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Abstract

This paper introduces DeepBach, a graphical

model aimed at modeling polyphonic music and

specifically hymn-like pieces. We claim that, af-

ter being trained on the chorale harmonizations

by Johann Sebastian Bach, our model is capable

of generating highly convincing chorales in the

style of Bach. DeepBach’s strength comes from

the use of pseudo-Gibbs sampling coupled with

an adapted representation of musical data. This

is in contrast with many automatic music com-

position approaches which tend to compose mu-

sic sequentially. Our model is also steerable in

the sense that a user can constrain the generation

by imposing positional constraints such as notes,

rhythms or cadences in the generated score. We

also provide a plugin on top of the MuseScore

music editor making the interaction with Deep-

Bach easy to use.

1. Introduction

The composition of polyphonic chorale music in the style

of J.S. Bach has represented a major challenge in automatic

music composition over the last decades. The corpus of

the chorale harmonizations by Johann Sebastian Bach is

remarkable by its homogeneity and its size (389 chorales

in (Bach, 1985)). All these short pieces (approximately

one minute long) are written for a four-part chorus (so-

prano, alto, tenor and bass) using similar compositional

principles: the composer takes a well-known (at that time)

melody from a Lutheran hymn and harmonizes it i.e. the

three lower parts (alto, tenor and bass) accompanying the

soprano (the highest part) are composed, see Fig.1 for an

example.
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Moreover, since the aim of reharmonizing a melody is to

give more power or new insights to its text, the lyrics have

to be understood clearly. We say that voices are in ho-

mophony, i.e. they articulate syllables simultaneously. This

implies characteristic rhythms, variety of harmonic ideas as

well as characteristic melodic movements which make the

style of these chorale compositions easily distinguishable,

even for non experts.

The difficulty, from a compositional point of view comes

from the intricate interplay between harmony (notes sound-

ing at the same time) and voice movements (how a sin-

gle voice evolves through time). Furthermore, each voice

has its own “style” and its own coherence. Finding a

chorale-like reharmonization which combines Bach-like

harmonic progressions with musically interesting melodic

movements is a problem which often takes years of practice

for musicians.

From the point of view of automatic music generation, the

first solution to this apparently highly combinatorial prob-

lem was proposed by (Ebcioglu, 1988) in 1988. This prob-

lem is seen as a constraint satisfaction problem, where the

system must fulfill numerous hand-crafted constraints char-

acterizing the style of Bach. It is a rule-based expert system

which contains no less than 300 rules and tries to rehar-

monize a given melody with a generate-and-test method

and intelligent backtracking. Among the short examples

presented at the end of the paper, some are flawless. The

drawbacks of this method are, as stated by the author, the

considerable effort to generate the rule base and the fact

that the harmonizations produced “do not sound like Bach,

except for occasional Bachian patterns and cadence formu-

las.” In our opinion, the requirement of an expert knowl-

edge implies a lot of subjective choices.

A neural-network-based solution was later developed by

(Hild et al., 1992). This method relies on several neural

networks, each one trained for solving a specific task: a

harmonic skeleton is first computed then refined and or-

namented. A similar approach is adopted in (Allan &

Williams, 2005), but uses Hidden Markov Models (HMMs)

instead of neural networks. Chords are represented as

lists of intervals and form the states of the Markov mod-

2https://www.youtube.com/watch?v=

73WF0M99vlg
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(a) Original text and melody by Georg Neumark (1641), (b) Four-voice harmonization by Bach: voices are determined by the staff
they are written on and the directions of the stems.

Figure 1. Two versions of “Wer nur den lieben Gott läßt walten”. The original melody (a) and its reharmonization (b) by Johann Sebastian

Bach (BWV 434) 2.

els. These approaches produce interesting results even if

they both use expert knowledge and bias the generation

by imposing their compositional process. In (Whorley

et al., 2013; Whorley & Conklin, 2016), authors elaborate

on those methods by introducing multiple viewpoints and

variations on the sampling method (generated sequences

which violate “rules of harmony” are put aside for in-

stance). However, this approach does not produce a con-

vincing chorale-like texture, rhythmically as well as har-

monically and the resort to hand-crafted criteria to assess

the quality of the generated sequences might rule out many

musically-interesting solutions.

