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Abstract

Background: Growing concerns about increasing rates of antibiotic resistance call for expanded and comprehensive
global monitoring. Advancing methods for monitoring of environmental media (e.g., wastewater, agricultural waste,
food, and water) is especially needed for identifying potential resources of novel antibiotic resistance genes (ARGs), hot
spots for gene exchange, and as pathways for the spread of ARGs and human exposure. Next-generation sequencing
now enables direct access and profiling of the total metagenomic DNA pool, where ARGs are typically identified or
predicted based on the “best hits” of sequence searches against existing databases. Unfortunately, this approach produces
a high rate of false negatives. To address such limitations, we propose here a deep learning approach, taking into account
a dissimilarity matrix created using all known categories of ARGs. Two deep learning models, DeepARG-SS and DeepARG-
LS, were constructed for short read sequences and full gene length sequences, respectively.

Results: Evaluation of the deep learning models over 30 antibiotic resistance categories demonstrates that the DeepARG
models can predict ARGs with both high precision (> 0.97) and recall (> 0.90). The models displayed an advantage over
the typical best hit approach, yielding consistently lower false negative rates and thus higher overall recall (> 0.9). As more
data become available for under-represented ARG categories, the DeepARG models’ performance can be expected to be
further enhanced due to the nature of the underlying neural networks. Our newly developed ARG database, DeepARG-DB,
encompasses ARGs predicted with a high degree of confidence and extensive manual inspection, greatly expanding
current ARG repositories.

Conclusions: The deep learning models developed here offer more accurate antimicrobial resistance annotation relative
to current bioinformatics practice. DeepARG does not require strict cutoffs, which enables identification of a much broader
diversity of ARGs. The DeepARG models and database are available as a command line version and as a Web service at
http://bench.cs.vt.edu/deeparg.
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Background
Antibiotic resistance is an urgent and growing global

public health threat. It is estimated that the number of

deaths due to antibiotic resistance will exceed ten

million annually by 2050 and cost approximately 100

trillion USD worldwide [1–3]. Antibiotic resistance

arises when bacteria are able to survive an exposure to

antibiotics that would normally kill them or stop their

growth. This process allows for the emergence of

“superbugs” that are extremely difficult to treat. A few

examples include methicillin-resistant Staphylococcus

aureus (MRSA), which is an extremely drug-resistant

bacterium associated with several infections [4],

multidrug-resistant (MDR) Mycobacterium tuberculosis,

which is resistant to rifampicin, fluoroquinolone, and

isoniazid [5], and colistin-carbapenem-resistant Escheri-

chia coli, which has gained resistance to last-resort drugs

through the acquisition of the mcr-1 and blaNDM-1 anti-

biotic resistance genes (ARGs) [6, 7].

The advent of high throughput DNA sequencing tech-

nology now provides a powerful tool to profile the full

complement of DNA, including ARGs, derived from
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DNA extracts obtained from a wide range of environ-

mental compartments. For example, ARGs have now

been profiled using this kind of metagenomic approach

in livestock manure, compost, wastewater treatment

plants, soil, water, and other affected environments

[8–13], as well as within the human microbiome

[14, 15]. Identification of ARGs from such samples is

presently based on the computational principle of com-

parison of the metagenomic DNA sequences against avail-

able online databases. Such comparison is performed by

aligning raw reads or predicted open reading frames (full

gene length sequences) from assembled contigs to the

database of choice, using programs such as BLAST [16],

Bowtie [17], or DIAMOND [18], and then predicting or

assigning the categories of ARGs present using a sequence

similarity cutoff and sometimes an alignment length

requirement [19–21].

Existing bioinformatics tools focus on detecting known

ARG sequences from within genomic or metagenomic

sequence libraries and thus are biased towards specific

ARGs [22]. For instance, ResFinder [20] and SEAR [23]

predict specifically plasmid-borne ARGs, and Mykrobe

predictor [24] is dedicated to 12 types of antimicrobials,

while PATRIC [21] is limited to identifying ARGs encod-

ing resistance to carbapenem, methicillin, and beta

lactam antibiotics. Most of these tools use existing mi-

crobial resistance databases along with a “best hit”

approach to predict whether a sequence is truly an ARG.

Generally, predictions are restricted to high identity

cutoffs, requiring a best hit with an identity greater than

80% by many programs such as ResFinder [20] and

ARGs-OAP [8, 19, 20]. In some studies, the identity

cutoff is even higher, as high as 90% for determining

structure and diversity of ARGs through several resis-

tomes [8] or analyzing the co-occurrence of environ-

mental ARGs [25].

Although the best hit approach has a low false positive

rate, that is, few non-ARGs are predicted as ARGs [9],

the false negative rate can be very high and a large num-

ber of actual ARGs are predicted as non-ARGs [19, 22].

Figure 1 shows the distribution of manually curated

potential ARGs from the Universal Protein Resource

(UNIPROT) database [26] against the Comprehensive

Antibiotic Resistance Database (CARD) [27] and the

Antibiotic Resistance Genes Database (ARDB) [28]. All

of the gene comparisons indicate significant e-values

< 1e-20 with the sequence identity ranging from 20 to

60% and bit scores > 50, which is considered statisti-

cally significant [29]. Thus, high identity cutoffs

clearly will remove a considerable number of genes

that in reality are ARGs. For example, the entry

O07550 (Yhel), a multidrug ARG conferring resist-

ance to doxorubicin and mitoxantrone, has an iden-

tity of 32.47% with a significant e-value of 6e-77 to

the best hit from the CARD database; the gene

POCOZ1 (VraR), conferring resistance to vancomycin,

has an identity of only 23.93% and an e-value 9e-13

to the best hit from the CARD database. Therefore,

more moderate constraints on sequence similarity

should be considered to avoid an unacceptable rate of

false negatives. On the other hand, for short metage-

nomic sequences/reads (e.g., ~ 25aa or 100 bp), a

stricter identity constraint of ~ 80% is recommended

[20, 29] to avoid a high false positive rate. In

principle, the best hit approach works well for detect-

ing known and highly conserved categories of ARGs

but may fail to detect novel ARGs or those with low

sequence identity to known ARGs [19, 30].

