershed Detector

(DWD) as a novel object detection system, built on the

idea of the deep watershed transform [1]. The watershed

transform [4] is a mathematically well understood method

with a simple core idea that can be applied to any topo-

logical surface. The algorithm starts filling up the surface

from all the local minima, with all the resulting basins cor-

responding to connected regions. When applied to image

gradients, the basins correspond to homogeneous regions

of said image (see Fig. 2a). One key drawback of the wa-

tershed transform is its tendency to over segment. This

issue can be addressed by using the deep watershed trans-

form. It combines the classical method with deep learning

by training a deep neural network to create an energy sur-

face based on an input image. This has the advantage that

one can design the energy surface to have certain proper-

ties. When designed in a way that all segmentation bound-

aries have energy zero, the watershed transform is reduced

to a simple cutoff at a fixed energy level (see Fig. 2b). An

objectness energy of this fashion has been used by Bai and

Urtasun for instance segmentation [1]. Since we want to

do object detection, we further simplify the desired energy

surface to having small conical energy peaks of radius n

pixels at the center of each object and be zero everywhere

else (see Fig. 2c).

More formally, we define our energy surface (or: energy



a b c d e

a) One-dimensional energy function of five
classes without any structural constraints.

a b c d e

b) Energy function for the same five classes
with fixed boundary energy.

a b c d e

c) Energy function for the same five classes this time
with small energy markers at the class centers.

Figure 2. Illustration of the watershed transform applied

to different one-dimensional functions.

map) Me as follows:

Me
(i,j) = max







argmax
c∈C

[Emax · (1−
√

(i−ci)2+(j−cj)2

r
)]

0
(1)

where Me
(i,j) is the value of Me at position (i, j), C

is the set of all object centers and ci, cj are the center co-

ordinates of a given center c. Emax corresponds to the

maximum energy and r is the radius of the center marking.

At first glance this definition might lead to the misin-

terpretation that object centers that are closer together than

r cannot be disambiguated using the watershed transform

on Me. This is not the case since we can cut the energy

map at any given energy level between 1 and Emax. How-

ever, using this method it is not possible to detect multiple

bounding boxes that share the exact same center.

3.1 Retrieving Object Centers

After computing an estimate M̂e of the energy map, we re-

trieve the coordinates of detected objects by the following

steps:

1. Cut the energy map at a certain fixed energy level

and then binarize the result.

2. Label the resulting connected components, using the

two-pass algorithm [30]. Every component receives

a label l in 1...n, for every component ol we define

Ol
ind as the set of all tuples (i, j) for which the pixel

with coordinates j and i is part of ol.

3. The center ĉl of any component ol is given by its

center of gravity:

ĉl = olcenter = |Ol
ind|−1 ·

∑

(i,j)∈Ol
ind

(i, j) (2)

We use these component centers ĉ as estimates for the ob-

ject centers c.

3.2 Object Class and Bounding Box

In order to recover bounding boxes we do not only need

the object centers, but also the object classes and bounding

box dimensions. To achieve this we output two additional

maps M c and M b as predictions of our network. M c is

defined as:

M c
(i,j) =

{

Λ(i,j), if Me
(i,j) > 0

Λbackground, otherwise
(3)

where Λbackgroud is the class label indicating back-

ground and Λ(i,j) is the class label associated with the cen-

ter c that is closest to (i, j). We define our estimate for

the class of component ol by a majority vote of all values

M̂ c
(i,j) for all (i, j) ∈ Ol

ind, where M̂ c is the estimate of

M c. Finally, we define the bounding box map M b as fol-

lows:

M b
(i,j) =

{

(yl, xl), if Me
(i,j) > 0

(0, 0), otherwise
(4)

where yl and xl are the width and height of the bound-

ing box for component ol. Based on this we define our

bounding box estimation as the average of all estimations

for label l:

(ŷl, x̂l) = |Ol
ind|−1 ·

∑

(i,j)∈Ol
ind

M̂ b
(i,j) (5)

3.3 Network Architecture and Losses

As mentioned above we use a deep neural network to pre-

dict the dense output maps Me, M c and M b (see Fig. 1).

The base neural network for this prediction can be any fully

convolutional network with the same input and output di-

mensions. We use a ResNet-101 [12] (a special case of a

Highway Net [27]) in conjunction with the elaborate Re-

fineNet [16] upsampling architecture. For the estimators

defined above it is crucial to have the highest spacial pre-

diction resolution possible. Our network has three output

layers, all of which are an 1 by 1 convolution applied to the

last feature map of the RefineNet.

