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Abstract
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I. INTRODUCTION

From Sep 2011 to Jun 2013, I was a visiting professor

under the World Class University program of the Korean

government, at the Korea Advanced Institute of Science

and Technology (KAIST). My affiliation at KAIST was

with the Division of Web Science and Technology (WebST),

a newly established division with a primary mission to

explore the relatively new but exciting area of Web sci-

ence. In this invited paper, some of my research results

contributing to that mission will be discussed. During my

appointment with KAIST, I had retained my professorship

at the Chinese University of Hong Kong, and worked at

both institutions alternately during the development of

these results, which therefore should be accredited to

both institutions.

A. Deep Web

Existing search engines can reach only a small portion

of the Internet. They crawl HTML pages interconnected

with hyperlinks, which constitute one is known as the

surface Web. An increasing number of organizations are

bringing their data online, by allowing public users to

query their back-end databases through context-depen-

dent Web interfaces.

Data acquisition is performed by interacting with the

interface at runtime, as opposed to following hyperlinks.

As a result, the back-end databases cannot be effectively

crawled by a search engine with current technology, and

are usually referred to as hidden databases.

Consider Yahoo! Autos (autos.yahoo.com), a popular

Website for the online trading of automobiles. A potential

buyer specifies filtering criteria through a form, as illus-

trated in Fig. 1. The query is submitted to the system,

which runs it against the back-end database, and returns

the result to the user. What makes it non-trivial for a

search engine to crawl the database is that setting all

search criteria to ANY does not accomplish the task. The

reason is that a system typically limits the number k of

tuples returned (which is roughly 1000 for Yahoo! Autos),

and that repeating the same query may not retrieve new

tuples, with the same k tuples always being returned.

The ability of crawling a hidden database comes with
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the appeal of enabling virtually any form of processing

on the database’s content. The challenge, however, is

clear: how to obtain all the tuples, given that the system

limits the number of return tuples for each query. A naive

solution is to issue a query for every single location in the

data space (for example, in Fig. 1, the data space is the

Cartesian product—while one may leverage knowledge

of attribute dependencies (e.g., the fact that BMW does

not sell trucks in the United States) to prune the data

space into a subset of the Cartesian product, the subset is

often still too large to enumerate—of the domains of

MAKE, BODY STYLE, PRICE, and MILEAGE). However,

the number of queries needed can clearly be prohibitive.

This gives rise to an interesting problem, as defined in the

next subsection, where the objective is to minimize the

number of queries.

1) Problem Definitions

Consider that a data space D with d attributes A1,..., Ad,

each of which has a discrete domain. The domain of Ai

denote by dom(Ai) for each i ∈ [1, d]. Then, D is the Car-

tesian product of dom(A1), …, dom(Ad). We refer to each

element of the Cartesian product as a point in D, repre-

senting one possible combination of values of all dimen-

sions.

Ai is a numeric attribute if there is a total ordering on

dom(Ai). Otherwise, it is a categorical attribute. Our dis-

cussion distinguishes three types of D:

● Numeric: all d attributes of D are numeric.
● Categorical: all d attributes are categorical. In this

case, we use Ui to represent the size of dom(Ai),

which represents how many distinct values there are

in dom(Ai).
● Mixed: the first cat ∈ [1, d – 1] attributes A1,…, Acat

are categorical, whereas the other d – cat attributes

are numeric. Similar to before, let Ui = |dom(Ai)| for

each i ∈ [1, cat].

To facilitate presentation, we consider the domain of a

numeric Ai to be the set of all integers, whereas that of a

categorical Ai to be the set of integers from 1 to Ui. Keep

in mind, however, that the ordering of these values is

irrelevant to a categorical Ai.

Let D be the hidden database of a server with each ele-

ment of D being a point in D. To avoid ambiguity, we will

always refer to elements of D as tuples. D is a bag (i.e., a

multi-set), and it may contain identical tuples.

The server supports queries on D. As shown in Fig. 1,

each query specifies a predicate on each attribute. Specif-

ically, if Ai is numeric, the predicate is a range condition

in the form of:

Ai ∈ [x, y]

where [x, y] is an interval in dom(Ai). For a categorical Ai,

the predicate is:

Ai = x

where x is either a value in dom(Ai) or a wildcard ★ . In

particular, a predicate Ai = ★ means that Ai can be an

arbitrary value in dom(Ai), as shown with capturing

BODY STYLE = ANY in Fig. 1. If a hidden database server

only allows single-value predicates on a numeric attribute

(i.e., no range-condition support), then we can simply

consider the attribute as categorical.

Given a query q, the bag of tuples in D qualifying all

the predicates of q is denoted by q(D). The server does

not necessarily return the entire q(D)—it does so only when

q(D) is small. Formally, the response of the server is:

● if |q(D)| ≤ k: the entire q(D) is returned. In this case,

we say that q is resolved.
● Otherwise: only k tuples—in practice, these are usu-

ally k tuples that have the highest priorities (e.g.,

according to a ranking function) among all the tuples

qualifying the query—in q(D) are returned, together

with a signal indicating that q(D) still has other

tuples. In this case, we say that q overflows.

The value of k is a system parameter (e.g., k = 1,000

for Yahoo! Autos, as mentioned earlier). It is important to

note that in the event that a query q overflows, repeatedly

issuing the same q may always result in the same

response from the server, and does not help to obtain the

other tuples in q(D).

PROBLEM 1 (HIDDEN DATABASE CRAWLING). Retrieve

the entire D while minimizing the number of queries.

Recall that D is a bag, and it may have duplicate tuples.

We require that no point in the data space D has more

than k tuples in D. Otherwise, Problem 1 has no solution

at all. To see this, consider the existence of k + 1 tuples t1,

..., tk+1 in D, all of which are equivalent to a point p ∈ D.

Then, whenever p satisfies a query, the server can always

choose to leave tk+1 out of its response, making it impossi-

ble for any algorithm to extract the entire D. In Yahoo!

