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ABSTRACT Hand gesture recognition has attracted the attention of many researchers due to its wide

applications in robotics, games, virtual reality, sign language and human-computer interaction. Sign language

is a structured form of hand gestures and the most effective communication way among hear-impaired

people. Developing an efficient sign language recognition system to recognize dynamic isolated gestures

encounters threemajor challenges, namely, hand segmentation, hand shape feature representation and gesture

sequence recognition. Traditional sign language recognition methods utilize color-based hand segmentation

algorithms to segment hands, hand-crafted feature extraction for hand shape representation and Hidden

Markov Model (HMM) for sequence recognition. In this paper, a novel framework is proposed for signer-

independent sign language recognition using multiple deep learning architectures comprising hand semantic

segmentation, hand shape feature representation and deep recurrent neural network. The recently developed

semantic segmentation method called DeepLabv3+ is trained using a set of pixel-labeled hand images to

extract hand regions from each frame of the input video. Then, the extracted hand regions are cropped and

scaled to a fixed size to alleviate hand scale variations. Extracting hand shape features is achieved using

a single layer Convolutional Self-Organizing Map (CSOM) instead of relying on transfer learning of pre-

trained deep convolutional neural networks. The sequence of extracted feature vectors are then recognized

using deep Bi-directional Long Short-TermMemory (BiLSTM) recurrent neural network. BiLSTM network

contains three BiLSTM layers, one fully connected and softmax layers. The performance of the proposed

method is evaluated using a challenging Arabic sign language database containing 23 isolated words

captured from three different users. Experimental results show that the performance of proposed framework

outperforms with large margin the state-of-the-art methods for signer-independent testing strategy.

INDEX TERMS Arabic sign language recognition, deep learning, hand semantic segmentation, convolu-

tional self-organizing map, signer-independent, deep BiLSTM network.

I. INTRODUCTION

Hand gestures are commonly used among people to con-

vey their thoughts and feelings [1]. Hearing-impaired per-

sons always relied on sign language to communicate among

each others. However, most of the normal people are not

aware of such language and face difficulties to communicate

with deaf. Therefore, developing an automatic sign language

recognition system helps to facilitate this communication and

The associate editor coordinating the review of this manuscript and

approving it for publication was Huazhu Fu .

decrease the gap. The structured style of hand gestures in

sign language helps to facilitate non-verbal communication

among deaf and hearing-impaired people. Sign languages

involve many vocabularies/words and has complex structure

similar to oral languages.

Gestures of sign language are usually expressed by the

combination of hand shapes, position, orientation, move-

ments and facial expressions [2]. Sign language recogni-

tion problem can be divided into two categories, namely,

static gesture recognition which focus on fingerspelling, and

dynamic recognition which related to isolated words and
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continuous sentence recognition. Many continuous sign lan-

guage recognition systems utilize an extended version of iso-

lated words framework to recognize the whole sentence [3].

Practically, signer-independent dynamic sign language

recognition systems encounter three challenges: (1) hand

segmentation/detection, (2) hand shape feature representa-

tion, and (3) sequence classification. Most existing meth-

ods assume that hands are segmented or even ignore the

hand segmentation step. The first challenge comes from the

difficulties of detecting hand regions since hands are very

articulated object and their shape and appearance changes

dramatically from person to person and with hand motions.

In addition, hand segmentation is an essential step to find

the gesture region-of-interest and to build an efficient signer-

independent sign language recognition system [4]. Devel-

oping an efficient hand segmentation algorithm not only

improve the performance of the system but also make it run

naturally without any need for special gloves. Existing hand

segmentation algorithms are based on the modeling and clas-

sification of skin color. Skin color-based hand segmentation

is the dominant technique before the widespread of deep

convolutional neural networks. Hand detection problem can

be precisely solved using dense prediction of every pixel that

belongs to a hand (i.e., binary segmentation). Semantic hand

segmentation is different from hand detection as it assigns

one label to each pixel of the hand region [5]. This paper

tackles hand segmentation using a new developed seman-

tic segmentation deep convolutional neural network called

DeepLab [6]. DeepLabv3+ [7] which is a recent variant of

DeepLab network showed an extraordinary success in many

object segmentation problems. The main characteristics of

this networkwhichmake it appropriate for hand segmentation

is its use of atrous spatial pyramid pooling module to encode

multi-scale contextual information and its encoder-decoder

structure which capture sharp hand boundaries by gradual

recovery of spatial information. To the best of our knowledge

this is the first work which exploits DeepLabv3+ [7] as a

hand segmenter in sign language recognition problem.

It is obvious that, each sign composes of a set of frames

expressing the hand shape primitives of the sign. However,

similar framesmay be appeared in different signswhich cause

the second challenge in building automatic sign recognition

system. This challenge resulted from the ambiguity caused by

giving same label for all frames in the same sign which will

cause confusion in the supervised learning algorithm. There-

fore, using a separate unsupervised feature learning module

overcomes this problem by representing hand appearance

features in each frame before performing sequence classifi-

cation. The third challenge related to the existing temporal

variations among signer caused by various performing styles

of signs which results in different number of frames. Besides,

the variations in the length of each gesture leads to mis-

alignment problem. The recent development in recurrent neu-

ral network especially Long Short-Term Memory (LSTM)

model can be used for hand gesture sequence modeling.

LSTM not only able to absorb the temporal variations in

the gestures but also can learn the dependency between sign

primitives which further improve sign classification.