To address the limitation of current best hit method-

ologies, a deep learning approach was used to predict

ARGs, taking into account the similarity distribution of

sequences in the ARG database, instead of only the best

hit. Deep learning has proven to be the most powerful

machine learning approach to date for many applica-

tions, including image processing [31], biomedical

signaling [32], speech recognition [33], and genomic-

related problems, such as the identification of transcrip-

tion factor binding sites in humans [34, 35]. Particularly

in the case of predicting DNA sequence affinities, the

deep learning model surpasses all known binding site

prediction approaches [34]. Here, we develop, train, and

evaluate two deep learning models, DeepARG-SS and

DeepARG-LS, to predict ARGs from short reads and full

gene length sequences, respectively. The resulting data-

base, DeepARG-DB, is manually curated and is popu-

lated with ARGs predicted with a high degree of

confidence, greatly expanding the repertoire of ARGs

Fig. 1 Bit score vs. identity distribution, illustrating the relationship
between the UNIPROT genes against the CARD and ARDB genes in
terms of the percentage identity, bit score, and e-value. Colors depict
the exponent of the e-value (e-values below 1e-200 are represented
by gray dots)
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currently accessible for metagenomic analysis of envir-

onmental datasets. DeepARG-DB can be queried either

online or downloaded freely to benefit a wide commu-

nity of users and to support future development of anti-

biotic resistance-related resources.

Implementation
Database merging

The initial collection of ARGs was obtained from three

major databases: CARD [27], ARDB [28], and UNIPROT

[26]. For UNIPROT, all genes that contained the

Antibiotic Resistance keyword (KW-0046) were re-

trieved, together with their metadata descriptions when

available. All identical or duplicate sequences were re-

moved by clustering all the sequences (ARDB + CARD

+ UNIPROT) with CD-HIT [36], discarding all except

one that had 100% identity and the same length. The

remaining set of sequences comprised a total of 2290

genes from ARDB (50% of the original ARDB genes),

2161 from CARD (49% of the original CARD genes),

and 28,108 from UNIPROT (70% of the original

UNIPROT genes). This indicates a high redundancy of

sequences within and among the ARG databases.

ARG annotation of CARD and ARDB

The ARDB and CARD databases both contain informa-

tion to aid in the classification of ARGs, including the

antibiotic category to which a gene confers resistance

(e.g., macrolides, beta lactamases, or aminoglycosides)

and the antibiotic group to which the gene belongs (e.g.,

tetA, sul1, macB, oxa, mir, or dha). Manual inspection

revealed that some genes have been assigned to specific

sets of antibiotics instead of antibiotic resistance

categories or categories. For instance, carbapenem,

carbenicillin, cefoxitin, ceftazidime, ceftriaxone, and

cephalosporin are actually a subset of the beta

lactamases category. Thus, a total of 102 antibiotics that

were found in the ARDB and CARD databases were

further consolidated into 30 antibiotic categories (see

Additional file 1: Table S1).

UNIPROT gene annotation

Compared to the ARGs in CARD and ARDB, the

UNIPROT genes with antibiotic resistance keywords are

less well curated. Therefore, additional procedures were

applied to further annotate the UNIPROT genes. Specif-

ically, based on the CD-hit [36] clustering results,

clusters that contained only UNIPROT genes were

classified into two categories: 1) those without any anno-

tation were tagged as “unknown” and 2) those with

descriptions were text mined to identify possible associ-

ation with antibiotic resistance.

UNIPROT’s sequence description contains a variety of

features including a description of possible functions of

the protein, the gene name based on HUGO nomencla-

ture [37] for each sequence, and the evidence indicating

whether a sequence has been manually inspected or not.

A text mining approach was used to mine the genes’

descriptive features to identify their antibiotic resistance

associations with the 30 antibiotic categories. The

Levenshtein distance [38] was used to measure the simi-

larities between gene description and antibiotic categor-

ies. This text mining approach was used because the

names of the antibiotic resistance categories are not

standardized among the databases and flexibility is

needed to identify as many antibiotic associations as

possible. For instance, genes linked to beta lactamases

were sometimes tagged as beta-lactam, beta-lactamases,

or beta-lactamase. Thus, text mining using all the alter-

native words allows comprehensive identification of

antibiotic associations for each gene. Using this strategy,

genes from UNIPROT were tagged either to their

antibiotic resistance associations based on their descrip-

tion, or to “unknown” if no link to any antibiotic was

found. Then, manual inspection was performed to

remove misleading associations that passed the similarity

criteria. The final set of genes and their tagged antibiotic

resistance categories are shown in Fig. 2. Altogether,

16,360 UNIPROT genes remained after this refinement

procedure.