Fig. 1. Form-based querying of a hidden database.
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Autos, this requirement essentially states that there can-

not be k = 1,000 vehicles in the database with exactly the

same values for all attributes—an assumption that is

fairly realistic.

As mentioned in Problem 1, the cost of an algorithm is

the number of queries issued. This metric is motivated by

the fact that most systems have control over how many

queries can be submitted by the same IP address within a

period of time. Therefore, a crawler must minimize the

number of queries to complete a task, in addition to mini-

mizing the burden to the server.

We will use n to denote the number of tuples in D. It is

clear that the number of queries needed to extract the

entire D is at least n/k. Of course, this ideal cost may not

always be possible. Hence, there are two central technical

questions that need to be answered. The first, on the

upper bound side, relates to how to solve Problem 1 by

performing only a small number of queries even in the

worst case. The second, on the lower bound side, con-

cerns how many queries are compulsory for solving the

problem in the worst case.

2) Our Results

We have concluded a systematic study of hidden data-

base crawling as defined in Problem 1. At a high level,

our first contribution is a set of algorithms that are both

provably fast in the worst case, and efficient on practical

data. Our second contribution is a set of lower-bound

results establishing the hardness of the problem. These

results explicitly clarify how the hardness is affected by

the underlying factors, and thus reveal valuable insights

into the characteristics of the problem. Furthermore, the

lower bounds also prove that our algorithms are already

optimal asymptotically, and cannot be improved by more

than a constant factor.

Our first main result is:

THEOREM 1. There is an algorithm for solving Prob-

lem 1 whose cost is:

● O( ) when D is numeric;

● at most U1 when D is categorical and cat = 1 (i.e.,

there is only one categorical attribute);

● at most +  when D is cate-

gorical and cat > 1;

● at most U1 + O( ) when D is mixed and cat = 1;

● otherwise (i.e., D is mixed and cat > 1): at most

The above can be conveniently understood as follows:

our algorithm pays an additive cost of O(n/k) for each

numeric attribute Ai, whereas it pays ·min{Ui, } + Ui

for each categorical Ai. The only exception is when cat = 1:

in this scenario, we pay merely U1 for the (only) categori-

cal attribute A1. The cost of each numeric attribute is

irrelevant to its domain size.

Our second main result complements the preceding

one:

THEOREM 2. None of the results in Theorem 1 can be

improved by more than a constant factor in the worst

case.

Besides establishing the optimality of our upper bounds

in Theorem 1, Theorem 2 has its own interesting implica-

tions. First, it indicates the unfortunate fact that for all

types of D, the best achievable query time in the worst

case is much higher than the ideal cost of n/k. Neverthe-

less, Theorem 1 suggests that we can achieve this cost

asymptotically when d is a constant and all attributes are

numeric. Second, as the number cat of categorical attributes

increases from 1 to 2, the discrepancy of the time com-

plexities in Theorem 1 is not an artifact, but rather, it is

due to an inherent leap in the hardness of the problem

(which is true regardless of the number of numeric

attributes). That is, while we pay only O(U1) extra que-

ries for the (sole) categorical attribute when cat = 1, as

cat grows to 2 and beyond, the cost paid by any algorithm

for each categorical Ai has an extra term of min{Ui, }.

Given that the term is multiplicative, this finding implies

(perhaps surprisingly) that, in the worst case, it may be

infeasible to crawl a hidden database with a large size n,

and at least 2 categorical attributes such that at least one

of them has a large domain.

In this paper, we prove Theorems 1 and 2 only for the

case where D is numeric. The rest of the proof is avail-

able elsewhere [1].

B. MapReduce

We are in an era of information explosion, where indus-

try, academia, and governments are accumulating data at

an unprecedentedly high speed. This brings forward the

urgent need for fast computation over colossal datasets

whose sizes can reach the order of terabytes or higher. In

recent years, the database community has responded to

this challenge by building massive parallel computing

platforms which use hundreds or even thousands of com-

modity machines. The most notable platform thus far is

MapReduce, which has attracted a significant amount of

attention in research.

Since its invention [2], MapReduce has gone through

years of improvement into a mature paradigm. At a high

level, a MapReduce system involves a number of share-

nothing machines which communicate only by sending

messages over the network. A MapReduce algorithm

instructs these machines to perform a computational task

collaboratively. Initially, the input dataset is distributed
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across the machines, typically in a non-replicate manner,

with each object on one machine. The algorithm executes

in rounds (sometimes also called jobs in the literature),

each having three phases: map, shuffle, and reduce. The

first two enable the machines to exchange data. In the

map phase, each machine prepares the information to be

delivered to other machines, while the shuffle phase takes

care of the actual data transfer. No network communica-

tion occurs in the reduce phase, where each machine per-

forms calculation with its local storage. The current

round finishes after the reduce phase. If the computa-

tional task has not completed, another round starts.

As with traditional parallel computing, a MapReduce

system aims to achieve a high degree of load balancing,

as well as the minimization of space, CPU, I/O, and net-

work costs at each individual machine. Although these

principles have guided the design of MapReduce algo-

rithms, previous practices have mostly been on a best-

effort basis, paying relatively less attention to enforcing

serious constraints on different performance metrics. Our

work aims to remedy the situation by studying algorithms

that promise outstanding efficiency in multiple aspects

simultaneously.

1) Minimal MapReduce Algorithms

Let S be the set of input objects for the underlying

problem. Let n be the problem cardinality, which is the

number of objects in S, and t be the number of machines

used in the system. Define m = n/t, where m is the num-

ber of objects per machine when S is evenly distributed

across the machines. Consider an algorithm for solving a

problem on S. We say that the algorithm is minimal if it

has all of the following properties:

● Minimum footprint: at all times, each machine uses

only O(m) space of storage.
● Bounded net-traffic: in each round, every machine

sends and receives at most O(m) words of informa-

tion over the network.
● Constant round: the algorithm must terminate after a

constant number of rounds.
● Optimal computation: every machine performs only

O(Tseq/t) amount of computation in total (i.e., sum-

ming over all rounds), where Tseq is the time needed

to solve the same problem on a single sequential

machine. The algorithm should achieve a speedup of

t by using t machines in parallel.