Recently, various deep convolutional neural networks

are developed to tackle sign language recognition

problem [8]–[12]. Although end-to-end supervised deep

learning architectures exhibit great success in dynamic sign

language recognition, it requires large amount of labeled

training data to jointly learn features and classifier. It is

known that separating feature extraction step from classifi-

cation can mitigate this problem. In this paper, we propose

an Arabic sign language recognition framework using a

combination of three different deep learning architectures.

Since hand is considered as the main region-of-interest

which is essentially used to perform all signs, the goal of

the first module is to segment hands in all frames of the

input video. Hand semantic segmentation helps to focus on

every pixel of the hands and eliminate background pixels

which decrease the inter-class variations among signers. Each

pixel of the hand is segmented using DeepLabv3+ semantic

segmentation model [7]. A set of images contained labeled

hand pixels is used to train the model based on Resnet-50

convolutional neural network. The trained model is utilized

as a hand segmenter for all images in the video sequences.

Then, hand regions are cropped and scaled to a fixed size

to alleviate scale variations. A single layer convolutional

SOM is trained for hand shape feature extraction [13].

Finally, the sequence of feature vectors extracted from the

input video is classified using deep bi-directional long short-

term network. The recurrent classification network consists

of three Bi-directional LSTM layers followed by single

fully connected and soft-max layers. The network is trained

using adaptive moment gradient descent algorithm to rec-

ognize all gestures. The contributions in this paper are as

follows:

1) A new framework is developed for signer-independent

isolated Arabic sign language gesture recognition

based on the combination of semantic segmentation

network, convolutional SOM and deep Bi-directional

LSTM network.

2) A hand segmentation module is proposed using

DeepLabv3+ semantic segmentation network.

3) An unsupervised single layer convolutional SOM

model is presented for efficient hand shape

representation.

4) A new deep classification network containing three

Bi-directional LSTM layers followed by single fully

connected and softmax layers is utilized for gesture

sequence classification.

5) The proposed framework is evaluated using real Ara-

bic sign language database for signer independent

scenario.

The rest of the paper is organized as follows: Section II

reviews the works related to sign language recognition,

Section III explains the details of proposed framework pro-

cessing modules. Section IV reports the experimental results.

Finally, Section V draws the conclusion.
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II. RELATED WORKS

Sign language is an effective and natural way to commu-

nicate between hearing-impaired/mute people [1]. With the

rapid increase in the multimedia communication systems,

sign language became an interesting topic for the researchers

to enhance the social communication between deaf people.

Sign language recognition systems almost relied on either

sensor or vision-based approaches. In vision-based, either

depth or RGB cameras are used to capture depth or color

images/videos, respectively [14]. Various machine learning

algorithms are developed to process and classify the video

data. While in the sensor based approach, different types of

sensors are embedded in an especially designed electrome-

chanical gloves to capture the data [15].

Plenty of research works have developed to solve various

sign language recognition tasks for different languages [14],

[16]–[18]. The Chinese sign language recognition systems

was reviewed in [17]. Xiao et al. [19] utilized dual Long

Short-Term Memory (LSTM) and a Couple Hidden Markov

Model (CHMM) to fuse hand and skeleton sequence informa-

tion. Hand segmentation is achieved using power rate trans-

forms and fusion of RGB-D image. In [14], American sign

language alphabet recognition was developed by extracting

features from depth images using PCANet. Joy et al. [20]

developed a quiz-based tool to learn finger spelled signs for

Indian sign language. Arabic language recognition became a

hot topic nowadays [21]. Several isolated Arabic sign gesture

recognition has developed using various feature extraction

and classification methods such as: accumulated differ-

ence images with DCT [22], Local Binary Patterns (LBP)

with Hidden Markov Models (HMM) [23] and spatiotem-

poral LBP with Support Vector Machine (SVM) [24].

In [25], a hybrid Gaussian skin model and a region-growing

technique were developed to segment the face and hands

then HMM was proposed to recognize isolated Arabic

signs. Al-Rousan et al. [26] proposed a recognition system

of 30 isolated Arabic words using Discrete Cosine Trans-

form (DCT) and Hidden Markov Models (HMMs). Their

experiments was conducted in different modes including

online, offline, signer-dependent, and signer-independent.

Isolated sign language gesture recognition systems usu-

ally involves three main steps, hand segmentation, feature

extraction and sequence classification. These systems relied

on different methods for hand segmentation to extract hand

regions from each frame of the input video. Dahmani and

Larabi [27] developed a neural network that exploit skin

color and texture attributes to segment hand from complex

backgrounds. In [22], hand segmentation was achieved with

the help of color gloves to localize both hands of the signer.

Then, zonal coding selection of DCT coefficients was used to

extract the feature and finally polynomial classifier was used

to classify the isolated Arabic signs.

The superiority of various deep learning architectures in

solving many complex computer vision problems make them

predominant. Recently, many researchers have employed dif-

ferent deep neural networks for static and dynamic sign

language recognition problems [4], [8]–[12], [28]–[30].