Recently, agnostic approaches (requiring no knowledge

about harmony, Bach’s style or music) using neural net-

works have been investigated with promising results. In

(Boulanger-Lewandowski et al., 2012), chords are mod-

eled with Restricted Boltzmann Machines (RBMs). Their

temporal dependencies are learned using Recurrent Neural

Networks (RNNs). Variations of these architectures based

on Long Short-Term Memory (LSTM) units ((Hochreiter &

Schmidhuber, 1997; Mikolov et al., 2014)) or GRUs (Gated

Recurrent Units) have been developed by (Lyu et al., 2015)

and (Chung et al., 2014) respectively. However, these mod-

els which work on piano roll representations of the music

are too general to capture the specificity of Bach chorales.

Also, a major drawback is their lack of flexibility. Genera-

tion is performed from left to right. A user cannot interact

with the system: it is impossible to do reharmonization for

instance which is the essentially how the corpus of Bach

chorales was composed. Moreover, their invention capac-

ity and non-plagiarism abilities are not demonstrated.

A method that addresses the rigidity of sequential genera-

tion in music was first proposed in (Sakellariou et al., 2015;

Sakellariou et al., 2016) for monophonic music and later

generalized to polyphony in (Hadjeres et al., 2016). These

approaches advocate for the use of Gibbs sampling as a

generation process in automatic music composition.

The most recent advances in chorale harmonization is

arguably the BachBot model (Liang, 2016), a LSTM-

based approach specifically designed to deal with Bach

chorales. This approach relies on little musical knowledge

(all chorales are transposed in a common key) and is able

to produce high-quality chorale harmonizations. However,

compared to our approach, this model is less general (pro-

duced chorales are all in the C key for instance) and less

flexible (only the soprano can be fixed). Similarly to our

work, the authors evaluate their model with an online Tur-

ing test to assess the efficiency of their model. They also

take into account the fermata symbols (Fig. 2) which are

indicators of the structure of the chorales.

In this paper we introduce DeepBach, a dependency net-

work (Heckerman et al., 2000) capable of producing musi-

cally convincing four-part chorales in the style of Bach by

using a Gibbs-like sampling procedure. Contrary to mod-

els based on RNNs, we do not sample from left to right

which allows us to enforce positional, unary user-defined

constraints such as rhythm, notes, parts, chords and ca-

dences. DeepBach is able to generate coherent musical

phrases and provides, for instance, varied reharmonizations

of melodies without plagiarism. Its core features are its

speed, the possible interaction with users and the richness

of harmonic ideas it proposes. Its efficiency opens up new

ways of composing Bach-like chorales for non experts in

an interactive manner similarly to what is proposed in (Pa-

padopoulos et al., 2016) for leadsheets.

In Sect. 2 we present the DeepBach model for four-part

chorale generation. We discuss in Sect. 3 the results of

an experimental study we conducted to assess the quality

of our model. Finally, we provide generated examples in

Sect. 4.3 and elaborate on the possibilities offered by our

interactive music composition editor in Sect. 4. All ex-

amples can be heard on the accompanying web page3 and

the code of our implementation is available on GitHub4.

Even if our presentation focuses on Bach chorales, this

model has been successfully applied to other styles and

composers including Monteverdi five-voice madrigals to

Palestrina masses.

3https://sites.google.com/site/

deepbachexamples/
4https://github.com/Ghadjeres/DeepBach
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2. DeepBach

In this paper we introduce a generative model which takes

into account the distinction between voices. Sect. 2.1

presents the data representation we used. This represen-

tation is both fitted for our sampling procedure and more

accurate than many data representation commonly used

in automatic music composition. Sect. 2.2 presents the

model’s architecture and Sect. 2.3 our generation method.