It is fairly intuitive why minimal algorithms are appeal-

ing. First, a minimum footprint ensures that each machine

keeps O(1/t) of the dataset S at any moment. This effec-

tively prevents partition skew, where some machines are

forced to handle considerably more than m objects, as is a

major cause of inefficiency in MapReduce [3].

Second, bounded net-traffic guarantees that the shuffle

phase of each round transfers at most O(m·t) = O(n)

words of network traffic overall. The duration of the

phase equals roughly the time for a machine to send and

receive O(m) words, because the data transfers between

different machines are in parallel. Furthermore, this prop-

erty is also useful when one wants to make an algorithm

stateless for the purpose of fault tolerance.

The third property constant round is not new, as it has

been the goal of many previous MapReduce algorithms.

Importantly, this and the previous properties imply that

there can be only O(n) words of network traffic during

the entire algorithm. Finally, optimal computation echoes

the very original motivation of MapReduce to accom-

plish a computational task t times faster than leveraging

only one machine.

2) Our Results

The core of this work comprises a neat minimal algo-

rithm for:

Sorting. The input is a set S of n objects drawn from

an ordered domain. When the algorithm terminates, all

the objects must have been distributed across the t

machines in a sorted fashion. That is, we can order the

machines from 1 to t such that all objects in machine i

precede those in machine j for all 1 ≤ i ≤ j ≤ t.

Sorting can be settled in O(n log n) time on a sequen-

tial computer. There has been progress in developing

MapReduce algorithms for this important operation. The

state of the art is TeraSort [4], which won Jim Gray’s

benchmark contest in 2009. TeraSort comes close to

being minimal when a crucial parameter is set appropri-

ately. As will be made clear later, the algorithm requires

manual tuning of the parameter, an improper choice of

which can incur severe performance penalties.

Our work was initialized by an attempt to justify theo-

retically why TeraSort often achieves excellent sorting

time with only 2 rounds. In the first round, the algorithm

extracts a random sample set Ssamp of the input S, and then

picks t – 1 sampled objects as the boundary objects. Con-

ceptually, these boundary objects divide S into t segments.

In the second round, each of the t machines acquires all

the objects in a distinct segment, and sorts them. The size

of Ssamp is the key to efficiency. If Ssamp is too small, the

boundary objects may be insufficiently scattered, which

can cause partition skew in the second round. Conversely,

an over-sized Ssamp entails expensive sampling overhead. In

the standard implementation of TeraSort, the sample size

is left as a parameter, although it always seems to admit a

good choice that gives outstanding performance [4].

We provide a rigorous explanation of the above phe-

nomenon. Our theoretical analysis clarifies how to set the

size of Ssamp to guarantee the minimality of TeraSort. In

the meantime, we also remedy a conceptual drawback of

TeraSort. Strictly speaking, this algorithm does not fit in

the MapReduce framework, because it requires that,
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besides network messages, the machines should be able

to communicate by reading/writing a common distributed

file. Once this is disabled, the algorithm requires one

more round. We present an elegant fix so that the algo-

rithm still terminates in 2 rounds even by strictly adher-

ing to MapReduce. Our findings with TeraSort have

immediate practical significance, given the essential role

of sorting in a large number of MapReduce programs.

It is worth noting that a minimal algorithm for sorting

leads to minimal algorithms for several fundamental data-

base problems, including ranking, group-by, semi-join,

and skyline [5].

II. CRAWLING THE DEEP WEB

This section explains how to solve Problem 1 when the

data space D is numeric. In Section II-A, we first define

some atomic operators, and present an algorithm that is

intuitive, but has no attractive performance bounds.

Then, in Sections II-B and II-C, we present another algo-

rithm, which achieves the optimal performance, as

proven in Section II-D.

A. Basic Operations and Baseline Algorithm

Recall that in a numeric D, the predicate of a query q on

each attribute is a range condition. Thus, q can be regarded

as a d-dimensional (axis-parallel) rectangle, such that its

result q(D) consists of the tuples of D covered by that

rectangle. If the predicate of q on attribute Ai (i ∈ [1, d])

is Ai ∈ [x1, x2], we say that [x1, x2] is the extent of the rect-

angle of q along Ai. Henceforth, we may use the symbol q

to refer to its rectangle also, when no ambiguity can be

caused. Clearly, settling Problem 1 is equivalent to deter-

mining the entire q(D) where q is the rectangle covering

the whole D.

Split. A fundamental idea to extract all the tuples in

q(D) is to refine q into a set S of smaller rectangles, such

that each rectangle q' ∈ S can be resolved (i.e., q'(D) has

at most k tuples). Note that this always happens as long as

rectangle q' is sufficiently small. In an the extreme case,

when q' has degenerated into a point in D, the query q' is

definitely resolved (otherwise, there would be at least k + 1

tuples of D at this point). Therefore, a basic operation in

our algorithms for Problem 1 is split.

Given a rectangle q, we may perform two types of split-

ting, depending on how many rectangles q is divided into:

1) 2-way split: Let [x1, x2] be the extent of q on Ai (for

some i ∈ [1, d]). A 2-way split at a value x ∈ [x1, x2]

partitions q into rectangles qleft and qright, by dividing

the Ai-extent of q at x. Formally, on any attribute

other than Ai, qleft and qright have the same extents as

q. Along Ai, however, the extent qleft is [x1, x – 1],

whereas that of qright is [x, x2]. Fig. 2a illustrates the

idea by splitting on the horizontal attribute.

2) 3-way split: Let [x1, x2] be defined as above. A 3-way

split at a value x ∈ [x1, x2] partitions q into rectan-

gles qleft, qmid, and qright as follows. On any attribute

other than Ai, they have the same extent as q. Along

Ai, however, the extent of qleft is [x1, x – 1], that of

qmid is [x, x], and that of qright is [x + 1, x2] (Fig. 2b).