Molchanov et al. [31] utilized a recurrent 3D convolutional

neural network for simultaneous detection and classification

of dynamic hand gestures from multimodal data captured

by depth, color and stero-IR sensors. They trained 3D-CNN

to extract local spatial and temporal features from short

clips, then features are fed into a recurrent network which

aggregates transitions across clips. The hidden state of the

current clip is input into a softmax layer to estimate class-

conditional probabilities using connectionist temporal classi-

fication as a cost function. Liao et al. [32] developed a deep

3-dimensional residual ConvNet and bi-directional LSTM

networks for dynamic sign language recognition. Hand object

was localized in the video frames using faster R-CNN, then

a 3D ResNet jointly extracts spatial and temporal features

from the input image sequences which classified using bi-

directional LSTM. Jie et al. [33] proposed a Hierarchical

Attention Network with Latent Space (LS-HAN) framework

for continuous sign recognition. Their method aimed to

eliminate temporal segmentation of words. LS-HAN con-

tains three components, namely, two-stream Convolutional

Neural Network (CNN) for video feature representation, a

Latent Space (LS) to bridge semantic gap, and a Hierarchical

Attention Network (HAN) for recognition. Huang et al. [34]

presented an attention-based 3D-convolutional neural net-

works (3D-CNNs). This model can learn spatial and tem-

poral features from raw video and the attention mechanism

helps to focus on the areas of interest. After feature extrac-

tion, temporal attention was utilized to select the significant

motions for classification. Cui et al. [11] adopted two deep

neural networks modules, stacked temporal fusion module

are utilized for feature extraction and bi-directional recurrent

neural networks module was employed for sequence mod-

eling. An iterative optimization technique was adopted to

train the end-to-end model for sequence alignment proposal.

The alignment proposal was directly utilized as a supervisory

information to tune the feature extraction module to further

improve network performance.

Recently, a great success have achieved in hand segmen-

tation and activity recognition using Convolutional Neural

Network (CNN). Semantic segmentation methods based on

deep convolutional neural networks such as: fully convo-

lutional neural network [35], SegNet [36], RefineNet [37],

U-Net [38] andDeepLab [6] showed an extraordinary success

in many object segmentation problems. Bambach et al. [39]

applied CNN and GrabCut to detect and segment hand with

the help of a set of candidate hand bounding boxes which

were resulted from skin-based model. A depth-adaptive deep

neural network using in-layer multiscale neurons was pro-

posed in [40] for hand segmentation of RGBD images.

A RefineNet deep network was fine-tuned in [41] for hand

segmentation. Hand maps produced by the RefineNet were

then used for hand activity recognition. Recurrent U-Net

architecture was developed by Wang et al. [42] to run in

a resource-constrained environment with limited computa-

tional power. Recently, DeepLab model was developed by
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FIGURE 1. Proposed framework of dynamic sign language recognition using DeepLabv3+ semantic Segmentation, convolutional SOM
feature extraction and bi-directional LSTM network.

Chen et al. [6] to solve image segmentation problems. This

model has three key features, namely, dilated convolution,

Atrous Spatial Pyramid Pooling (ASPP) and improved local-

ization object boundaries using probabilistic graphical mod-

els. Subsequently, Chen et al. proposed DeepLabv3 [43] and

DeepLabv3+ [7] which combine cascade and parallel mod-

ules of dilated convolutions. DeepLab model has expressed

excellent object segmentation results for PASCALVOC chal-

lenge while its capability for hand segmentation has not yet

been validated.

Sequence modeling using HiddenMarkovModels (HMM)

are commonly used in speech recognition, text classifica-

tion and action recognition. HMM can model the transition

between sequence states but the model has a limited fac-

tor with the size of context window that make the model

computationally impractical for processing long range depen-

dencies. Recently, Recurrent Neural Networks (RNN) con-

sidered to be the preferred learning model for sequence

modeling [44]. RNN has better performance over HMM as it

has larger memory and computational capacity [45]. Recur-

rent neural network has the ability to process sequential

data with varying feature length which made it successful

in different sequential fields such as speech recognition [46]

and video processing [47]. Traditional RNNs have vanishing

gradient problem, which leads to problems when process-

ing long-term dependencies in data. These models can not

remember the old values existed early in the sequence [48].

A Long Short-Term Memory (LSTM) was developed to

overcome this problem by modifying the architecture of

RNN. The basic structure of LSTM was proposed in [49].

There are various versions of LSTM that differs in the

structures of LSTM [47]. The LSTM with peepholes and

forget gates was existed in [50] while the Gated Recurrent

Unit (GRU) was used in [51]. The depth gated RNNs was

presented in [52]. Bidirectional LSTMwas developed in [53]

to learn time dependencies of the sequence from both forward

and backward information. A combination of bi-directional

LSTM, CNN, and CRF was developed for sequence label-

ing in [54]. Bidirectional LSTM has shown a successful

performance in action recognition [55] and sign language

recognition [19], [56], [57].

III. PROPOSED FRAMEWORK OF SIGNER-INDEPENDENT

SIGN LANGUAGE RECOGNITION

The proposed framework for signer-independent sign lan-

guage recognition comprises three differentmodules, namely,

hand semantic segmentation and reprocessing, hand shape

feature extraction and sequence classification. The block dia-

gram of proposed framework is shown in Fig. 1. Instead

of using complex hand detection techniques to locate hand

regions in each frame of the input video, this frame-

work exploits recent deep semantic segmentation network

to locate every pixels in the hand region. After segment-

ing hand from every frame of the input video sequence,

hand regions are cropped and scaled into a fixed resolution

of 64× 64 pixels. Hand shape representation is learned using

a simple Convolutional Self-Organizing Map (CSOM) net-

work. The proposed single layer CSOMutilizes unsupervised

learning algorithm to learn shape features of hand without

any need to label the data. Each frame of the input video will

be converted into a feature vector, then the feature vectors

of all frames in the input video are aggregated to create the

feature representation of the sign. The temporal dependency

in the video sequences are modeled using Bi-directional Long

Short-Term Memory network (BiLSTM). The final layer of

the BiLSTM network is trained to classify each gesture.