Finally, Sect. 2.4 provides implementation details and in-

dicates how we preprocessed the corpus of Bach chorale

harmonizations.

2.1. Data Representation

2.1.1. NOTES AND VOICES

We use MIDI pitches to encode notes and choose to model

voices separately. We consider that only one note can be

sung at a given time and discard chorales with voice divi-

sions.

Since Bach chorales only contain simple time signatures,

we discretize time with sixteenth notes, which means that

each beat is subdivided into four equal parts. Since there is

no smaller subdivision in Bach chorales, there is no loss of

information in this process.

In this setting, a voice Vi = {Vt
i }t is a list of notes indexed

by t ∈ [T ]5, where T is the duration piece (in sixteenth

notes).

2.1.2. RHYTHM

We choose to model rhythm by simply adding a hold sym-

bol “ ” coding whether or not the preceding note is held to

the list of existing notes. This representation is thus unam-

biguous, compact and well-suited to our sampling method

(see Sect. 2.3.4).

2.1.3. METADATA

The music sheet (Fig. 1b) conveys more information than

only the notes played. We can cite:

• the lyrics,

• the key signature,

• the time signature,

• the beat index,

• an implicit metronome (on which subdivision of the

beat the note is played),

• the fermata symbols (see Fig. 2),

5We adopt the standard notation [N ] to denote the set of inte-
gers {1, . . . , N} for any integer N .

• current key,

• current key signature,

• current mode (major/minor/dorian).

Figure 2. Fermata symbol.

In the following, we will only take into account the fermata

symbols, the subdivision indexes and the current key sig-

nature. To this end, we introduce:

• The fermata list F that indicates if there is a fer-

mata symbol, see Fig. 2, over the current note, it is

a Boolean value. If a fermata is placed over a note

on the music sheet, we consider that it is active for all

time indexes within the duration of the note.

• The subdivision list S that contains the subdivision in-

dexes of the beat. It is an integer between 1 and 4:

there is no distinction between beats in a bar so that

our model is able to deal with chorales with three and

four beats per measure.

2.1.4. CHORALE

We represent a chorale as a couple

(V,M) (1)

composed of voices and metadata. For Bach chorales, V is

a list of 4 voices Vi for i ∈ [4] (soprano, alto, tenor and

bass) and M a collection of metadata lists (F and S).

Our choices are very general and do not involve expert

knowledge about harmony or scales but are only mere ob-

servations of the corpus. The list S acts as a metronome.

The list F is added since fermatas in Bach chorales indi-

cate the end of each musical phrase. The use of fermata to

this end is a specificity of Bach chorales that we want to

take advantage of.

(a) (b)

Figure 3. Extract from a Bach chorale and its representation as

four voice lists and two metadata lists (S and F ). The hold sym-

bol is displayed as “ ” and considered as a note.
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2.2. Model Architecture

We choose to consider the metadata sequences in M as

given. For clarity, we suppose in this section that our

dataset is composed of only one chorale written as in Eq. 1

of size T . We define a dependency network on the finite set

of variables V = {V t
i } by specifying a set of conditional

probability distributions (parametrized by parameter θi,t)
{

pi,t(V
t
i |V\i,t,M, θi,t)

}

i∈[4],t∈[T ]
, (2)

where Vt
i indicates the note of voice i at time index t and

V\i,t all variables in V except from the variable Vt
i . As we

want our model to be time invariant so that we can apply it

to sequences of any size, we share the parameters between

all conditional probability distributions on variables lying

in the same voice, i.e.

θi := θi,t, pi := pi,t ∀t ∈ [T ].