In the sequel, a 2-way split will be abbreviated simply

as a split. No confusion can arise as long as we always

mention 3-way as referring to a 3-way split. The extent of

a query q on an attribute Ai can become so short that it

covers only a single value, in which case we say that Ai is

exhausted on q. For instance, the horizontal attribute is

exhausted on qmid in Fig. 2b. It is easy to see that there is

always a non-exhausted attribute on q unless q has degen-

erated into a point.

Binary-shrink. Next, we describe a straightforward

algorithm for solving Problem 1, which will serve as the

baseline approach for comparison. This algorithm, named

binary-shrink, repeatedly performs 2-way splits until a

query is resolved. Specifically, given a rectangle q, binary-

shrink runs the rectangle (by submitting its corresponding

query to the server) and finishes if q is resolved. Other-

wise, the algorithm splits q on an attribute Ai that has not

been exhausted, by cutting the extent [x1, x2] of q along

Ai into equally long intervals (i.e., the split is performed

at x = ). Let qleft, qright be the queries produced

by the split. The algorithm then recurses on qleft and qright.

It is clear that the cost of binary-shrink (i.e., the num-

ber of queries issued) depends on the domain sizes of the

numeric attributes of D, which can be unbounded. In the

following subsections, we will improve this algorithm to

optimality.

B. One-Dimensional Case

Before giving our ultimate algorithm for settling Prob-

lem 1 with any dimensionality d, in this subsection, we

first explain how it works for d = 1. This will clarify the

rationale behind the algorithm’s efficiency, and facilitate

our analysis for a general d. It is worth mentioning that

the presence of only one attribute removes the need to

specify the split dimension in describing a split.

x1 x2+( ) 2⁄

Fig. 2. Splitting: (a) 2-way and (b) 3-way.
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Rank-shrink. Our algorithm rank-shrink differs from

binary-shrink in two ways. First, when performing a 2-way

split, instead of cutting the extent of a query q in half, we

aim at ensuring that at least k/4 tuples fall in each of the

rectangles generated by the split. Such a split, however,

may not always be possible, which can happen if many

tuples are identical to each other. Hence, the second dif-

ference that rank-shrink makes is to perform a 3-way

split in such a scenario, which gives birth to a query

(among the 3 created) that can be immediately resolved.

Formally, given a query q, the algorithm eventually

returns q(D). It starts by issuing q to the server, which

returns a bag R of tuples. If q is resolved, the algorithm

terminates by reporting R. Otherwise (i.e., in the event

that q overflows), we sort the tuples of R in ascending

order, breaking ties arbitrarily. Let o be the (k/2)-th tuple

in the sorted order, with its A1-value being x. Now, we

count the number c of tuples in R identical to o (i.e., R has

c tuples with A1-value x), and proceed as follows:

1) Case 1: c ≤ k/4. Split q at x into qleft and qright, each of

which must contain at least k/4 tuples in R. To see

this for qleft (symmetric reasoning applies to qright),

note there are at least k/2 – c ≥ k/4 tuples of R

strictly smaller than x, all of which fall in qleft. The

case for qright follows in analogy.

2) Case 2: c > k/4. Perform a 3-way split on q at x. Let

qleft, qmid, and qright be the resulting rectangles (note

that the ordering among them matters; see Section

II-B). Observe that qmid has degenerated into point x,

and therefore, can immediately be resolved. As a

technical remark, in Case 2, x might be the lower

(resp. upper) bound—x cannot be both because oth-

erwise q would be a point and therefore could not

have overflowed—on the extent of q. If this hap-

pens, we simply discard qleft (or qright) as it would

have a meaningless extent.

In either case, we are left with at most two queries (i.e.,

qleft and qright) to further process. The algorithm handles

each of them recursively in the same manner.

Example. We use the dataset D in Fig. 3a to demon-

strate the algorithm. Let k = 4. The first query is q1 = (–∞, ∞).

Suppose that the server responds by returning R1 = {t4, t6,

t7, t8} and a signal that q1 overflows. The (k/2) = 2nd

smallest tuple in R1 is t6 (after random tie breaking),

whose value is x = 55. As R1 has c = 3 tuples with value

55 and c > k/4 = 1, we perform a 3-way split on q1 at 55,

generating q2 = (–∞, 54], q3 = [55, 55], and q4 = [56, ∞).

As q3 has degenerated into a point, it is resolved immedi-

ately, fetching t6, t7, and t8. These tuples have already

been extracted before, but this time they come with an

extra fact that no more tuple can exist at point 55.

Consider q2. Suppose that the server’s response is

R2 = {t1, t2, t4, t5}, plus an overflow signal. Hence, x = 20 and

c = 1. Thus, a 2-way split on q2 at 20 creates q5 = (–∞, 19]

and q6 = [20, 54]. Queries q4, q5, and q6 are all resolved.

Analysis. The lemma below bounds the cost of rank-

shrink.

LEMMA 1. When d = 1, rank-shrink requires O(n/k)

queries.

Proof. The main tool used by our proof is a recursion

tree T that captures the spawning relationships of the que-

ries performed by rank-shrink. Specifically, each node of

T represents a query. Node u is the parent of node u' if

query u' is created by a 2-way or 3-way split of query u.

Each internal node thus has 2 or 3 child nodes. Fig. 3b

shows the recursion tree for the queries performed in our

earlier example on Fig. 3a.

We focus on bounding the number of leaves in T because

it dominates the number of internal nodes. Observe that

each leaf v corresponds to a disjoint interval in dom(A1),

due to the way splits are carried out. There are three types

of v:

● Type-1: the query represented by v is immediately

resolved in a 3-way split (i.e., qmid in Case 2). The

interval of v contains at least k/4 identical tuples in D.
● Type-2: query v is not type-1, but also covers at least

k/4 tuples in D.
● Type-3: query v covers less than k/4 tuples in D.