The following subsections explain the details of proposed

framework.

A. HAND SEMANTIC SEGMENTATION USING DeepLabv3+

Recently, DeepLab semantic segmentation model achieved

promising results for various visual object segmenta-

tion problems [58]. Numerous improvements have been

done to enrich the model, including DeepLabv2 [6],

DeepLabv3 [43] and the most recent DeepLabv3+ [7]. Gen-

erally, DeepLabv3+ network is composed of two phases,

namely, encoding and decoding. The encoding phase aims to

extract discriminative information from the input image using

a pretrained convolutional neural network as a backbone

network. Convolutional layers of backbone CNN look for

different features in an image and pass this information to

subsequent layers. The information extracted in the encoding

phase is used in the decoding phase to reconstruct pixel

labeled output image with same dimension of input image.

Since the variations in hand size and shape are highly affect

the quality of segmentation results, using multi-scale context

information can alleviate this problem. The spatial pyra-

mid pooling module in DeepLabv3+ can effectively encode

multi-scale contextual information of hand. This is achieved

using pooling operations of the incoming features at various

field-of-view using the so called atrous convolution. DeepLab

introduced the concept of atrous convolutions which is a
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generalized form of the convolution operation. A parameter

called rate (r) is use in atrous convolutions to explicitly

change the effective field-of-view of the convolutional filters.

atrous convolutions operation can be generalized as follows:

y[i] =
∑

k

x[i+ r .k]w[k] (1)

where the atrous rate r determines the stride with which input

image is sampled. It can be inferred that standard convolution

is a special case of atrous using rate r = 1. The field-of-

view for convolutional filters can be deceptively modified

by changing the rate value as shown in Fig. 2. Spatial pyra-

mid pooling with atrous convolutions is firstly proposed and

applied in DeepLab to create a new block called Atrous

Spatial Pyramid Pooling (ASPP). Four parallel operations

are utilized in ASPP including 1 × 1 convolution and three

3 × 3 atrous convolution with 6, 12 and 18 rates.

FIGURE 2. Atrous convolution with kernel size 3 × 3 and rates 1, 2, and 3.
Employing large value of atrous rate enlarges the model field-of-view and
enables hand encoding at multiple scales.

A simplified diagram of DeepLabv3+ architecture is

shown in Fig. 3. DeepLabv3+ hand segmentation net-

work utilizes a pretrained model Resnet-50 [59] trained on

ImageNet dataset [60] as its backbone network. DeepLabv3+

remove the striding in the last convolutional block of Resnet-

50 backbone network and apply atrous convolution with

stride 2 to preserve feature map resolution. The resolution of

the final block of Resnet-50 backbone network is 16 times

smaller than the input image size. Then, Atrous Spatial Pyra-

mid Pooling (ASPP) module containing four parallel atrous

convolutional layers is added after the final feature maps of

the Resnet-50 to extract multi-scale features. The multiscale

features are stacked together to produce the final feature maps

of the encoder subnetwork. The encoder features resulted

from ASPP module are upsampled by a factor of 4 using

transposed convolution operation and then concatenated with

the corresponding feature maps from the Resnet-50 backbone

network which have similar spatial resolution. After concate-

nation, multiple 3 × 3 convolutions are employed to refine

the features followed by another dilated convolution which

upsample the feature maps by factor of 4 to reach the same

resolution of the input image.

B. UNSUPERVISED HAND SHAPE REPRESENTATION

USING SINGLE LAYER CONVOLUTIONAL

SELF-ORGANIZING MAP

Convolutional Self-Organizing Map (CSOM) module is uti-

lized for hand shape feature extraction [13]. It includes three

successive processing layers, namely, contrast normalization,

convolutional SOM and local histogram output layer which

shown in Fig. 4. Every local patch of the input image is

normalized using contrast normalization layer which subtract

each patch from its corresponding mean and divide by its

corresponding standard deviation. The trained 2-dimensional

SOM feature map is utilized to map every normalized patch

into the index of best matching neuron. Similarity between

every local image patch and all neuron centroids is calculated

using Euclidean distance measure. SOM mapping operation

will convert the input image into a feature index image in

which each local patch is represent by the index of bestmatch-

ing neuron. Similar patches will be mapped into adjacent

neurons thanks to the topographic order of neurons in SOM

feature maps. The quantization process of SOMwill also help

to absorb the distortions of local patches and create invariant

feature representation. The key advantage of using SOM

instead of the commonly used K-means clustering algorithm

lies in the topological order of neurons.

Assume that we have an input image I , The image is

divided into a set of overlapped local image patches of

size k × k . The brightness and contrast of the collected local

image patches are normalized using Z-score normalization.

Which mean that, for each local patch we subtract the patch

mean and then divide it by the standard deviation. Suppose

the un-normalized local patches denoted as x̂i, the patches are

normalize by applying the following equation:

xi =
x̂i − mean(x̂i)
√

var(x̂i) + ǫ
(2)

where normalized patches are denoted as xi, mean and var

are the mean and variance of the un-normalized local patches,

respectively, and ǫ is a small number used to avoid dividing

by zero.