Finally, we fit each of these conditional probability distri-

butions on the data by maximizing the log-likelihood. Due

to weight sharing, this amounts to solving four classifica-

tion problems of the form:

max
θi

∑

t

log pi(V
t
i |V\i,t,M, θi), for i ∈ [4], (3)

where the aim is to predict a note knowing the value of its

neighboring notes, the subdivision of the beat it is on and

the presence of fermatas. The advantage with this formula-

tion is that each classifier has to make predictions within a

small range of notes whose ranges correspond to the notes

within the usual voice ranges (see 2.4).

For accurate predictions and in order to take into account

the sequential aspect of the data, each classifier is mod-

eled using four neural networks: two Deep Recurrent Neu-

ral Networks (Pascanu et al., 2013), one summing up past

information and another summing up information coming

from the future together with a non-recurrent neural net-

work for notes occurring at the same time. Only the last

output from the uppermost RNN layer is kept. These three

outputs are then merged and passed as the input of a fourth

neural network whose output is pi(V
t
i |V\i,t,M, θ). Fig-

ure 4 shows a graphical representation for one of these

models. Details are provided in Sect. 2.4. These choices

of architecture somehow match real compositional practice

on Bach chorales. Indeed, when reharmonizing a given

melody, it is often simpler to start from the cadence and

write music “backwards.”

2.3. Generation

2.3.1. ALGORITHM

Generation in dependency networks is performed using the

pseudo-Gibbs sampling procedure. This Markov Chain

embedding

Deep RNN

embedding

Deep RNN

Softmax

Merge

Neural NetworkNeural Network

Neural NetworkNeural Network

Figure 4. Graphical representations of DeepBach’s neural net-

work architecture for the soprano prediction p1.

Monte Carlo (MCMC) algorithm is described in Alg.1. It is

similar to the classical Gibbs sampling procedure (Geman

& Geman, 1984) on the difference that the conditional dis-

tributions are potentially incompatible (Chen & Ip, 2015).

This means that the conditional distributions of Eq. (2) do

not necessarily comes from a joint distribution p(V) and

that the theoretical guarantees that the MCMC converges

to this stationary joint distribution vanish. We experimen-

tally verified that it was indeed the case by checking that

the Markov Chain of Alg.1 violates Kolmogorov’s criterion

(Kelly, 2011): it is thus not reversible and cannot converge

to a joint distribution whose conditional distributions match

the ones used for sampling.

However, this Markov chain converges to another station-

ary distribution and applications on real data demonstrated

that this method yielded accurate joint probabilities, espe-

cially when the inconsistent probability distributions are

learned from data (Heckerman et al., 2000). Furthermore,

nonreversible MCMC algorithms can in particular cases be

better at sampling that reversible Markov Chains (Vucelja,

2014).

2.3.2. FLEXIBILITY OF THE SAMPLING PROCEDURE

The advantage of this method is that we can enforce user-

defined constraints by tweaking Alg. 1:

• instead of choosing voice i from 1 to 4 we can choose

to fix the soprano and only resample voices from 2, 3
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Algorithm 1 Pseudo-Gibbs sampling

1: Input: Chorale length L, metadata M containing lists

of length L, probability distributions (p1, p2, p3, p4),
maximum number of iterations M

2: Create four lists V = (V1,V2,V3,V4) of length L

3: {The lists are initialized with random notes drawn from

the ranges of the corresponding voices (sampled uni-

formly or from the marginal distributions of the notes)}
4: for m from 1 to M do

5: Choose voice i uniformly between 1 and 4

6: Choose time t uniformly between 1 and L

7: Re-sample Vt
i from pi(V

t
i |V\i,t,M, θi)

8: end for

9: Output: V = (V1,V2,V3,V4)

and 4 in step (3) in order to provide reharmonizations

of the fixed melody

• we can choose the fermata list F in order to impose

end of musical phrases at some places

• more generally, we can impose any metadata

• for any t and any i, we can fix specific subsets Rt
i

of notes within the range of voice i. We then restrict

ourselves to some specific chorales by re-sampling Vt
i

from

pi(V
t
i |V\i,t,M, θi,V

t
i ∈ Rt

i)

at step (5). This allows us for instance to fix rhythm

(since the hold symbol is considered as a note), im-

pose some chords in a soft manner or restrict the vocal

ranges.