3.3.1 Energy prediction

We predict a quantized and one-hot encoded version of

Me, called Meo, by applying a 1 by 1 convolution of depth

Emax to the last feature map of the base network. The

loss of the prediction M̂eo, losse, is defined as the cross-

entropy between Meo and M̂eo.



a) Example result from DeepScores with detected bounding boxes as overlays. The tiny numbers are class labels from the
dataset introduced with the overlay. This system is roughly one forth of the size of a typical DeepScores input we process at once.

b) Example result from MUSCIMA++ with detected bounding boxes and class labels as overlays. This system is roughly
one half of the size of a typical processed MUSCIMA++ input. The images are random picks amongst inputs with many symbols.

Figure 3. Detection results for DeepScores and MUSCIMA++ examples, drawn on crops from corresponding input images.

3.3.2 Class prediction

We again use the corresponding one-hot encoded version

M co and predict it using an 1 by 1 convolution, with the

depth equal to the number of classes, on the last feature

map of the base network. The cross-entropy lossc is calcu-

lated between M co and M̂ co. Since it is not the goal of this

prediction to distinguish between foreground and back-

ground, all the loss stemming from locations with Me = 0
will get masked out.

3.3.3 Bounding box prediction

M b is predicted in its initial form using an 1 by 1 convolu-

tion of depth 2 on the last feature map of the base network.

The bounding box loss lossb is the mean-squared differ-

ence between M b and M̂ b. For lossb, the components

stemming from background locations will be masked out

analogous to lossc.

3.3.4 Combined prediction

We want to jointly train in all tasks, therefore we define a

total loss losstot as:

losstot = w1 ∗
losse

ve
+ w2 ∗

lossc

vc
+ w3 ∗

lossb

vb
(6)

where the v. are running means of the corresponding losses

and the scalars w. are hyper-parameters of the DWD net-

work. We purposefully use very short extraction heads of

one convolutional layer; by doing so we force the base net-

work to do all three tasks simultaneously. We expect this

leads to the base network learning a meaningful represen-

tation of music notation, from which it can extract the so-

lutions of the three above defined tasks.

4. EXPERIMENTS AND RESULTS

4.1 Used Datasets

For our experiments we use two datasets: DeepScores [29]

and MUSCIMA++ [11].

DeepScores is currently the largest publicly available

dataset of musical sheets with ground truth for various ma-

chine learning tasks, consisting of high-quality pages of

written music, rendered at 400 dots per inch. The dataset

has 300, 000 full pages as images, containing tens of mil-

lions of objects, separated in 123 classes. We randomly

split the set into training and testing, using 200k images

for training and 50k images each for testing and valida-

tion. The dataset being so large allows efficient training of

large convolutional neural networks, in addition to being

suitable for transfer learning [32].

MUSCIMA++ is a dataset of handwritten music no-

tation for musical symbol detection. It contains 91, 255
symbols spread into 140 pages, consisting of both nota-

tion primitives and higher-level notation objects, such as

key signatures or time signatures. It features 105 object

classes. There are 23, 352 notes in the dataset, of which

21, 356 have a full notehead, 1, 648 have an empty note-

head, and 348 are grace notes. We randomly split the

dataset into training, validation, and testing, with the train-

ing set consisting of 110 pages, while validation and test-

ing each consists of 15 pages.

4.2 Network Training and Experimental Setup

We pre-train our network in two stages in order to achieve

reasonable results. First we train the ResNet on music

symbol classification using the DeepScores classification

dataset [29]. Then, we train the ResNet and RefineNet

jointly on semantic segmentation data also available from

DeepScores. After this pre-training stage we are able to

use the network on the tasks defined above in Sec. 3.3.

Since music notation is composed of hierarchically or-

ganized sub-symbols, there does not exist a canonical way

to define a set of atomic symbols to be detected (e.g., indi-

vidual numbers in time signatures vs. complete time sig-

natures). We address this issue using a fully data-driven

approach and detecting the unaltered labels as they are pro-

vided by the two datasets.