For example, among the leaf nodes in Fig. 3, q3 is of

type-1, q5 and q6 are of type-2, and q4 is of type-3.

As the intervals of various leaves cover disjoint bags

of tuples, the number of type-1 and type-2 leaves is at

= 4n/k. Each leaf of type-3 must have a sibling in T

that is a type-2 leaf (in Fig. 3, such a sibling of q4 is q3).

In contrast, a type-2 leaf has at most 2 siblings. It thus

follows that there are at most twice as many type-3 leaves

as type-2, i.e., the number of type-3 leaves is no more

than 8n/k. This completes the proof.

This analysis implies that quite loosely, T has no more

than 4n/k + 8n/k = 12n/k leaves. Thus, there cannot be

more than this number of internal nodes in T. □

C. Rank-Shrink for Higher Dimensionality

We are now ready to extend rank-shrink to handle any

d > 1. In addition to the ideas exhibited in the preceding

subsection, we also apply an inductive approach, which

n

k 4⁄
--------

Fig. 3. Illustration of 1d rank-shrink: (a) dataset D and queries
and (b) recursion tree.
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involves converting the d-dimensional problem to several

(d – 1)-dimensional ones. Our discussion below assumes

that the (d – 1)-dimensional problem has already been

settled by rank-shrink.

Given a query q, the algorithm (as in 1d) sets out to

solicit the server’s response R, and finishes if q is

resolved. Otherwise, it examines whether A1 is exhausted

in q, and whether the extent of q on A1 has only 1 value x in

dom(A1). If so, we can then focus on attributes A2, ..., Ad.

This is a (d – 1)-dimensional version of Problem 1, in the

(d – 1)-dimensional subspace covered by the extents of q

on A2, ..., Ad, eliminating A1 by fixing it to x. Hence, we

invoke rank-shrink to solve it.

Consider that A1 is not exhausted on q. Similar to the

1d algorithm, we will split q such that either every result-

ing rectangle covers at least k/4 tuples in R, or one of

them can be immediately solved as a (d – 1)-dimensional

problem. The splitting proceeds exactly as described in

Cases 1 and 2 of Section II. The only difference is that

the rectangle qmid in Case is not a point, but instead, a

rectangle on which A1 has been exhausted. Hence, qmid is

processed as a (d – 1)-dimensional problem with rank-

shrink.

As with the 1d case, the algorithm recurses on qleft and

qright (provided that they have not been discarded for hav-

ing a meaningless extent on A1).

Example. We demonstrate the algorithm using the 2d

dataset in Fig. 4, where D has 10 tuples t1, ..., t10. Let k = 4.

The first query q1 issued covers the entire data space.

Suppose that the server responds with R1 = {t4, t7, t8, t9}

and an overflow signal. We split q1 3-ways at A1 = 80 into

q2, q3, and q4, whose rectangles can be found in Fig. 4.

The A1-extents of q2, q3, and q4 are (–∞, 79], [80, 80], and

[81, ∞), respectively, while their A2-extents are all (–∞, ∞).

Note that A1 is exhausted on q2; alternatively, we can

see that q2 is equivalent to a 1d query on the vertical line

A1 = 80. Hence, q2 is recursively settled by our 1d algo-

rithm (requiring 3 queries, which can be verified easily).

Suppose that the server’s response to q2 is R2 = {t2, t3,

t4, t5} and an overflow signal. Accordingly, q2 is split into

q5 and q6 at A1 = 40, whose rectangles are also shown in

Fig. 4. Finally, q4, q5, and q6 are all resolved.

Analysis. We have the lemma below for general d:

LEMMA 2. Rank-shrink performs O(dn/k) queries. 

Proof. The case d = 1 has been proven in Lemma 1.

Next, assuming that rank-shrink issues at most α(d – 1)n/k

queries for solving a (d – 1)-dimensional problem with n

tuples (where α is a positive constant), we will show that

the cost is at most αdn/k for dimensionality d.

Again, our argument leverages a recursion tree T. As

before, each node of T is a query, such that node u parents

node u', if query u' was created from splitting u. We make

a query v a leaf of T as soon as one of the following

occurs:

● v is resolved. We associate v with a weight set to 1.
● A1 is exhausted on rectangle v. Recall that such a

query is solved as a (d – 1)-dimensional problem. We

associate v with a weight, equal to the cost for rank-

shrink for that problem.

For our earlier example in Fig. 4, the recursion tree T

happens to be the same as the one in Fig. 3b. The differ-

ence is that each leaf has a weight. Specifically, the

weight of q3 is 3 (i.e., the cost of solving the 1d query at

the vertical line A1 = 80 in Fig. 4), and the weights of the

other leaves are 1.

Therefore, the total cost of rank-shrink on the d-

dimensional problem is equal to the total number of inter-

nal nodes in T, plus the total weight of all the leaves.

As the A1-extents of the leaves’ rectangles have no

overlap, their rectangles cover disjoint tuples. Let us clas-

sify the leaves into type-1, -2, and -3, as in the proof of

Lemma 1, by adapting the definition of type-1 in a

straightforward fashion: v is of this type if it is the middle

node qmid from a 3-way split. Each type-leaf has weight 1

(as its corresponding query must be resolved). As proved

in Lemma 1, the number of them is no more than 8n/k.

Let v1,..., vβ be all the type-1 and type-2 nodes (i.e.,

suppose the number of them is β). Assume that node vi

contains ni tuples of D. It holds that Σ  ≤ |D| = n. The

weight of vi, by our inductive assumption, is at most

α(d – 1)ni/k. Hence, the total weight of all the type-1 and

type-2 nodes does not exceed α(d – 1)n/k.