2.3.3. PERFORMANCE

Note that it is possible to make generation faster by making

parallel Gibbs updates on GPU. Steps (3) to (5) from Alg. 1

can be run simultaneously to provide significant speedups.

Even if it is known that this approach is biased (De Sa et al.,

2016) (since we can update simultaneously variables which

are not conditionally independent), we experimentally ob-

served that for small batch sizes (16 or 32), DeepBach still

generates samples of great musicality while running ten

times faster than the sequential version. This allows Deep-

Bach to generate chorales in a few seconds.

It is also possible to use the hard-disk-configurations gener-

ation algorithm (Alg.2.9 in (Krauth, 2006)) to appropriately

choose all the time indexes at which we parallelly resample

so that:

• every time index is at distance at least δ from the other

time indexes

• configurations of time indexes satisfying the relation

above are equally sampled.

This trick allows to assert that we do not update simultane-

ously a variable and its local context.

2.3.4. IMPORTANCE OF THE DATA REPRESENTATION

We emphasize on this section the importance of our partic-

ular choice of data representation with respect to our sam-

pling procedure. The fact that we obtain great results using

pseudo-Gibbs sampling relies exclusively on our choice to

integrate the hold symbol into the list of notes.

Indeed, Gibbs sampling fails to sample the true joint dis-

tribution p(V|M, θ) when variables are highly correlated,

creating isolated regions of high probability states in which

the MCMC chain can be trapped. However, many data rep-

resentations used in music modeling such as

• the piano-roll representation,

• the couple (pitch, articulation) representation where

articulation is a Boolean value indicating whether or

not the note is played or held,

tend to make the musical data suffer from this drawback.

As an example, in the piano-roll representation, a long note

is represented as the repetition of the same value over many

variables. In order to only change its pitch, one needs to

change simultaneously a large number of variables (which

is exponentially rare) while this is achievable with only one

variable change with our representation.

2.4. Implementation Details

We implemented DeepBach using Keras (Chollet, 2015)

with the Tensorflow (Abadi et al., 2015) backend. We

used the database of chorale harmonizations by J.S.

Bach included in the music21 toolkit (Cuthbert & Ariza,

2010). After removing chorales with instrumental parts

and chorales containing parts with two simultaneous notes

(bass parts sometimes divide for the last chord), we ended

up with 352 pieces. Contrary to other approaches which

transpose all chorales to the same key (usually in C major

or A minor), we choose to augment our dataset by adding

all chorale transpositions which fit within the vocal ranges

defined by the initial corpus. This gives us a corpus of 2503

chorales and split it between a training set (80%) and a val-

idation set (20%). The vocal ranges contains less than 30

different pitches for each voice (21, 21, 21, 28) for the so-

prano, alto, tenor and bass parts respectively.

As shown in Fig. 4, we model only local interactions be-

tween a note Vt
i and its context (V\i,t, M) i.e. only ele-

ments with time index t between t − ∆t and t + ∆t are
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taken as inputs of our model for some scope ∆t. This ap-

proximation appears to be accurate since musical analysis

reveals that Bach chorales do not exhibit clear long-term

dependencies.

The reported results in Sect. 3 and examples in Sect. 4.3

were obtained with ∆t = 16. We chose as the “neural

network brick” in Fig. 4 a neural network with one hid-

den layer of size 200 and ReLU (Nair & Hinton, 2010)

nonlinearity and as the “Deep RNN brick” two stacked

LSTMs (Hochreiter & Schmidhuber, 1997; Mikolov et al.,

2014), each one being of size 200 (see Fig. 2 (f) in (Li &

Wu, 2015)). The “embedding brick” applies the same neu-

ral network to each time slice (Vt,Mt). There are 20%

dropout on input and 50% dropout after each layer.