Class AP@ 1

2
Class AP@ 1

4

rest16th 0.8773 tuplet6 0.9252
noteheadBlack 0.8619 keySharp 0.9240

keySharp 0.8185 rest16th 0.9233
tuplet6 0.8028 noteheadBlack 0.9200

restQuarter 0.7942 accidentalSharp 0.8897
rest8th 0.7803 rest32nd 0.8658

noteheadHalf 0.7474 noteheadHalf 0.8593
flag8thUp 0.7325 rest8th 0.8544

flag8thDown 0.6634 restQuarter 0.8462
accidentalSharp 0.6626 accidentalNatural 0.8417

accidentalNatural 0.6559 flag8thUp 0.8279
tuplet3 0.6298 keyFlat 0.8134

noteheadWhole 0.6265 flag8thDown 0.7917
dynamicMF 0.5563 tuplet3 0.7601

rest32nd 0.5420 noteheadWhole 0.7523
flag16thUp 0.5320 fClef 0.7184
restWhole 0.5180 restWhole 0.7183
timeSig8 0.5180 dynamicPiano 0.7069

accidentalFlat 0.4949 accidentalFlat 0.6759
keyFlat 0.4685 flag16thUp 0.6621

Table 1. AP with overlap 0.5 and overlap 0.25 for the

twenty best detected classes of the DeepScores dataset.

We rescale every input image to the desired interline

value (number of pixels in between two staff lines). We use

10 pixels for DeepScores and 20 pixels for MUSCIMA++.

Other than that we apply no preprocessing. We do not de-

fine a subset of target objects for our experiments, but at-

tempt to detect all classes for which there is ground truth

available. We always feed single images to the network,

i.e. we only use batch size = 1. During training we crop the

full page input (and the ground truth) to patches of 960 by

960 pixels using random coordinates. This serves two pur-

poses: it saves GPU memory and performs efficient data

augmentation. This way the network never sees the exact

same input twice, even if we train for many epochs. For

all of the results described below we train individually on

losse, lossc and lossb and then refine the training using

losstot. It turns out that the prediction of Me is the most

fragile, therefore we retrain on losse again after training

on the individual losses in the order defined above, before

moving on to losstot. All the training is done using the

RMSProp optimizer [28] with a learning rate of 0.001 and

a decay rate of 0.995.

Since our design is invariant to how many objects are

present on the input (as long as their centers do not over-

lap) and we want to obtain bounding boxes for full pages

at once, we feed whole pages to the network at inference

time. The maximum input size is only bounded by the

memory of the GPU. For typical pieces of sheet music this

is not an issue, but pieces that use very small interline val-

ues (e.g. pieces written for conductors) result in very large

inputs due to the interline normalization. At about 10.5
million pixels even a Tesla P40 with 24 gigabytes runs out

of memory.

4.3 Results and Discussion

Table 1 shows the average precision (AP) for the twenty

best detected classes with an overlap of the detected

Class AP@ 1

2
Class AP@ 1

4

half-rest 0.8981 whole-rest 0.9762
flat 0.8752 ledger-line 0.9163

natural 0.8531 half-rest 0.8981
whole-rest 0.8226 flat 0.8752

notehead-full 0.8044 natural 0.8711
sharp 0.8033 stem 0.8377

notehead-empty 0.7475 staccato-dot 0.8302
stem 0.7426 notehead-full 0.8298

quarter-rest 0.6699 sharp 0.8121
8th-rest 0.6432 tenuto 0.7903

f-clef 0.6395 notehead-empty 0.7475
numeral-4 0.6391 duration-dot 0.7285

letter-c 0.6313 numeral-4 0.7158
letter-c 0.6313 8th-flag 0.7055

8th-flag 0.6051 quarter-rest 0.6849
slur 0.5699 letter-c 0.6643

beam 0.5188 letter-c 0.6643
time-signature 0.4940 8th-rest 0.6432

staccato-dot 0.4793 beam 0.6412
letter-o 0.4793 f-clef 0.6395

Table 2. AP with overlap 0.5 and overlap 0.25 for the

twenty best detected classes from MUSCIMA++.

bounding box and ground truth of 50% and 25%, respec-

tively. We observe that in both cases there are common

symbol classes that get detected very well, but there is also

a steep fall off. The detection rate outside the top twenty

continues to drop and is almost zero for most of the rare

classes. We further observe that there is a significant per-

formance gain for the lower overlap threshold, indicating

that the bounding-box regression is not very accurate.