1) SOM TRAINING ALGORITHM

Kohonen learning algorithm used to train the Self-Organized

Map (SOM) is considered as one of the most successful

competitive learning algorithm which approximate multidi-

mensional input space into a set of fixed neurons [61]. The

trained SOM can be viewed as a non-linear approximation

of principal component analysis algorithm since each map

dimension can be considered as a nonlinear principal compo-

nent. SOM training algorithm utilizes a specified neighbor-

hood function to organize neuron positions in the map which

make it distinctive compared with other non-topological clus-

tering algorithms. This process will strongly help to learn the

distribution of data while avoiding outlier samples.

Sequential and batch learning algorithms are commonly

used to train SOM. However, batch learning resulted in

faster and more efficient map. Assume that training samples

XN×d = {xi|xi ∈ Rd , i = 1, . . . ,N }, where N and d

denotes the total number of samples and the input dimensions,

respectively. Also, consider the total number of neurons in the

2D map is L, learning rate is α and σ represents the radius

of neighborhood function. Every neuron cj in the SOM is
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FIGURE 3. Architecture of DeepLabv3+ based on encoder-decoder structure with atrous spatial pyramid pooling.

FIGURE 4. Block diagram of single layer convolutional self-organizing
map.

associated with a mean vector mj where j = 1, ..,L. Random

values are commonly assigned as initial values for the L

neurons. However, linear initialization using 2-dimensional

plane spanned by the largest two principal components of

training samples is recommended to speed up the ordering

and convergence of SOM training. SOM training algorithm

repeats two main steps, namely, competition and update for a

fixed number of epochs.

Competition Step: The first step in SOM learning algo-

rithm is to find the best matching unit for each input sample.

Every neuron in the SOM layer has a specific location in

the map and associated with a mean vector. Using Euclidean

distance measure, we can locate the winner neuron c by

minimizing the distance between each image patch x(t) and

all neurons in the SOM as follows.

c = argmin
i

‖(x(t) − mi(t))‖
2
2 (3)

SOM Update: In each epoch of batch learning, SOM map

is updated once for all samples of training dataset X . Eq.(3)

is applied to compute the winning neuron c for each sample.

The centroid vectors of all neurons (i = 1, . . . ,L) are updated

as follows:

mi(t + 1) =

∑

t hcix(t)
∑

t hci
(4)

where hci(t) represents the neighborhood function of i
th neu-

ron and winning neuron c. The winning neuron c and all

its neighbor neurons are modified as shown in Eq. (4). The

amount of changes for each neuron depends on the specified

neighborhood function hci which plays an important role

in self-organization. Radial basis function with radius σ is

commonly used as a neighborhood function.

hci = α(t)e(−‖c−i‖2)/2σ 2(t) (5)

where α(t) is a monotonically linear decreasing function of t

which change the learning rate, i and c represent the coordi-

nate of i and c-winner neurons in the map. The neighborhood

value is gradually decreased according to the neighborhood

radius function σ (t), its value is calculated for each iteration t

using the following equation.

σ (t) = σi +
t

T
(σf − σi) (6)

where T denotes the number of epochs, the initial and final

radius parameters are denoted as σi, σf , respectively. The

neighborhood radius function (σ (t)) is linearly decreased

with t . The initial value of radius σi is chosen to be large at the

beginning of training in order to develop the topological order

of the neurons and gradually decreased to small value σf at

the end of training.
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2) LOCAL PATCH MAPPING USING CSOM

After training, the previous competition step is utilized again

to map every local patch of the input image into the index

of best matching neuron. This step will produce a feature

index image (F) in which all patches are mapped. Given an

image I of size n×n, the resulted feature index image of size

(n− k + 1)× (n− k + 1) is calculated. Shape representation

of the patch at coordinates (i, j) in the input image will be

encoded by the index position of winner neuron in SOM grid.

The hard quantization process of the competition step will

strongly help to tolerate for invariant feature representation

of hand shape.

3) OUTPUT LAYER

The generated feature index image (F) is divided into a set of

overlapped blocks with size b × b. Feature representation of

the hand shape can be determined by calculating histograms

of all overlapped blocks in the feature index image (F).

All local spatial histograms are concatenated to create the

final hand shape feature vector. Exploiting local spatial his-

tograms for representation help to increase the degree of

invariance as same as the effect of pooling layer in the deep

learning convolutional neural networks. In addition, using

overlapped blocks helps to increase the robustness of the

features to translation variations. The computed final feature

vectors of all training video sequences are fed into a deep

bi-directional LSTM network for video classification.

C. ISOLATED GESTURE RECOGNITION USING DEEP

BI-DIRECTIONAL LONG SHORT-TERM MEMORY NETWORK

Since videos have sequence of frames, LSTM layer is

employed to learn the sequential features from the frames.

The main unit of LSTM hidden layer is the memory block,

which contains both memory cell and gate units. Each mem-

ory cell has self-connected linear unit called cell state, which

keeps the state over time. Gate units are used to control the

flow of information inside the memory cell. Fig. 5 illustrates

a single memory cell of LSTM. It is clear that LSTM contains

three separate gates; forget gate f , input gate i, output gate o.

To remove information from the cell state, ft gate is used to

decide what information has to be thrown from the cell state.

While to add new information into the cell state, two outputs

are combined to decide what information has to be stored

in the cell state; it gate that decides the updated values and

FIGURE 5. Structure of one LSTM cell adapted from [63].

tanh function c̃t that develop a vector of new election values.