The same argument in the proof of Lemma 1 shows that

T has less than 12n/k internal nodes. Thus, summarizing

the above analysis, the cost of d-dimensional rank-shrink is

no more than:  +  + α(d − 1)  = (20 + α(d − 1)) . To

complete our inductive proof, we want (20 + α(d − 1))

to be bounded from above by αdn/k. This is true for any

α ≥ 20. □

Remark. This concludes the proof of the first bullet of

Theorem 1. When d is a fixed value (as is true in prac-

n
β
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Fig. 4. Illustration of 2d rank-shrink.
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tice), the time complexity in Lemma 2 becomes O(n/k),

asymptotically matching the trivial lower bound n/k. A

natural question at this point of whether there is an algo-

rithm that can still guarantee cost O(n/k) if d is not con-

stant, Next, we will show that this is impossible.

D. A Lower Bound

The objective of this subsection is to establish:

THEOREM 3. Let k, d, and m be arbitrary positive inte-

gers such that d ≤ k. There is a dataset D (in a numeric

data space) with n = m(k + d) tuples such that any algo-

rithm must use at least dm queries to solve Problem 1 on D.

It is therefore impossible to improve our algorithm

rank-shrink (see Lemma 2) by more than a constant fac-

tor in the worst case, as shown below:

COROLLARY 1. In a numeric data space, no algorithm

can guarantee solving Problem 1 with o(dn/k) queries.

Proof. If there existed such an algorithm, let us use it on

the inputs in Theorem 3. The cost is o(dn/k) = o(dm(k+d)/k)

which, due to d ≤ k, is o(dm), causing a contradiction. □

We now proceed to prove Theorem 3 using a hard dataset

D, as illustrated in Fig. 5. The domain of each attribute is

the set of integers from 1 to m +1, or D = [1, m + 1]d. D

has m groups of d + k tuples. Specifically, the i-th group

(1 ≤ i ≤ m) has k tuples at the point (i, ..., i), taking value i

on all attributes. We call them diagonal tuples. Further-

more, for each j ∈ [1, d], group i also has a tuple that

takes value i + 1 on attribute Aj, and i on all other

attributes. Such a tuple is referred to as a non-diagonal

tuple. Overall, D has km diagonal and dm non-diagonal

tuples.

Let S be the set of dm points in D that are equivalent to

the dm non-diagonal tuples in D, respectively (i.e., each

point in S corresponds to a distinct non-diagonal tuple).

As explained in Section II-A, each query can be regarded

as an axis-parallel rectangle in D. With this correspon-

dence in mind, we observe the following for any algo-

rithm that correctly solves Problem 1 on D.

LEMMA 3. When the algorithm terminates, each point

in S must be covered by a distinct resolved query already

performed.

Proof. Every point p ∈ S must be covered by a resolved

query. Otherwise, p is either never covered by any query,

or covered by only overflowing queries. In the former

case, the tuple of D at p could not have been retrieved,

whereas in the latter, the algorithm could not rule out the

possibility that D had more than one tuple at p. In neither

case could the algorithm have terminated.

Next, we show that no resolved query q covers more

than one point in S. Otherwise, assume that q contains p1

and p2 in S, in which case q fully encloses the minimum

bounding rectangle, denoted as r, of p1 and p2. Without

loss of generality, suppose that p1 (pj) is from group i (j)

such that i ≤ j. If i = j, then r contains the point (i, ..., i), in

which case at least k + 2 tuples satisfy q (i.e., p1, p2, and

the k diagonal tuples from group i). Alternatively, con-

sider i < j. In this scenario, the coordinate of p1 is at most

i + 1 ≤ j on all attributes, while the coordinate of p2 is at

least j on all attributes. Thus, r contains the point (j, ..., j),

causing at least k + 2 tuples to satisfy q (i.e., p1, p2, and

the k diagonal tuples from group j). Therefore, q must

overflow in any case, which is a contradiction. □

The lemma indicates that at least |S| = dm queries must

be performed, which validates Theorem 3.

III. MAPREDUCE

As explained earlier, a MapReduce algorithm proceeds

in rounds, where each round has three phases: map, shuf-

fle, and reduce. As all machines execute a program in the

same way, next we focus on one specific machine M.

Map. In this phase, M generates a list of key-value

pairs (k, v) from its local storage. While the key k is usu-

ally numeric, the value v can contain arbitrary informa-

tion. The pair (k, v) will be transmitted to another machine

in the shuffle phase, such that the recipient machine is

determined solely by k, as will be clarified shortly.

Shuffle. Let L be the list of key-value pairs that all the

machines produced in the map phase. The shuffle phase

distributes L across the machines adhering to the con-

straint that pairs with the same key must be delivered to
Fig. 5. A hard numeric dataset.
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the same machine. That is, if (k, v1), (k, v2),..., (k, vx) are

the pairs in L having a common key k, all of them will

arrive at an identical machine.

Reduce. M incorporates the key-value pairs received

from the previous phase into its local storage. Then, it

carries out whatever processing is needed on its local

data. After all machines have completed the reduce phase,

the current round terminates.

Discussion. It is clear that the machines communicate

only in the shuffle phase, whereas in the other phases

each machine executes the algorithm sequentially, focus-

ing on its own storage. Overall, parallel computing hap-

pens mainly in the reduce phase. The major role of the

map and shuffle phases is to swap data among the

machines, so that computation can take place on different

combinations of objects.

Simplified view of our algorithms. Let us number the

t machines of the MapReduce system arbitrarily from 1 to

t. In the map phase, all our algorithms will adopt the con-

vention that M generates a key-value pair (k, v) if and

only if it wants to send v to machine k. In other words, the

key field is explicitly the ID of the recipient machine.

This convention admits a conceptually simpler model-

ing. In describing our algorithms, we will combine the

map and shuffle phases into one called map-shuffle. In

the map-shuffle phase, M delivers v to machine k, which

means that M creates (k, v) in the map phase, which is

then transmitted to machine k in the shuffle phase. The

equivalence also explains why the simplification is only

at the logical level, while physically, all our algorithms

are still implemented in the standard MapReduce para-

digm.