We experimentally found that sharing weights between the

left and right embedding layers improved neither validation

accuracy nor the musical quality of our generated chorales.

3. Experimental Results

We evaluated the quality of our model with an online test

conducted on human listeners.

3.1. Setup

For the parameters used in our experiment, see Sect 2.4. We

compared our model with two other models: a Maximum

Entropy model (MaxEnt) as in (Hadjeres et al., 2016) and

a Multilayer Perceptron (MLP) model.

The Maximum Entropy model is a neural network with no

hidden layer. It is given by:

pi(V
t
i |V\i,t,M, Ai, bi) = Softmax(AX + b) (4)

where X is a vector containing the elements in V\i,t ∪Mt,

Ai a (ni,mi) matrix and bi a vector of size mi with mi

being the size of X , ni the number of notes in the voice

range i and Softmax the softmax function given by

Softmax(z)j =
ezj

∑K

k=1 e
zk

for j ∈ [K],

for a vector z = (z1, . . . , zK).

The Multilayer Perceptron model we chose takes as input

elements in V\i,t∪M, is a neural network with one hidden

layer of size 500 and uses a ReLU (Nair & Hinton, 2010)

nonlinearity.

All models are local and have the same scope ∆t, see

Sect. 2.4.

Subjects were asked to give information about their musical

expertise. They could choose what category fits them best

between:
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Computer

MaxEnt MLP DeepBach J.S. Bach

Figure 5. Results of the “Bach or Computer” experiment. The fig-

ure shows the distribution of the votes between “Computer” (blue

bars) and “Bach” (red bars) for each model and each level of ex-

pertise of the voters (from 1 to 3), see Sect. 3.2 for details.

1. I seldom listen to classical music

2. Music lover or musician

3. Student in music composition or professional musi-

cian.

The musical extracts have been obtained by reharmoniz-

ing 50 chorales from the validation set by each of the three

models (MaxEnt, MLP, DeepBach). We rendered the MIDI

files using the Leeds Town Hall Organ soundfont6 and cut

two extracts of 12 seconds from each chorale, which gives

us 400 musical extracts for our test: 4 versions for each of

the 100 melody chunks. We chose our rendering so that

the generated parts (alto, tenor and bass) can be distinctly

heard and differentiated from the soprano part (which is

fixed and identical for all models): in our mix, dissonances

are easily heard, the velocity is the same for all notes as

in a real organ performance and the sound does not decay,

which is important when evaluating the reharmonization of

long notes.

3.2. Discrimination Test: “Bach or Computer”

experiment

Subjects were presented series of only one musical extract

together with the binary choice “Bach” or “Computer”.

Fig. 5 shows how the votes are distributed depending on the

level of musical expertise of the subjects for each model.

For this experiment, 1272 people took this test, 261 with

musical expertise 1, 646 with musical expertise 2 and 365

with musical expertise 3.

The results are quite clear: the percentage of “Bach” votes

augment as the model’s complexity increase. Furthermore,

the distinction between computer-generated extracts and

Bach’s extracts is more accurate when the level of musical

expertise is higher. When presented a DeepBach-generated

6https://www.samplephonics.com/products/

free/sampler-instruments/the-leeds-town-

hall-organ

https://www.samplephonics.com/products/free/sampler-instruments/the-leeds-town-hall-organ
https://www.samplephonics.com/products/free/sampler-instruments/the-leeds-town-hall-organ
https://www.samplephonics.com/products/free/sampler-instruments/the-leeds-town-hall-organ
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Figure 6. Results of the “Bach or Computer” experiment. The fig-

ure shows the percentage of votes for Bach for each of the 100

extracts for each model. For each model, a specific order for the

x-axis is chosen so that the percentage of Bach votes is an increas-

ing function of the x variable, see Sect. 3.2 for details.

extract, around 50% of the voters would judge it as com-

posed by Bach. We consider this to be a good score know-

ing the complexity of Bach’s compositions and the facility

to detect badly-sounding chords even for non musicians.