The text mining procedure enabled the UNIPROT

genes to become linked to one or more categories of

Fig. 2 Preprocessing and UNIPROT ARGs annotation. Antibiotic resistance genes from CARD, ARDB, and UNIPROT were merged and clustered to
remove duplicates. Then, sequences from UNIPROT are annotated using the matches between the metadata and the names of antibiotic categories
from ARDB and CARD
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antibiotics. However, the text mining procedure is purely

based on gene metadata. Therefore, there was no evi-

dence at the sequence level that the UNIPROT genes

were truly associated with antibiotic resistance. For that

reason, the UNIPROT gene’s annotation was further val-

idated by their sequence identity to the CARD and

ARDB databases. DIAMOND, a program that has simi-

lar performance to BLAST [39], but is much faster [18],

was used for this purpose. For simplicity, UNI-gene is

used here to denote a UNIPROT-derived gene, and

CARD/ARDB-ARG is used to denote a gene derived

from either CARD or ARDB (Fig. 3). According to the

sequence identity, each UNI-gene was classified into the

following categories based on their potential to confer

antibiotic resistance defined as annotation factor:

1. High quality ARGs (High): A UNI-gene is tagged

with a “High” annotation factor if it has ≥ 90%

identity to a CARD/ARDB-ARG over its entire length.

This similarity cutoff has been used in other studies to

identify relevant ARGs [40, 41] and is stricter than that

used in the construction of the ARDB database [28].

2. Homologous ARGs (Mid): A UNI-gene is tagged

with a “Mid” annotation factor if it has ≥ 50 and

≤90% identity and an e-value lower than 1e-10 to a

CARD/ARDB-ARG and also consistent annotation

to the CARD/ARDB-ARG.

3. Potential ARGs (Manual Inspection): A UNI-gene

is tagged with “Manual inspection” if it has < 50%

identity and an e-value lower than 1e-10 to CARD/

ARDB-ARGs and also consistent annotation to

CARD/ARDB-ARGs. This gene is considered a

potential ARG but with insufficient evidence and

therefore warrants further analysis for the veracity

of its antibiotic resistance.

4. Discarded ARGs (Low): A UNI-gene is discarded if its

annotation differs from the best hit CARD/ARDB-

ARG and the e-value is greater than 1e-10. Note that

the gene can potentially still be an ARG, but due to a

lack of sufficient evidence, it is removed from current

consideration to ensure ARG annotation quality.

Altogether, 16,222 genes were tagged in the categories

of “High” and “Mid” annotation factors. After removing

sequences annotated as conferring resistance by single

nucleotide polymorphisms (SNPs), a total of 10,602

UNIPROT, 2203 CARD, and 2128 ARDB genes were

remaining for downstream analysis. In total, the

DeepARG-DB comprises 14,933 genes including the

three databases (CARD, ARDB, and UNIPROT). This

database was used for the construction of the deep

learning models.

Deep learning

Supervised machine learning models are usually divided

into characterization, training, and prediction units. The

characterization unit is responsible for the representa-

tion of DNA sequences as numerical values called

features. It requires a set of DNA descriptors that are

based on global or local sequence properties. Here, the

concept of dissimilarity based classification [42] was

used, where sequences were represented and featured by

their identity distances to known ARGs. The CARD and

ARDB genes were selected to represent known ARGs,

whereas the UNIPROT (High+Mid) genes were used for

training and validation of the models. DeepARG consists

Fig. 3 Validation of UNIPROT annotations. UNIPROT genes were aligned against the CARD and ARDB databases. The alignment with the highest
bit score was selected for each UNI-gene (best hit) and a set of filters were applied to determine the UNI-gene annotation factor (AnnFactor)
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of two models: DeepARG-LS, which was developed to

classify ARGs based on full gene length sequences, and

DeepARG-SS, which was developed to identify and classify

ARGs from short sequence reads (see Fig. 4). The bit score

was used as the similarity indicator, because it takes into

account the extent of identity between sequences and,

unlike the e-value, is independent of the database size [29].

The process for computing the dissimilarity representation

was carried out as follows. The UNIPROT genes were

aligned to the CARD and ARDB databases [27, 28] using

DIAMOND [18] with very permissive constraints: 10,000

maximum number of hits representing the total number

of reported hits to which a UNIPROT gene is aligned, a

20% minimum identity (-id 20), and an e-value smaller

than 1e-10. The bit score was then normalized to the [0, 1]

interval to represent the sequence similarity as a distance.

Hence, scores close to 0 represent small distance or high

similarity, and scores around 1 represent distant align-

ments. Thus, a feature matrix was built where the rows

correspond to the sequence similarity of the UNIPROT

genes to the features (ARDB/CARD genes).

A deep learning model, DeepARG, was subsequently

created to annotate metagenomic sequences to antibiotic

resistance categories. One of the main advantages of deep

learning over other machine learning techniques is its

ability to discriminate relevant features without the need

for human intervention [43–45]. It has been highlighted

for its ability to resolve multiclass classification problems

[34, 46–49]. Here, a deep learning multiclass model was

trained by taking into account the identity distance distri-

bution of a sequence to all known ARGs. This distribution

represents a high level of sequence abstraction propagated

through a fully connected network. The DeepARG model

consists of four dense hidden layers of 2000, 1000, 500,

and 100 units that propagate the bit score distribution to

dense and abstract features. The input layer consists of

4333 units that correspond to the ARGs from ARDB and

CARD. These features are used during training and

evaluation. To avoid overfitting, random hidden units

were removed from the model at different rates using the

dropout technique [50]. Lastly, the output layer of the

deep neural network consists of 30 units that correspond

to the antibiotic resistance categories (see Additional file

1: Table S1). The output layer uses a softMax [51, 52] acti-

vation function that computes the probability of the input

sequence against each ARG category. The probability is

used to define the ARG category to which the input

sequence belongs. The DeepARG architecture is imple-

mented using the Python Lasagne [53] module, a high-

level wrapper for the widely used Theano [54] deep

learning library. Because deep learning demands intensive

computational resources, the training was carried out

using the GPU routines from Theano. However, heavy

computation was required only once to obtain the deep

learning model and the prediction routines do not require

such computational resources.