Statelessness for fault tolerance. Some MapReduce

implementations (e.g., Hadoop) require that at the end of

a round, each machine should send all the data in its stor-

age to a distributed file system (DFS), which, in our con-

text, can be understood as a “disk in the cloud” that

guarantees consistent storage (i.e., it never fails). The

objective is to improve the system’s robustness in the sce-

nario where a machine collapses during the algorithm’s

execution. In such a case, the system can replace this

machine with another one, ask the new machine to load

the storage of the old machine at the end of the previous

round, and re-do the current round (where the machine

failure occurred). Such a system is called stateless, because

intuitively, no machine is responsible for remembering

any state of the algorithm [6].

The four minimality conditions defined in Section I

ensure efficient enforcement of statelessness. In particu-

lar, a minimum footprint guarantees that at each round,

every machine sends O(m) words to the DFS, which is

still consistent with bounded traffic.

In the sorting problem, the input is a set S of n objects

from an ordered domain. For simplicity, we assume that

objects are real values, because our discussion easily gen-

eralizes to other ordered domains. Let M1,..., Mt denote

the machines in the MapReduce system. Initially, S is dis-

tributed across these machines, each storing O(m)

objects, where m = n/t. At the end of sorting, all objects in

Mi must precede those in Mj for any 1 ≤ i < j ≤ t.

A. TeraSort

Parameterized by ρ ∈ (0,1], TeraSort [4] runs as fol-

lows:

Round 1. Map-shuffle(ρ)

Every Mi (1 ≤ i ≤ t) samples each object from its local

storage with probability ρ independently. It sends all

the sampled objects to M1.

Reduce (only on M1)

1. Let Ssamp be the set of samples received by M1, and

s = |Ssamp|.

2. Sort Ssamp, and pick b1,..., bt−1, where bi is the i -th

smallest object in Ssamp, for 1 ≤ i ≤ t – 1. Each bi is a

boundary object.

Round 2. Map-shuffle (assumption: b1,..., bt−1 have been

sent to all machines)

Every Mi sends the objects in (bj−1, bj] from its local

storage to Mj, for each 1 ≤ j ≤ t, where b0 = −∞ and

bt = ∞ are dummy boundary objects.

Reduce:

Every Mi sorts the objects received in the previous

phase.

For convenience, the procedure above sometimes asks

a machine M to send data to itself. Needless to say, such

data “transfer” occurs internally in M, with no network

transmission. Also, note the assumption at the map-shuf-

fle phase of Round 2, which we call the broadcast

assumption, and will deal with later in Section III-C.

In O’Malley’s study [4], ρ was left as an open parame-

ter. Next, we analyze the setting of this value to make

TeraSort a minimal algorithm.

B. Choice of ρ 

Define Si = S (bi−1, bi], for 1 ≤ i ≤ t. In Round 2, all

the objects in Si are gathered by Mi, which sorts them in

the reduce phase. For TeraSort to be minimal, the follow-

ing must hold:

P1. s = O(m).

P2. |Si|= O(m) for all 1 ≤ i ≤ t.

Specifically, P1 is necessary because M1 receives O(s)

objects over the network in the map-shuffle phase of

s t⁄

⊃
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Round 1, which has to be O(m) to satisfy bounded net-traf-

fic (see Section I). P2 is necessary because Mi must receive

and store O(|Si|) words in Round 2, which needs to be O(m)

to qualify as bounded net-traffic with a minimum footprint.

We now establish an important fact about TeraSort:

THEOREM 4. When m ≥ t ln(nt), P1 and P2 hold simul-

taneously with a probability of at least 1 – O( ) by set-

ting ρ = ln(nt).

Proof. We will consider t ≥ 9, because otherwise,

m = Ω(n), in which case P1 and P2 hold trivially. Our

proof is based on the Chernoff bound—let X1,…, Xn be

independent Bernoulli variables with Pr[Xi = 1] = pi, for

1 ≤ i ≤ n. Set X = Σ  Xi and µ = E[X] = Σ pi. The Cher-

noff bound states (i) for any 0 < α < 1, Pr[X ≥ (1 + α)µ] ≤
exp(−α2µ/3) while Pr[X ≤ (1 – α)µ] ≤ exp(−α2µ/3), and

(ii) Pr[X ≥ 6µ] ≤ 2−6µ—and an interesting bucketing argu-

ment.

First, it is easy to see that E[s] = mρt = t ln(nt).

A simple application of the Chernoff bound results in:

Pr[s ≥ 1.6 · t ln(nt)] ≤ exp(−0.12 · t ln(nt)) ≤ 1/n

where the last inequality uses the fact that t ≥ 9. This implies

that P1 can fail with a probability of at most 1/n. Next, we

analyze P2 under the event s < 1.6t ln(nt) = O(m).

Imagine that S has been sorted in ascending order. We

divide the sorted list into  sub-lists as evenly as pos-

sible, and call each sub-list a bucket. Each bucket has

between 8n/t = 8m and 16m objects. We observe that P2

holds if every bucket covers at least one boundary object.

To understand why, note that under this condition, no

bucket can fall between two consecutive boundary

objects (counting also the dummy ones—if there was

one, the bucket would not be able to cover any boundary

object). Hence, every Si, 1 ≤ i ≤ t, can contain objects in at

most 2 buckets, i.e., |Si| ≤ 32m = O(m).

A bucket β definitely includes a boundary object if β

covers more than 1.6 ln(nt) > s/t samples (i.e., objects

from Ssamp), as a boundary object is taken every  con-

secutive samples. Let |β | ≥ 8m be the number of objects

in β. Random variable xj, 1 ≤ j ≤ |β | is defined to be 1 if

the j-th object in β is sampled, and 0 otherwise. Define:

= |β Ssamp|.

Clearly, E[X] ≥ 8mρ = 8 ln(nt). We have:

Pr[X ≤ 1.6 ln(nt)] = Pr[X ≤ (1 – 4/5) 8 ln(nt)]

≤ Pr[X ≤ (1 – 4/5)E[X]]

 
(by Chernoff) ≤ exp

≤ exp 

≤ exp(−ln(nt))

≤ 1/(nt).