Fig. 3 shows an example detection for qualitative anal-

ysis. It confirms the conclusions drawn above. The rarest

symbol present, an arpeggio, is not detected at all, while

the bounding boxes are sometimes inaccurate, especially

for large objects (note that stems, bar-lines and beams are

not part of the DeepScores alphabet and hence do not con-

stitute missed detections). On the other hand, staccato dots

are detected very well. This is surprising since they are typ-

ically hard to detect due to their small size and the context-

dependent interpretation of the symbol shape (compare the

dots in dotted notes or F-clefs). We attribute this to the op-

portunity of detecting objects in context, enabled by train-

ing on larger parts of full raw pages of sheet music in con-

trast to the classical processing of tiny, pre-processed im-

age patches or glyphs.

The results for the experiments on MUSCIMA++ in

Tab. 2 and Fig. 3b show a very similar outcome. This is in-

triguing because it suggests that the difficulty in detecting

digitally rendered and handwritten scores might be smaller

than anticipated. We attribute this to the fully data-driven

approach enabled by deep learning instead of hand-crafted

rules for handling individual symbols. It is worth noting

that ledger-lines are detected with very high performance

(see AP@ 1
4 ). This explains the relatively poor detection of

note-heads on MUSCIMA++, since they tend to overlap.

Fig. 4 shows an estimate for a class map with its corre-

sponding input overlayed. Each color corresponds to one

class. This figure proofs that the network is learning a sen-

sible representation of music notation: even though it is



Figure 4. Estimate of a class map M̂ c for every input pixel

with the corresponding MUSCIMA++ input overlayed.

only trained to mark the centers of each object with the cor-

rect colors, it learns a primitive segmentation mask. This is

best illustrated by the (purple) segmentation of the beams.

5. CONCLUSIONS AND FUTURE WORK

We have presented a novel method for object detection that

is specifically tailored to detect many tiny objects on large

inputs. We have shown that it is able to detect common

symbols of music notation with high precision, both in

digitally rendered music as well as in handwritten music,

without a drop in performance when moving to the ”more

complicate” handwritten input. This suggests that deep

learning based approaches are able to deal with handwrit-

ten sheets just as well as with digitally rendered ones, addi-

tionally to their benefit of recognizing objects in their con-

text and with minimal preprocessing as compared to clas-

sical OMR pipelines. Pacha et al. [19] show that higher de-

tection rates, especially for uncommon symbols, are pos-

sible when using R-CNN on small snippets (cp. Fig. 5).

Despite their higher scores, it is unclear how recognition

performance is affected when results of overlapping and

potentially disagreeing snippets are aggregated to full page

results. A big advantage of our end-to-end system is the

complete avoidance of error propagation in longer recog-

nition pipeline of independent components like classifiers,

aggregators, etc [14]. Moreover, our full-page end-to-end

approach has the advantages of speed (compared to a slid-

ing window patch classifier), change of domain (we use

the same architecture for both the digital and handwrit-

ten datasets) and is easily integrated into complete OMR

frameworks.

Arguably the biggest problem we faced is that sym-

bol classes in the dataset are heavily unbalanced. In the

DeepScores dataset in particular, the class notehead con-

tains more than half of all the symbols in the entire dataset,

while the top 10 classes contain more than 85% of the sym-

bols. Considering that we did not do any class-balancing

whatsoever, this imbalance had its effect in training. We

Figure 5. Typical input snippet used by Pacha et al. [19]

Figure 6. Evolution of lossb (on the ordinate) of a suf-

ficiently trained network, when training for another 8000

iterations (on the abscissa).

observe that in cases where the symbol is common, we get

a very high average precision, but it quickly drops when

symbols become less common. Furthermore, it is inter-

esting to observe that the neural network actually forgets

about the existence of these rarer symbols: Fig. 6 depicts

the evolution of lossb of a network that is already trained

and gets further trained for another 8, 000 iterations. When

faced with an image containing rare symbols, the initial

loss is larger than the loss on more common images. But

to our surprise, later during the training process, the loss

actually increases when the net encounters rare symbols

again, giving the impression that the network is actually

treating these symbols as outliers and ignoring them.

Future work will thus concentrate on dealing with the

catastrophic imbalance in the data to successfully train

DWD to detect all classes. We believe that the solution

lies in a combination of data augmentation and improved

training regimes (i.e. sample pages containing rare objects

more often, synthesizing mock pages filled with rare ob-

jects etc.).