Two strategies have generally been used to identify

ARGs from metagenomic data; one predicts ARGs dir-

ectly using short reads, while the other uses predicted

open reading frames (i.e., full gene-length sequences)

from assembled contigs to predict ARGs. To allow for

both annotation strategies, two deep learning models,

DeepARG-SS and DeepARG-LS, were developed to

process short reads and full gene length sequences,

Fig. 4 Classification framework. UNIPROT genes were used for validation and training whereas the CARD and ARDB databases were used as features. The
distance between genes from UNIPROT to ARGs databases is computed using the sequence alignment bit score. Alignments are done using DIAMOND
with permissive cutoffs allowing a high number of hits for each UNIPROT gene. This distribution is used to train and validate the deep learning
models (The panel in the figure provides additional description on the training of the models)
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respectively. The DeepARG-SS model was designed

specially to classify short reads generated by NGS

technologies such as Illumina. Therefore, ARGs are split

into small sequences to simulate short sequence reads

(see Fig. 4b). DeepARG-LS was trained using complete

ARG sequences and can be used to annotate novel ARG

genes (see Fig. 4a), for instance, in open reading frames

detected in assembled contigs from the MetaHit consor-

tium [55]. Note that each model was trained and

validated separately to ensure high performance.

Results and discussion
To evaluate the performance of the DeepARG models

(DeepARG-SS and DeepARG-LS), five different experi-

ments were conducted and compared to the best hit

approach. The prediction quality was evaluated by preci-

sion, recall, and F1-score metrics defined as,

Precision ¼
TP

TP þ FP
;

Recall ¼
TP

TP þ FN
;

F1 score ¼ 2 �
precision � recall

precisionþ recall
;

where TP represents true positives (i.e., an ARG from

the category of interest is predicted correctly as that

ARG category), FP false positives (an ARG from a differ-

ent category is predicted as from the category of inter-

est), and FN false negatives (an ARG from the category

of interest is predicted as a different ARG category).

Note because the first step of the DeepARG pipeline

consists of the sequence alignment using DIAMOND,

nonARGs (short reads or full length genes) are filtered out

and not considered for further prediction. Therefore, the

alignment stage only passes ARG-like sequences that have

e-value < 1e-10 and identity > 20% to DeepARG for pre-

diction. Thus, the performance reflects the capability of

the DeepARG models in differentiating the 30 antibiotic

resistance categories (see Additional file 1: Table S1).

Antibiotic resistance database

After the databases were merged and duplicates were re-

moved, a total of 2161, 2290, and 28,108 genes were col-

lected from the ARDB (50% of full ARDB), CARD (49%

of all CARD genes), and UNIPROT (70% of total ARG-

like sequences from UNIPROT) databases, respectively.

For UNIPROT genes, a total of 16,360 genes were anno-

tated using the available gene description. Following

validation through sequence similarity and removing

genes conferring resistance due to SNPs, 10,602

UNIPROT, 2203 CARD, and 2128 ARDB ARG

sequences, remained. The resulting database, DeepARG-

DB, comprises 30 antibiotic categories, 2149 groups, and

14,933 reference sequences (CARD+ARDB+UNIPROT).

Over 34% of the genes belong to the beta lactamase cat-

egory (5136), followed by 28% to the bacitracin category

(4205), 7.4% to the macrolide-lincosamide-streptogramin

(MLS) category (1109), 6.1% to the aminoglycoside

category (915), 5.8% to the polymixin category (879),

and 5.8% to the multidrug category (877, see Fig. 5a).

The categories where the UNIPROT database made the

greatest contribution correspond to beta-lactam, bacitra-

cin, MLS, and polymyxin. However, not all ARG cat-

egories were found in the UNIPROT database, such as

elfamycin, fusidic acid, and puromycin, among others

(see Fig. 5b for details). One of the limitations of

DeepARG-DB is its dependency on the quality of the

CARD and ARDB databases. Thus, to avoid the propa-

gation of errors from the CARD and ARDB, gene

categories and groups were manually inspected and cor-

rected, in particular, those annotations that differed

between the ARDB and CARD databases. Because

UNIPROT and CARD are continuously updated, the

DeepARG-DB will likewise be updated and versioned ac-

cordingly as the trained deep learning models.

Prediction of short sequence reads

To simulate a typical metagenomic library, UNIPROT

genes were split into 100 nucleotide long sequences,

with a total of 321,008 reads generated. The DeepARG-

SS model was subsequently trained and tested in a man-

ner in which 70% of the reads were randomly selected

for training, while the remaining 30% were reserved for

validation. An overall precision of 0.97 and a recall of

0.91 were achieved among the 30 antibiotic categories

tested (see Fig. 6a). In comparison, the best hit approach

achieved an overall 0.96 precision and 0.51 recall.

Achieving high precision for the best hit approach is not

surprising, as the method relies on high identity con-

straints and has been reported to predict a low number

of false positives, but a high number of false negatives

[19]. We observed that both methods yielded high preci-

sion for most of the categories (see Fig. 6b). However,

both methods performed poorly for the triclosan cat-

egory, likely because the category was only represented

by four genes in the database.