We also plotted specific results for each of the 400 extracts.

Fig. 6 shows for each reharmonization extract the percent-

age of Bach votes it collected: more than half of the Deep-

Bach’s automatically-composed extracts has a majority of

votes considering them as being composed by J.S. Bach

while it is only a third for the MLP model.

4. Interactive composition

4.1. Description

We developed a plugin on top of the MuseScore music

editor allowing a user to call DeepBach on any rectangu-

lar region. Even if the interface is minimal (see Fig.7),

the possibilities are numerous: we can generate a chorale

from scratch, reharmonize a melody and regenerate a given

chord, bar or part. We believe that this interplay between a

user and the system can boost creativity and can interest a

wide range of audience.

4.2. Adapting the model

We made two major changes between the model we de-

scribed for the online test and the interactive composition

tool.

4.2.1. NOTE ENCODING

We changed the MIDI encoding of the notes to a full

name encoding of the notes. Indeed, some information is

lost when reducing a music sheet to its MIDI representa-

tion since we cannot differentiate between two enharmonic

notes (notes that sound the same but that are written dif-

ferently e.g. F# and Gb). This difference in Bach chorales

is unambiguous and it is thus natural to consider the full

name of the notes, like C#3, Db3 or E#4. From a machine

learning point of view, these notes would appear in totally

different contexts. This improvement enables the model to

generate notes with the correct spelling, which is important

when we focus on the music sheet rather than on its audio

rendering.

4.2.2. STEERING MODULATIONS

We added the current key signature list K to the meta-

data M. This allows users to impose modulations and key

changes. Each element Kt of this list contains the number

of sharps of the estimated key for the current bar. It is a in-

teger between -7 and 7. The current key is computed using

the key analyzer algorithm from music21.

4.3. Generation examples

We now provide and comment on examples of chorales

generated using the DeepBach plugin. Our aim is to show

the quality of the solutions produced by DeepBach. For

these examples, no note was set by hand and we asked

DeepBach to generate regions longer than one bar and cov-

ering all four voices.

Despite some compositional errors like parallel octaves,

the musical analysis reveals that the DeepBach composi-

tions reproduce typical Bach-like patterns, from character-

istic cadences to the expressive use of nonchord tones. As

discussed in Sect. 4.2, DeepBach also learned the correct

spelling of the notes. Among examples in Fig. 8, examples

(a) and (b) share the same metadata (S,F and K). This

demonstrates that even with fixed metadata it is possible to

generate contrasting chorales.

Since we aimed at producing music that could not be dis-

tinguished from actual Bach compositions, we had all pro-

vided extracts sung by the Wishful Singing choir. These

audio files can be heard on the accompanying website.

5. Discussion and future work

We described DeepBach, a probabilistic model together

with a sampling method which is flexible, efficient and pro-

vides musically convincing results even to the ears of pro-

fessionals. The strength of our method is the possibility to

let users impose unary constraints, which is a feature often

neglected in probabilistic models of music. Through our

graphical interface, the composition of polyphonic music

becomes accessible to non-specialists. The playful inter-

action between the user and this system can boost creativ-

ity and help explore new ideas quickly. We believe that

this approach could form a starting point for a novel com-
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Figure 7. DeepBach’s plugin minimal interface for the MuseScore music editor

(a)

(b)

(c)

Figure 8. Examples produced using DeepBach as an interactive composition tool. Examples (a) and (b) share the same metadata.

positional process that could be described as a construc-

tive dialogue between a human operator and the computer.

This method is general and its implementation simple. It is

not only applicable to Bach chorales but embraces a wider

range of polyphonic music.

Future work aims at refining our interface, speeding up

generation and handling datasets with small corpora.
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