Additionally, we plan to investigate the ability of our

method beyond OMR on natural images. Initially we will

approach canonical datasets like PASCAL VOC [7] and

MS-COCO [17] that have been at the front-line of object

recognition tasks. However, images in those datasets are

not exactly natural, and for the most part they are simplistic

(small images, containing a few large objects). Recently,

researchers have been investigating the ability of state-of-

the-art recognition systems on more challenging natural

datasets, like DOTA [31], and unsurprisingly, the results

leave much to be desired. The DOTA dataset shares a lot of

similarities with musical datasets, with images being high

resolution and containing hundreds of small objects, mak-

ing it a suitable benchmark for our DWD method to recog-

nize tiny objects.

Acknowledgements This work is financially supported

by CTI grant 17963.1 PFES-ES “DeepScore”. The authors

are grateful for the collaboration with ScorePad AG.



6. REFERENCES

[1] Min Bai and Raquel Urtasun. Deep watershed trans-

form for instance segmentation. In 2017 IEEE Con-

ference on Computer Vision and Pattern Recognition,

CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,

pages 2858–2866, 2017.

[2] David Bainbridge and Tim Bell. The challenge of opti-

cal music recognition. Computers and the Humanities,

35.2:95 – 121, 2001.

[3] Arnau Baro, Pau Riba, and Alicia Fornés. Towards

the recognition of compound music notes in handwrit-

ten music scores. In 15th International Conference on

Frontiers in Handwriting Recognition, ICFHR 2016,

Shenzhen, China, October 23-26, 2016, pages 465–

470, 2016.

[4] Serge Beucher et al. The watershed transforma-

tion applied to image segmentation. SCANNING

MICROSCOPY-SUPPLEMENT-, pages 299–299,

1992.

[5] Jorge Calvo-Zaragoza, Jose J. Valero-Mas, and Anto-

nio Pertusa. End-to-end optical music recognition us-

ing neural networks. In Proceedings of the 18th Inter-

national Society for Music Information Retrieval Con-

ference, ISMIR 2017, Suzhou, China, October 23-27,

2017, pages 472–477, 2017.

[6] Kwon-Young Choi, Bertrand Coüasnon, Yann Ricque-

bourg, and Richard Zanibbi. Bootstrapping samples of

accidentals in dense piano scores for cnn-based de-

tection. In 12th International Workshop on Graphics

Recognitio, 14th IAPR International Conference on

Document Analysis and Recognition, GREC@ICDAR

2017, Kyoto, Japan, November 9-15, 2017, pages 19–

20, 2017.

[7] Mark Everingham, Luc J. Van Gool, Christopher K. I.

Williams, John M. Winn, and Andrew Zisserman. The

pascal visual object classes (VOC) challenge. Inter-

national Journal of Computer Vision, 88(2):303–338,

2010.

[8] Kunihiko Fukushima and Sei Miyake. Neocognitron:

A new algorithm for pattern recognition tolerant of de-

formations and shifts in position. Pattern Recognition,

15(6):455–469, 1982.

[9] Ross Girshick, Ilija Radosavovic, Georgia

Gkioxari, Piotr Dollár, and Kaiming He. Detectron.

https://github.com/facebookresearch/

detectron, 2018.

[10] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and

Jitendra Malik. Rich feature hierarchies for accurate

object detection and semantic segmentation. In 2014

IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2014, Columbus, OH, USA, June

23-28, 2014, pages 580–587, 2014.

[11] Jan Hajic and Pavel Pecina. The MUSCIMA++ dataset

for handwritten optical music recognition. In 14th

IAPR International Conference on Document Analysis

and Recognition, ICDAR 2017, Kyoto, Japan, Novem-

ber 9-15, 2017, pages 39–46, 2017.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

2016 IEEE Conference on Computer Vision and Pat-

tern Recognition, CVPR 2016, Las Vegas, NV, USA,

June 27-30, 2016, pages 770–778, 2016.

[13] Jan Hajic Jr. and Pavel Pecina. Detecting noteheads in

handwritten scores with convnets and bounding box re-

gression. CoRR, abs/1708.01806, 2017.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.

Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324,

1998.

[15] Yann LeCun, Bernhard E. Boser, John S. Denker, Don-

nie Henderson, Richard E. Howard, Wayne E. Hub-

bard, and Lawrence D. Jackel. Backpropagation ap-

plied to handwritten zip code recognition. Neural Com-

putation, 1(4):541–551, 1989.