Finally, to output the information from the cell, two values are

multiplied; the output gate ot that decides which part of the

cell will be out and tanh function which modifies the values

of ct to be in the range [−1, 1].

The equations from Eq. 7 to Eq. 12 explain functions

performed by LSTM cell, where h indicate the hidden state,

W denotes the weight matrix and b is the bias vector.

ft = σ (Wf [ht−1, xt ] + bf ) (7)

it = σ (Wi[ht−1, xt ] + bi) (8)

c̃t = tanh (Wc[ht−1, xt ] + bc) (9)

ct = ft ∗ ct−1 + it ∗ c̃t (10)

ot = σ (Wo[ht−1, xt ] + bo) (11)

ht = ot ∗ tanh (ct ) (12)

The basic LSTM has some limitation in its behavior

because it takes only information from past sequence. How-

ever, accessing both past and future context leads to bet-

ter accuracy in sign recognition task. Bi-directional LSTM

(BiLSTM) provides a good solution to this problem as

it captures past and future information. In this paper, we

employed bi-directional LSTM to learn bi-directional long-

term dependencies between time step of sequence sign

data [53], [62]. In bi-directional LSTM, two LSTM layers

are trained on the input sequences to provide an additional

information from the input and give faster results. The first

LSTM trained on the input sequence using forward temporal

information, while the second one trained on the reversed

copy of the input sequence. The output from the forward and

backward will be concatenated to model the bi-directional

dependency of the sequence. More layers can be added to

create a deep structure in which each layer can either receive

the sequence output from previous layer or the last one. Fig. 6

illustrates the structure of one bi-directional LSTM layer. The

performance of BiLSTM is increased by increasing depth of

the network. In our model, three BiLSTM layers with differ-

ent number of hidden states are stacked to create BiLSTM

network namely BiLSTMNet. In addition BiLSTM layers

can be replaced by LSTM layers to create another network

called LSTMNet. These networks are followed by one fully

connected and softmax layers for sequence recognition. The

deep structure of both BiLSTMNet and LSTMNet helps to

capture abstract features of sequence data.

FIGURE 6. Structure of one bi-directional LSTM layer used to construct
BiLSTM network.
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IV. EXPERIMENTAL RESULTS

The performance of proposed framework is evaluated using

real Arabic sign language database for signer-independent

testing strategy. Hand regions of the input video sequences

are segmented using DeepLabv3+ semantic segmentation

network. Then, hand regions of the segmented images are

cropped and resized into 64 × 64 pixels. In addition, to

avoid skin color variations among signer, we convert all

cropped color images into grayscale. Hand shape feature rep-

resentation is computed using 2-dimensional convolutional

SOM. Finally, deep BiLSTM network is utilized to clas-

sify each input video. The following experiments are con-

ducted to find the optimal parameters of Deeplabv3+, CSOM

and BiLSTM networks which achieve the highest signer-

independent recognition accuracy.

A. ISOLATE WORDS ARABIC SIGN LANGUAGE DATABASE

All experiments in this paper are conducted using the Arabic

Sign Language (ArSL) database reported in [64]. The ArSL

dataset contains 23 isolated Arabic word signs performed by

three different users. Some examples of the Arabic gestures

performed by each user are shown in Fig. 7. There is no

restriction in clothing or image background when recording

gestures from each signer. It is noticed from the images

shown in Fig. 8 that the database exhibits several variations

FIGURE 7. Example of gestures from the ArSL database.

FIGURE 8. Example of various illumination, pose, scale, shape, position,
clothes, and temporal variations for the same sign performed by the
three signers.

TABLE 1. List of the recorded Arabic sign words with their English
meaning.

in illumination, pose, scale, shape, position, clothes and tem-

poral for same sign performed by the three different signers.

The list of all recorded Arabic word signs and their English

meaning is shown in Table. 1. Videos are recorded at 25 fps

with 320×240 resolution. Every signer repeated each gesture

50 times in three different sessions which gives a total of

150 sequence for each of the 23 gestures. The total number

of video clips reaches 3450. All gesture were temporally

partitioned into short sequences. Fig. 9 shows the temporal

variations among signs and users. It is clear that first user has

long sequences compared to those of second and third users.

Moreover, the average number of frames per sign for user sec-

ond and third users are similar. In the experiments below, the

performance of the proposed framework is evaluated using

signer-independent testing strategy in which all signs from

two users are used in training and other signs from the third

user are used for testing. This process is repeated to calculate

the accuracy for each user individually. The final accuracy is

calculated as the average of the three users’ accuracies.

FIGURE 9. Average number of frames per gesture for each user.

B. EXPERIMENTS ON HAND SEGMENTATION

In this experiment, we examine the performance of

DeepLabv3+ to segment hands. Resnet-50 is utilized as

a backbone network to learn hand shape features in

DeepLabv3+ model. The backbone network was initially
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trained on Imagenet dataset while a set of hand labeled

images are employed for transfer learning. We manually

labeled hand regions for one gesture sequence from each

user for all the 23 signs to create our labeled ArSL data

for DeepLabv3+ model learning. In addition, The created

labeled dataset is augmented with another dataset called Han-

dOverFace [5] to create a heterogeneous dataset for training

consists of 610 images. All images are resized into size of

256 × 256 pixels. Stochastic gradient descent with momen-

tum (SGDM) optimizer is employed to train the network with

the following parameter setting: initial learning rate set to

0.001 and decrease linearly every 100 epochs with rate 0.1,

momentum equals 0.95, the mini batch size used to update

learnable parameters of the network is 20 with number of

epochs equal 200.