The DeepARG-SS model performed particularly well for

antibiotic resistance categories that were well-populated,

such as beta lactamases, bacitracin, and MLS, but not as

well for categories represented by a small number of

ARGs, such as triclosan and aminocoumarin. This result

is expected due to the nature of neural network models.

As more data becomes available to train the models, the

better their ultimate performance. In contrast, the best hit

approach yielded perfect prediction for some ARG
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categories containing a limited number of ARGs, but not

for categories with a large number of ARGs (see Fig. 6b

and Additional file 2: Table S2 for details).

For the multidrug antibiotic resistance category, the

DeepARG-SS model had an almost perfect recall (0.99),

implying that only a small number of multidrug reads

were classified to other categories. However, the

DeepARG-SS model also had the highest false positive

rate compared to other categories (precision 0.27),

implying that many non-multidrug reads were annotated

as multidrug sequences. On the other hand, the best hit

approach showed a higher precision (0.44), but a much

lower recall (0.44). The multidrug category contains

genes that confer resistance to multiple antibiotic

categories such as macrolides, beta-lactamases, glyco-

peptides, quinolones, as well as other antimicrobials

such as metals [56, 57]. These genes often share similar

sequences, which makes it challenging for computational

methods to determine the true identity of a short read.

Therefore, when reads yield a best prediction probability

less than 0.9, DeepARG reports the top two ARG

categories for manual inspection. The low precision seen

in both methods suggests that other non-multidrug

categories may contain genes that have high sequence

similarity to the multidrug category. This illustrates

that there is still much room for improvement in

existing databases.

Contrary to the multidrug category, the “unknown”

antibiotic resistance category has a high precision of

0.87, but a low recall of 0.42, indicating a high false

negative rate. Thus, reads from the unknown antibiotic

resistance category can be mistakenly assigned/predicted

as other antibiotic resistance categories. This highlights

the need to check whether the unknown category actu-

ally contains genes from other ARG categories such as

beta-lactam, macrolides, triclosan, among others.

Comparatively, the best hit approach has the worst

performance for the “unknown” antibiotic category (see

Fig. 6b and Additional file 2: Table S2). In general, the

DeepARG-SS model demonstrated significant improve-

ment in the false negative rate compared to the best hit

approach for nearly all ARG categories.

Prediction of long ARG-like sequences

The DeepARG-LS model was trained and tested using

full gene-length sequences. The UNIPROT validated

genes were split into a training set (70% of the data) and

a validation set (30% of the data) with the CARD and

Fig. 5 a Distribution of the number of sequences in the 30 antibiotic categories in DeepARG-DB. b The relative contribution of ARG categories in
the ARDB, CARD, and UNIPROT databases
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ARDB databases were used as features. The DeepARG-

LS model shows similar results, with an overall precision

of 0.99 and recall of 0.99 for predicting different categor-

ies of ARGs. Better performance in DeepARG-LS than

DeepARG-SS is expected, because longer sequences

contain more information than short reads (Fig. 6).

Particularly DeepARG-LS achieved a high precision

(0.97 ± 0.03) and an almost perfect recall (0.99 ± 0.01)

for the antibiotic categories that were highly represented

in the database, such as bacitracin, beta lactamase,

chloramphenicol, and aminoglycoside (See Fig. 6b and

Additional file 3: Table S3 for details). Comparatively,

the best hit approach achieved a perfect precision (1.00

± 0.00) but a much lower recall (0.48 ± 0.2) for these

categories. Similar to DeepARG-SS, DeepARG-LS did not

perform well for categories with few genes, such as sul-

fonamide and mupirocin (See Additional file 3: Table S3

for details).

Fig. 6 a Performance comparison of the DeepARG models with the best hit approach using precision, recall, and F1-score as metrics for the training
and testing datasets. The MEGARes bars corresponds to the performance of DeepARG-LS using the genes from the MEGARes database. b Precision
and recall of DeepARG models against the best hit approach for each individual category in the testing dataset. *UNIPROT genes are used for testing
and not all the ARG categories have genes from the UNIPROT database
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Performance prediction of known and validated ARGs

To further evaluate and validate performance, the

DeepARG-LS model was applied to all of the ARG

sequences in the MEGARes database [58]. This database

contains manually curated ARGs from CARD [27],

ARG-ANNOT [59], and RESFINDER [60]. ARGs confer-

ring resistance by mechanisms that result from SNPs are

removed in this test. Comparison of the DeepARG-LS

prediction with the database annotation yielded an over-

all precision and recall of 0.94 and 0.93, respectively

(Fig. 6 and Additional file 4: Table S4). The DeepARG-

LS model achieved an almost perfect precision of 0.99 ±

0.05 and recall of 0.96 ± 0.03 for categories with a large

number of genes, such as beta lactamases, elfamycin,

fosfomycin, glycopeptides, MLS, and sulfonamide. How-

ever, the model performed poorly for categories that had

a small number of genes (see Additional file 4: Table S4).

For instance, MEGARes has a Tunicamycin gene that

was assigned by the DeepARG-LS model as quinolone

with a probability of 0.6. Such a low probability 0.6 sug-

gests that the gene has more than one annotation. When

the complete annotation for this gene was manually

inspected, it was found that the DeepARG-LS model

predicted the correct label (Tunicamycin) with a 0.3

probability, indicating that for this particular category

more gene sequences are required to train the model.