We say that β fails if it covers no boundary object. The

above derivation shows that β fails with a probability of

at most 1/(nt). As there are at most t/8 buckets, the proba-

bility that at least one bucket fails is at most 1/(8n).

Hence, P2 can be violated with a probability of at most

1/(8n) under the event s < 1.6t ln(nt), i.e., at most 9/8n

overall.

Therefore, P1 and P2 hold at the same time with a

probability of at least 1 – 17/(8n). □

Discussion. For large n, the success probability 1 –

O(1/n) in Theorem 4 is so high that the failure probability

O(1/n) is negligible, i.e., P1 and P2 are almost never vio-

lated.

The condition about m in Theorem 4 is tight within a

logarithmic factor, because m ≥ t is an implicit condition

for TeraSort to work, with both the reduce phase of

Round 1 and the map-shuffle phase of Round 2 requiring

a machine to store t – 1 boundary objects.

In reality, typically, m » t, and the memory size of a

machine is significantly greater than the number of

machines. More specifically, m is on the order of at least

106 (this is using only a few megabytes per machine), while

t is on the order of 104 or lower. Therefore, m ≥ t ln(nt)

is a (very) reasonable assumption, which explains why

TeraSort has excellent efficiency in practice.

Minimality. We now establish the minimality of Tera-

Sort, temporarily ignoring how to fulfill the broadcast

assumption. Properties P1 and P2 indicate that each

machine needs to store only O(m) objects at any time,

consistent with a minimum footprint. Regarding the net-

work cost, a machine M in each round sends only objects

that were already on M when the algorithm started.

Hence, M sends O(m) network data per round. Further-

more, M1 receives only O(m) objects by P1. Therefore,

bounded-bandwidth is fulfilled. Constant round is obvi-

ously satisfied. Finally, the computation time of each

machine Mi (1 ≤ i ≤ t) is dominated by the cost of sorting

Si in Round 2, i.e., O(m log m) = O( log n) by P2. As this

is 1/t of the O(n log n) time of a sequential algorithm,

optimal computation is also achieved.

C. Removing the Broadcast Assumption

Before Round 2 of TeraSort, M1 needs to broadcast

the boundary objects b1,…, bt−1 to the other machines. We

have to be careful because a naive solution would ask M1

to send O(t) words to every other machine, and hence,

incur O(t2) network traffic overall. This not only requires

one more round, but also violates bounded net-traffic if t

exceeds  by a non-constant factor.

In O’Malley’s study [4], this issue was circumvented

by assuming that all the machines can access a distributed

file system. In this scenario, M1 can simply write the

boundary objects to a file on that system, after which

each Mi, 2 ≤ i ≤ t, obtains them from the file. In other

words, a brute-force file-accessing step is inserted between

1
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the two rounds. This is allowed by the current Hadoop

implementation (on which TeraSort was based [4]).

Technically, however, the above approach destroys the

elegance of TeraSort, because it requires that, besides send-

ing key-value pairs to each other, the machines should

also communicate via a distributed file. This implies that

the machines are not share-nothing, because they are

essentially sharing the file. Furthermore, as far as this

paper is concerned, the artifact is inconsistent with the

definition of minimal algorithms. As sorting lingers in all

the problems to be discussed later, we are motivated to

remove the artifact to keep our analytical framework

clean.

We now provide an elegant remedy, which allows Tera-

Sort to still terminate in 2 rounds, and retain its minimal-

ity. The idea is to give all machines a copy of Ssamp.

Specifically, we modify Round 1 of TeraSort as:

Round 1. Map-shuffle(ρ)

After sampling as in TeraSort, each Mi sends its sam-

pled objects to all machines (not just to M1).

Reduce

This is the same as in TeraSort, but performed on all

machines (not just on M1).

Round 2 still proceeds as before. The correctness fol-

lows from the fact that in the reduce phase, every

machine picks boundary objects in exactly the same way

from an identical Ssamp. Therefore, all machines will obtain

the same boundary objects, thus eliminating the need for

broadcasting. Henceforth, we will call the modified algo-

rithm pure TeraSort.

At first glance, the new map-shuffle phase of Round 1

may seem to require a machine M to send out considerable

data, because every sample necessitates O(t) words of

network traffic (i.e., O(1) to every other machine). However,

as every object is sampled with probability ρ = ln(nt), the

number of words sent by M is only O(m·t·ρ) = O(t ln(nt))

in expectation. The lemma below gives a much stronger

fact:

LEMMA 4. With a probability of at least 1 − , every

machine sends O(t ln(nt)) words over the network in

Round 1 of pure TeraSort.

Proof. Consider an arbitrary machine M. Let random

variable X be the number of objects sampled from M.

Hence, E[X] = mρ = ln(nt). A straightforward application

of the Chernoff bound gives:

Pr[X ≥ 6 ln(nt)] ≤ 2−6 ln(nt) ≤ 1/(nt).

Hence, M sends more than O(t ln(nt)) words in Round

1 with a probability of at most 1/(nt). By union bound,

the probability that this is true for all t machines is at least

1 – 1/n. □

Combining the above lemma with Theorem 4 and the

minimality analysis in Section III-B, we can see that pure

TeraSort is a minimal algorithm with a probability of at

least 1 – O(1/n) when m ≥ t ln(nt).

We close this section by pointing out that the fix of

TeraSort is of mainly theoretical concerns. The fix serves

the purpose of convincing the reader that the broadcast

assumption is not a technical “loose end” in achieving

minimality. In practice, TeraSort has nearly the same per-

formance as our pure version, at least on Hadoop, where

(as mentioned before) the brute-force approach of Tera-

Sort is well supported.

IV. FINAL REMARKS

We have obtained a non-trivial glimpse at the results

from research during an appointment with the KAIST.

Interested readers are referred previous studies [1, 5] for

additional details, including full surveys of the literature.

Due to space constraints, in this paper, other results have

not been described, but can be found online at http://
www.cse.cuhk.edu.hk/~taoyf.
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