In this experiment, the labeled ArSL dataset is divided into

two disjoint training and testing data. All labeled signs from

the first two users are used for training where images from

the third user are used for testing. The training images are

augmented with the labeled HandOverFace dataset. To evalu-

ate the performance of semantic segmentation module, Mean

Intersection-over-Union (MIoU) is calculated for all test

images. The obtained MIoU reaches 94.2% which confirm

the robustness of the model. Fig. 10 shows examples of hand

segmentation results for one gesture from each user. Results

prove the robustness of DeepLabv3+ model to accurately

capture the boundaries of hand regions even when hands are

connected or touching each other.

FIGURE 10. Examples of qualitative results for hand segmentation using
DeepLabv3+ for each user.

C. EXPERIMENTS ON HAND SHAPE FEATURE

EXTRACTION USING CSOM

A single Convolutional Self-Organizing Map (CSOM) layer

is utilized to learn hand shape features. Two-dimensional

cylindrical shape SOM with a rectangular lattice is trained to

capture the distribution of local image patches. The param-

eters of CSOM are optimized empirically to improve the

recognition accuracy in signer-independent testing scenario.

The neighborhood radius parameter is chosen to take initial

value of 0.2 and decrease linearly into a small final value

of 0.01 to preserve the topological order of neurons and to

keep them discriminative. Each image is divided into a set of

overlapped patches with size of 5×5 pixels. Every local patch

is approximated with the index of best matching neuron in the

SOM grid. Example of the convolutional filters learned from

SOM training is shown in Fig. 11. The obtained convolutional

filters exhibits a topographic order in the map which helps to

capture the distribution of the features in the local patches of

the training hand images. The following experiments examine

the effect of changing the number of neurons and block sizes

of CSOM on the recognition accuracy.

FIGURE 11. Example of topographic convolutional filters learned from
convolutional SOM layer.

1) EFFECT OF CHANGING NUMBER OF NEURONS

IN THE 2D SOM

The number of neurons used to approximate the feature space

of the local image patches is studied in this experiment. The

dimension of SOM map is fixed into two dimensions with

equal number of neurons along each side. The number of

neurons is changed from 2 × 2 till 20 × 20 with increase

of one. Fig. 12 shows the change in accuracy when number

of neurons vary. Using small number of neurons will underfit

the distribution of data while large number of neurons causes

overfitting. The optimum dimension of SOMmap is selected

to be 16×16 which better fit the distribution of local patches.

2) EFFECT OF CHANGING BLOCK SIZES

This experiment investigate how the average signer-

independent recognition accuracy will be affected when

changing the block size used for histogram computation in

CSOM. The parameters of the CSOM are set as: k = 5 and

SOM map size = 16 × 16. The block sizes are varied from

7×7 to 28×28. Fig. 13 shows that the accuracy is improved

when increasing the block size till 14 × 14 block size.

Although using large block size beyond 14 × 14 increases

the tolerance for image variations, the accuracy decreased due
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FIGURE 12. Average signer-independent recognition accuracy of the
proposed framework by varying the number of neurons in CSOM.

FIGURE 13. Average signer-independent recognition accuracy by varying
the histogram block size in CSOM.

the loss of discrimination information among signs. Optimum

block size should balance between feature discrimination and

invariance.

D. EXPERIMENTS ON SEQUENCE RECOGNITION USING

DEEP LSTM NETWORK

The last module in the proposed framework is sequence

recognition. A new deep BiLSTM network architecture con-

taining a stack of three BiLSTM layers followed by one fully

connected layer and softmax layer is used. Stochastic gradient

decent learning algorithm is utilized to optimize weights

of deep BiLSTM network. Since our target is to create a

signer-independent sign language recognition framework, the

performance of all experiments is measured using signer

independent testing strategy. Firstly, we compare the perfor-

mance of the model when using LSTM instead of BiLSTM

layers. We create a simple LSTMNet/BiLSTMNet compris-

ing only one LSTM/BiLSTM layer with 512 hidden units to

evaluate the effectiveness of the backward layer in BiLSTM.

Signer-independent testing scenario is utilized to measure the

average accuracies of each network module. The network

based on LSTM and BiLSTM layers gives average accura-

cies of 83.5% and 86.2%, respectively. Accuracy obtained

from BiLSTMNet is better than that of LSTMNet given

the same number of hidden units. Since BiLSTM exploits

both forward and backward sequence information to predict

sign, it gives better results than LSTM which depends only

on forward sequence information. In the subsequent experi-

ment, we exploit BiLSTMNet module for gesture sequence

recognition.

Secondly, the effect of changing the number of BiLSTM

layers is examined. Number of BiLSTM layers is changed

from one to four in order to study the feasibility of using deep

architecture. Table 2 shows the average accuracy on signer-

independent testing scenario with specified number of hidden

units in each layer. The reported accuracies are calculated

as the average from testing each of the three signers. The

number of units gradually decrease from layer to layer as we

go deeper. The first BiLSTM layer takes gesture sequence

as input while the last output of the sequence is fed as

input to the next layer and so on. Number of neurons in

the fully connected layer equal to the number of gestures

to be classified (23 signs). Results demonstrates that using

three BiLSTM layers are sufficient to model the temporal

dependencies between frames.