The DeepARG-DB database has only three Tunicamycin

genes, which may explain why this gene was not prop-

erly classified. However, it is worth noting that the thios-

trepton category was predicted correctly despite its

lower number of training genes. The multidrug category

is one of the most difficult categories to predict, contain-

ing about 200 genes. For the multidrug category, the

DeepARG-LS model yielded a 0.7 precision with a 0.6

recall. This result suggests the need to manually inspect

the genes tagged as multidrug as well as the genes from

other categories that were assigned to the multidrug cat-

egory. Challenges annotating genes belonging to the

multidrug category further highlights the broader need

to review, compare, and seek consensus among different

antibiotic resistance databases.

Validation through Novel ARGs

To test the ability of the DeepARG-LS model to predict

novel ARGs, a set of 76 metallo beta lactamase genes

were obtained from an independent study by Berglund

et al. [61]. These novel genes have been experimentally

validated via a functional metagenomics approach to

confer resistance to carbapenem in E. coli. In the study,

a large scale analysis was carried out by screening thou-

sands of metagenomes and bacterial genomes to a cu-

rated set of beta lactamases. Using a hidden Markov

model trained and optimized over a set of beta lacta-

mases, 76 beta lactamase candidate novel genes were

collected. Experimental validation was performed and 18

out of the 21 tested genes were able to hydrolase imipe-

nem. Therefore, these 76 beta lactamase genes are

expected to be mostly true ARGs and provide a unique

opportunity to further test and validate the DeepARG-

LS model. Interestingly, out of the 76 novel ARGs, the

DeepARG-LS model was able to predict 65 (85% accur-

acy assuming all 76 are real ARGs) as the correct

antibiotic category of beta lactamase with a probability

greater than 0.99. The remaining nine genes were also

predicted correctly by the DeepARG-LS model, but were

filtered out because of their low alignment coverage (i.e.,

< 50%; alignment-length/ARG-length). Important to note

is that the DeepARG-LS model was trained across 30

antibiotic categories and was not optimized to detect

any one particular antibiotic category. Therefore, this

result strongly demonstrates the capability of the

DeepARG-LS model to detect novel ARGs. Of course,

one possibility for the high accuracy of the DeepARG

prediction is that these 76 genes and/or their closely

related genes were included in training the DeepARG-

LS model. To examine this possibility, the 76 beta lacta-

mase genes were compared against all the sequences in

DeepARG-DB using DIAMOND [18] and the best hit

for each gene was extracted. Figure 7b shows that

surprisingly, all of the best hits identified in DeepARG-

DB had less than 40% sequence similarity to the 76 beta

lactamases, indicating that the high accuracy of the

DeepARG prediction is not due to inclusion of these

genes and/or their close related genes in training the

DeepARG-LS model. In fact, Fig. 7b shows the pairwise

identity distribution of the beta lactamase genes used in

training. Most of the beta lactamase genes are very simi-

lar to each other with pairwise identities greater than

90% and only a small number of them having low pair-

wise identity values. Taken together, these analyses show

that using a diverse set of beta lactamase genes for train-

ing, the DeepARG-LS model, was able to learn the

specificities of distantly related genes and consequently

detect them. Thus, the DeepARG-LS model shows

promise for the identification of novel ARGs. In

contrast, the common practice of using the best hit

approach with a universal 50% (or higher) identity cutoff

[62] will fail to detect all these novel ARGs. Note that

the length requirement imposed by DeepARG can be

relaxed and adjusted depending on the specific research

question. For example, if identifying as many potential

novel ARGs as possible is the main focus, one can use a

more relaxed length constraint than DeepARG’s default.

Validation through an in Silico spike-in experiment

For metagenomic data sets derived from real-world sam-

ples, ARG reads may account for only a small fraction of

the total reads. Thus, it is important to examine how the
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DeepARG-SS model performs in situations where non-

target genes are dominant. In order to measure the abil-

ity of the DeepARG-SS model to discriminate/identify a

small number of ARG reads among a large majority of

nonARG reads, a negative metagenomic dataset was

constructed that mimics a spike-in metagenomic experi-

ment. First, a set of 6,485,966 reads of 100 bps were

extracted from several eukaryote genomes (Homo

sapiens, Muss muscle, and Acanthisitta cholirs) to gener-

ate the majority of nonARG reads (since eukaryote

genomes are expected to have few ARG-like sequences).

Second, a positive set of ARG reads was built by screen-

ing known ARGs against the bacterial genomes from the

PATRIC database [63]. Only regions with an identity

between 70 to 90% over the entire gene with an e-value

below 1e-10 were used, and 10,000 short reads of

100 bps were extracted randomly from these regions to

form the small set of ARG reads.

Figure 8 shows the prediction result of DeepARG-SS

for the 10,000 non-dominant ARG reads. Only one

nonARG read was predicted to be a ARG read with an

identity of 78%, while the remaining nonARG reads were

discarded during the sequence alignment step due to

failure to meet the requirement for a minimum of 20%

sequence identity to at least one of the 4333 feature

ARGs imposed by DeepARG. Thus, even though the

dataset contains largely nonARG reads, the DeepARG-

SS model was able to identify and predict the small

Fig. 7 a Identity distribution of 76 novel beta lactamase genes against the DeepARG database (DeepARG-DB). Each dot corresponds to the best
hit of each novel gene where color indicates the E-value (<1e-10) and size depicts the alignment coverage (> 40%). b Pairwise identity distribution of
the beta lactamase genes in the DeepARG database