[16] Guosheng Lin, Anton Milan, Chunhua Shen, and

Ian D. Reid. Refinenet: Multi-path refinement net-

works for high-resolution semantic segmentation. In

2017 IEEE Conference on Computer Vision and Pat-

tern Recognition, CVPR 2017, Honolulu, HI, USA,

July 21-26, 2017, pages 5168–5177, 2017.

[17] Tsung-Yi Lin, Michael Maire, Serge J. Belongie,

James Hays, Pietro Perona, Deva Ramanan, Piotr

Dollár, and C. Lawrence Zitnick. Microsoft COCO:

common objects in context. In Computer Vision -

ECCV 2014 - 13th European Conference, Zurich,

Switzerland, September 6-12, 2014, Proceedings, Part

V, pages 740–755, 2014.

[18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Chris-

tian Szegedy, Scott E. Reed, Cheng-Yang Fu, and

Alexander C. Berg. SSD: single shot multibox detec-

tor. In Computer Vision - ECCV 2016 - 14th European

Conference, Amsterdam, The Netherlands, October 11-

14, 2016, Proceedings, Part I, pages 21–37, 2016.

[19] Alexander Pacha, Kwon-Young Choi, Bertrand

Coüasnon, Yann Ricquebourg, and Richard Zanibbi.

Handwritten music object detection: Open issues and

baseline results. In Proceedings of the 13th IAPR In-

ternational Workshop on Document Analysis Systems,

Vienna, April 2018.

[20] Alexander Pacha and Horst Eidenberger. Towards self-

learning optical music recognition. In 16th IEEE In-

ternational Conference on Machine Learning and Ap-

plications, ICMLA 2017, Cancun, Mexico, December

18-21, 2017, pages 795–800, 2017.

[21] Ana Rebelo, G. Capela, and Jaime S. Cardoso. Optical

recognition of music symbols - A comparative study.

IJDAR, 13(1):19–31, 2010.



[22] Joseph Redmon and Ali Farhadi. YOLO9000: better,

faster, stronger. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2017, Hon-

olulu, HI, USA, July 21-26, 2017, pages 6517–6525,

2017.

[23] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian

Sun. Faster R-CNN: towards real-time object detection

with region proposal networks. In Advances in Neural

Information Processing Systems 28: Annual Confer-

ence on Neural Information Processing Systems 2015,

December 7-12, 2015, Montreal, Quebec, Canada,

pages 91–99, 2015.

[24] Florence Rossant and Isabelle Bloch. Robust and adap-

tive OMR system including fuzzy modeling, fusion of

musical rules, and possible error detection. EURASIP

J. Adv. Sig. Proc., 2007, 2007.

[25] Antonio Javier Gallego Sánchez and Jorge Calvo-

Zaragoza. Staff-line removal with selectional auto-

encoders. Expert Syst. Appl., 89:138–148, 2017.

[26] Jürgen Schmidhuber. Deep learning in neural net-

works: An overview. Neural Networks, 61:85–117,

2015.

[27] Rupesh Kumar Srivastava, Klaus Greff, and Juer-

gen Schmidhuber. Training very deep networks. In

Advances in Neural Information Processing Systems

(NIPS), 2015.

[28] Tijmen Tieleman and Geoffrey E. Hinton. Lecture 6.5-

rmsprop: Divide the gradient by a running average of

its recent magnitude. COURSERA: Neural networks

for machine learning 4.2, pages 26–31, 2012.

[29] Lukas Tuggener, Ismail Elezi, Jurgen Schmidhuber,

Marcello Pelillo, and Thilo Stadelmann. Deepscores

- a dataset for segmentation, detection and classifi-

cation of tiny objects. International Conference on

Pattern Recognition, 2018. Preprint arXiv:1804.00525

[cs.CV], March 2018.

[30] Kesheng Wu, Ekow Otoo, and Kenji Suzuki. Opti-

mizing two-pass connected-component labeling algo-

rithms. Pattern Anal. Appl., 12(2):117–135, February

2009.

[31] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu,

Serge J. Belongie, Jiebo Luo, Mihai Datcu, Marcello

Pelillo, and Liangpei Zhang. DOTA: A large-scale

dataset for object detection in aerial images. CoRR,

abs/1711.10398, 2017.

[32] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod

Lipson. How transferable are features in deep neural

networks? In Advances in Neural Information Pro-

cessing Systems 27: Annual Conference on Neural In-

formation Processing Systems 2014, December 8-13

2014, Montreal, Quebec, Canada, pages 3320–3328,

2014.