TABLE 2. Performance comparison of the proposed framework using
different number of BiLSTM layers.

E. PERFORMANCE COMPARISON OF MASK IMAGES

AND GRAYSCALE IMAGES

The performance of the framework using hand masks and

grayscale images is compared.Mask images resulted from the

semantic segmentation network can be directly used to train

CSOM and BiLSTM network. Table 3 shows the accuracies

of each user by exploiting hand masks and grayscale images

in the feature extraction and classification modules. The last

row in the table shows the average accuracy from all users.

It is clear that the accuracy is significantly improved when

using grayscale images instead of mask images. This results

proves that texture information of the hand is very impor-

tant for gesture discrimination than relying only on shape

information.

TABLE 3. Performance of the proposed framework using grayscale and
mask images.

F. CROSS-SIGNER RECOGNITION ACCURACY

This experiment examines the performance of proposed

framework using cross signer testing scenario. All images

from one user are used for training while images from

other users are employed for testing. The optimal values

of the parameters obtained from previous experiments are
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TABLE 4. Performance of the proposed framework using cross signer
testing scenario.

FIGURE 14. First user confusion matrix using all signs.

exploited. Table 4 shows the accuracy of testing each user

using other users in training. Results reveal that using training

images from second user give the highest average accuracy

while using those from third user give the lowest. It can be

concluded that second user performing most signs similarly

to that performed by the first and third users. However, the

performance of third user differs from that of other two users.

Increasing the number of users used in training helps much to

increase the similarities among same signs and hence improve

the performance.

G. STATE-OF-THE-ART COMPARISONS

The performance of proposed framework is compared with

state-of-the-art methods which reported their results using

same database. Many research works have proposed to solve

this problem with same database using signer-dependent sce-

nario and achieved almost 100% accuracy. Signer-dependent

sign language recognition is well studied and almost a solved

problem, however signer-independent strategy has many dif-

ficulties and challenges. In this experiment, only results from

the methods exploiting signer-independent testing strategy

are reported. All signs from two users are selected to train

the proposed model while signs from the remaining user

are applied for testing. The best parameters of CSOM and

BiLSTM network obtained from the previous experiments

are utilized. The best BiLSTM network architecture con-

tains three BiLSTM layers with number of BiLSTM cells

equal 512, 256 and 128.

Results of comparison are shown in Table 5. The compared

methods used in this experiment are based on accumulated

differences and DCT [22], [64], bag of features and bag

of postures [65], and 3DCNN architecture [66]. Results in

the table show that hand segmentation is an essential step

FIGURE 15. Second user confusion matrix using all signs.

FIGURE 16. Third user confusion matrix using all signs.

FIGURE 17. Example of confused signs among users.

to improve the accuracy for all methods. The performance

of proposed framework surpasses all other methods with

large margin. It can be inferred from the results that using

DeepLabv3+ semantic segmentation module significantly

increases the performance by 70%. The average accuracy

of the 23 signs computed from all users is 89.5%. Con-
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TABLE 5. Comparison of proposed framework with state-of-the-art signer-independent methods.

fusion matrices for each of the three signer are shown

in Figs. 14, 15 and 16. Example of the two confused sign

pairs are depicted in Fig. 17. From confusionmatrix of user 1:

sign #2 (neighbor) confused with sign #11 (home), sign #5

(enemy) is confused with sign #3 (guest) and sign #18 (stop

talking) confused with sign #19 (smell). It is noticed that

some signs of user 1 are performed differently than that

of other two users. Large differences in performing signs

among users make it difficult to correctly recognize these

signs in signer-independent evaluation strategy. Additionally,

signs #18 and #19 have very similar hand shape and position

which make them confused. Since the used database has

only 3 users, the accuracy obtained from experiments are

satisfactory. However, increasing the number of training users

will highly improve the performance.

V. CONCLUSION

This paper proposes a new framework for signer-independent

isolated Arabic sign language recognition based on the com-

bination of DeepLabv3+ semantic segmentation, single layer

convolutional SOM and Bi-directional long short-term mem-

ory network. Hand segmentation problem is efficiently solved

through applying the state-of-the-art semantic segmentation

DeepLabv3+ model based on Resnet-50 as a backbone

encoder network and atrous spatial pyramid pooling. The

obtained mask image from DeepLabv3+ are exploited to

crop hand regions from each corresponding frame of the

input video sequence and then normalized to fixed size for

scale invariance. Hand shape features are learned and rep-

resented through a simple single layer convolutional SOM

architecture. Features extracted from CSOM efficiently cap-

ture hand shape information, in addition it can handle var-

ious image condition variations thanks to the utilization of

best matching neuron indexes. Deep bi-directional LSTM

recurrent neural network consists of three BiLSTM, single

fully-connected and softmax classification layers success-

fully model the dynamics of hand gestures. Experimental

results show that the new framework is very efficient in solv-

ing signer-independent isolated words Arabic sign language

recognition problem. The evaluation of the proposed frame-

work on the Arabic benchmark dataset achieves an aver-

age accuracy of 89.5% using DeepLabv3+ hand semantic

segmentation while it significant drooped by 69.0% without

exploiting the hand segmentation module. The performance

of the proposed method outperforms all state-of-the-art meth-

ods and can be extended to solve continuous sign language

recognition problem for Arabic and other languages.
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