Fig. 8 Prediction result using the DeepARG-SS model to classify ARGs for the spike-in dataset. Results for nonARG reads (eukaryotic reads) are not
shown because DeepARG-SS was able to remove them during the alignment step using DIAMOND
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number of ARG reads with high sensitivity. For example,

using the default prediction probability cutoff of 0.8, the

number of true positives (the ARG reads that were pre-

dicted to the correct antibiotic categories) is 9976, while

the number of false negatives (the ARG reads that were

predicted to the wrong antibiotic categories) was 24,

yielding a 0.99 (9976/10000) sensitivity. These results

show that, first, the alignment step in DeepARG acts as

a filter that can effectively remove nonARG sequences,

and second, despite the weak signal, DeepARG-SS pre-

dicts ARG reads correctly and with high sensitivity. Note

that despite the ARG-like regions having 70–90% se-

quence identities to the known ARGs, the extracted

reads have a much wider range of sequence identity of

50–100% to the ARGs due to different degrees of se-

quence conservation and diversity along the entire

sequences of the ARGs (Fig. 8).

In practice, the annotation of short reads is often per-

formed with the best hit approach. For this strategy, an

identity cutoff between 80–90% to known ARGs is

widely accepted as it has a low false positive rate [62].

When using the 80% cutoff, the best hit method yielded

4486 false negatives and 5514 true positives, thus a

much lower sensitivity (0.55) than DeepARG. As ex-

pected, the best hit approach with these cutoffs can lead

to underestimation or even erroneous inference of ARG

contents in metagenomic datasets. Comparatively, the

DeepARG-SS model aims to identify as many true posi-

tives as possible and, at the same time, to minimize the

number of false negatives. To achieve this, the

DeepARG-SS model examines the distribution of all the

hits instead of relying on the best hit solely. As a result,

the DeepARG-SS model was able to identify the correct

antibiotic category and more importantly, to minimize

the misclassification errors by providing a classification

probability for each prediction. Our empirical analysis

showed that this likelihood is an important metric to

consider when one uses DeepARG for prediction. For

instance, most of the classifications that have low predic-

tion probabilities (< 0.5) are wrong and correspond to

reads commonly found in different ARG categories,

whereas only two erroneous predictions were observed

for classification with high probabilities (> 0.8).

Therefore, a probability cutoff of 0.8 is recommended

when performing the classification. In addition, the

DeepARG probability is independent of the sequence

identity, which means that even with low sequence

identities, the likelihood of obtaining the correct classifi-

cation can still be high.

Still, it is important to clarify that despite the low false

negative and false positive rate of this evaluation, the

performance of the DeepARG models is dependent on

the quality of the training database. As illustrated in

Fig. 8, there are four incorrect classifications that have >

0.75 probability. These errors are likely generated by

erroneous labels in the database. Hence, continued

curation and/or validation of ARGs is crucial for

improving the accuracy of ARGs predictions.

Also observed were several incorrect classifications

with prediction probability < 0.5. The low probability for

these reads suggests that they are predicted to multiple

antibiotic categories. As a result, the probability is

shared among different antibiotic categories. To avoid

such errors, DeepARG uses a 0.8 minimum probability

cutoff (as default) that can be modified by users.

DeepARG also enables the adjustment of the identity

cutoff used during the alignment stage. These parame-

ters allow users to produce more or less stringent classi-

fication according to their needs.

Validation through PseudoARGs

To further examine the ability of DeepARG to discrim-

inate genes that may contain segments of ARGs but are

not true ARGs (i.e., pseudoARGs), a set of pseudoARGs

were created. These genes were constructed by ran-

domly picking k-mers from different ARG categories as

follows: To build one gene, five k-mers of 50 amino

acids long were randomly selected from one specific

ARG category. Then, two 50-mers were randomly se-

lected from ten more ARG categories. Finally, this

process was repeated to build 300 genes with partial

ARG content. This false positive dataset mimics the

cases where genes from different categories share simi-

larities within their sequences, e.g., the same domains or

motifs. The pseudoARG dataset was then classified using

the DeepARG-LS model and the best hit approach. As

expected, the best hit approach was not able to filter out

the false positive ARGs and produced a high false posi-

tive rate of 57% with the identity cutoff of 50% (Fig. 9),

while using lower cutoffs would increase the number of

false positives even more. In contrast, using the default

classification probability cutoff of 0.8, the DeepARG-LS

model was able to filter out 285 of the 300 pseudoARGs

(5% false positive rate). This shows the superiority of the

DeepARG-LS model in distinguishing pseudoARGs over

the best hit approach, further supporting that the

DeepARG model learns the uniqueness of the ARG cat-

egories through taking into account the similarities of

the target sequence to all the ARG categories.

Limitation of DeepARG and usage recommendation

The two DeepARG models, DeepARG-LS and

DeepARG-SS, are tailored to different ARG prediction

strategies. For example, it is now a common practice for

researchers to collect different environmental samples,

sequence the DNA to obtain metagenomic data, and use

the data to address the question “what kinds of ARGs

are present in the samples?”. In this case, with the
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metagenomic data, one can simply predict which ARG

categories the reads belong to by applying the

DeepARG-SS model directly to the reads, similar to

what was done for the in silico spike-in metagenomic

experiment. This task can be done rapidly as experi-

ments demonstrated that predicting 100 million short

reads required only 50 min on a personal MacBook pro

with i7 processor and 16Gb of ram. As pointed out pre-

viously, training the DeepARG model is very time

consuming, but is only done once. Alternatively, one can

first assemble the short reads into contigs, obtain open

reading frames (ORFs) using an ORF identification/pre-

diction program for the contigs, and then run the

DeepARG-LS model on the ORFs to predict ARG

categories. Comparatively, the latter strategy can be

much slower as it involves sequence assembly, but the

prediction might be more accurate than direct predic-

tion on reads. This is expected as the longer the se-

quences are, the more information contained, and

therefore the more confidence one has for ARG predic-

tion. This is also clear from the results where the

DeepARG-LS model performed better than the

DeepARG-SS model (Fig. 6). In cases where full gene

length sequences are readily obtainable such as the 76

novel beta lactamase genes, DeepARG-LS can be

deployed to predict the corresponding ARG categories.

Several points are worthy of discussion. First, the

DeepARG models were trained across 30 ARG categor-

ies and are intended to predict which of these categories

a gene or short read belongs to. It is not intended and

cannot be used to predict antibiotic resistance that arises

from SNPs. Second, the DeepARG models can only

predict whether a gene or read belongs to one of the 30

categories that are considered by the model. If the gene

or read belongs to an entirely new ARG category,

DeepARG will not be able to predict it. In such a case, it

is worth noting that prediction probabilities for the 30

categories are expectedly low and one should treat the

predictions with caution and may discard the prediction

if a high-quality set of ARG prediction is desired. Third,

the performance of the DeepARG models hinges on the

quality of the training database; i.e., the higher quality

the training data, the higher prediction accuracy the

model. Detailed analyses of the prediction results suggest

that some of the ARG categories may have annotation

errors, especially the multidrug and “unknown” categor-

ies, which in turn adversely affects the prediction of the

models. This highlights the importance of continued and

synergistic effort from the research community in curat-

ing and improving ARG nomenclature and annotation

databases. Fourth, as with all in silico prediction, the

DeepARG models can be used to get an overview or

inference of the kinds of antibiotic resistance in a collec-

tion of sequences; strictly speaking, downstream experi-

mental validation is required to confirm whether the

sequences truly confer resistance.

Conclusions
Here, a new computational resource for the identifica-

tion and annotation of ARGs derived from metagenomic

data is developed, trained, and evaluated. The deep

learning approach proved to be more accurate than the

Fig. 9 Distribution of DeepARG classification probability and the best hit identity. Each point indicates the alignment of each “partial” negative ARG
against the DeepARG database. The horizontal line indicates the default setting for DeepARG predictions, i.e., the predictions with a probability higher
than 0.8 are considered by DeepARG as high-quality classifications
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widely used best hit approach and is not restricted to

strict cutoffs, thus greatly reducing false negatives and

offering a powerful approach for metagenomic profiling

of ARGs in environmental compartments. Further, the

DeepARG database developed here greatly expands the

available ARGs individually available in the currently

most widely used CARD, ARDB, and UNIPROT data-

bases, including their existing sequence content and

extensive metadata. DeepARG provides a publicly-

available database structured into a simple category and

group hierarchy for each ARG. While DeepARG is not

intended to replace CARD or ARDB, in conjunction

with deep learning, it aims to improve the ARG annota-

tion by drastically reducing the false negative rate, while

maintaining a similarly high true positive rate associated

with the traditional best hit approach. The performance

of DeepARG highly depends on the quality of the training

database. Therefore, the inclusion of new entries based on

the alignment’s similarity could integrate genes that have

not been validated to produce antibiotic resistance in vivo.

However, this in silico gene’s integration is useful to ex-

pand the diversity of ARGs, as it is shown by the analysis

of novel ARGs where distant genes have been predicted to

the correct antibiotic resistance category.

Availability and requirements
DeepARG consists of a command line program where

the input can be either a FASTA file or a BLAST tabular

file. If the input is a FASTA sequence file, DeepARG will

perform the sequence search first and then annotate

ARGs. If the input is already a BLAST tabular file, Dee-

pARG will annotate ARGs directly. An online version of

DeepARG is also available where a user can upload a

metagenomics raw sequence files (FASTQ format) for

ARG annotation (http://bench.cs.vt.edu/deeparg). Once

the data is processed, the user receives an email with re-

sults of annotated ARGs with the absolute abundance of

the ARGs and the relative abundance of ARGs normal-

ized to the 16S rRNA content in the sample as used in

[19, 64]. This normalization is useful to compare the

ARG content from different samples. The web service

also allows users to modify the parameters (identity,

probability, coverage, and E-value) of the DeepARG ana-

lysis. With the command line version, the user also has

access to more elaborated results such as the probabil-

ities of each read/gene belonging to the specific anti-

biotic resistance categories. In addition to prediction of

antibiotic categories and the associated probabilities, the

DeepARG model reports the entries with multiple classi-

fications. In detail, if a read or complete gene sequence

is classified to an antibiotic category with a probability

below 0.9, the top two classifications will be provided.

This would help researchers identify reads/sequences

with less confident predictions, and it is recommended

that the detailed output be examined together with do-

main knowledge to determine the more likely ARG cat-

egory. The DeepARG-DB is freely available under the

DeepARG Web site (http://bench.cs.vt.edu/deeparg) as a

protein FASTA file and it is included into the git reposi-

tory. Each entry in the database has a complete descrip-

tion that includes the gene identifier, the database where

the gene is coming from, the antibiotic category, and the

antibiotic group. For users interested on a particular set

of genes, DeepARG also provides the steps to create a

new deep learning model using the architecture of Dee-

pARG. This architecture is not restricted to ARGs and

can be used to train any set of genes.
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