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Abstract

Capsule Network is a promising concept in deep learn-

ing, yet its true potential is not fully realized thus far, provid-

ing sub-par performance on several key benchmark datasets

with complex data. Drawing intuition from the success

achieved by Convolutional Neural Networks (CNNs) by go-

ing deeper, we introduce DeepCaps1, a deep capsule net-

work architecture which uses a novel 3D convolution based

dynamic routing algorithm. With DeepCaps, we surpass

the state-of-the-art results in the capsule network domain

on CIFAR10, SVHN and Fashion MNIST, while achieving

a 68% reduction in the number of parameters. Further,

we propose a class-independent decoder network, which

strengthens the use of reconstruction loss as a regulariza-

tion term. This leads to an interesting property of the de-

coder, which allows us to identify and control the physical

attributes of the images represented by the instantiation pa-

rameters.

1. Introduction

In the last few years, convolutional neural networks

(CNNs) made breakthroughs in many computer vision

tasks, and significantly outperformed many conventional

curated feature driven models. Two common themes of in-

creasing the performance of CNNs are to increase the depth

and the width of the network (e.g., the number of levels

of the network and the number of units at each level) and

to use as much training data as possible. Although CNNs

have been successful, they have few limitations such as the

invariance caused by pooling and the inability to under-

stand spatial relationship between features. To address these

limitations, Sabour et al. proposed Capsule Networks [19]

which have shown promising comparable results to CNNs

in several standard datasets. Intuitively, attempting to go

deeper with capsule networks is a step in the right direction

to further enhance their performance.

1https://github.com/brjathu/deepcaps

The capsule network (CapsNet) model proposed by

Sabour et al. [19] comprises only one convolution layer

and one fully-connected capsule layer. The proposed archi-

tecture works well with the MNIST [16] dataset, nonethe-

less the performance on datasets with more complex objects

such as CIFAR10 [14] is not on par with the CNNs, due to

the nature of complex shapes in CIFAR10 in comparison to

MNIST.

A naive attempt of creating a deep CapsNet by simply

stacking such fully-connected capsule layers will result in

an architecture similar to a MLP model which has several

limitations. First, dynamic routing used in capsule networks

is an extremely computationally expensive procedure, and

having multiple routing layers incur higher costs of training

and inference time. Second, it has been recently shown that

stacking fully connected capsule layers on top of each other

will result in poor learning in the middle layers [24]. This

is due to the fact that when there are too many capsules,

the coupling coefficients tend to be too small, consequently

dampening the gradient flow and inhibiting learning. Third,

it has been shown that, especially in the lower layers, cor-

related units tend to concentrate in local regions [21]. Al-

though localized routing can conspicuously take advantage

of this observation, such localized routing cannot be imple-

mented in fully connected capsules.

In order to address these limitations caused by stacking

capsule layers, we propose the following solutions. To re-

duce the computational complexity introduced by multiple

layers needing dynamic routing, several avenues are possi-

ble: Reducing the number of routing iterations in the initial

layers that are larger in size reduces the complexity while

not affecting the features as they need not be complex in

nature. In addition, using 3D-convolution-inspired routing

in the middle layers –due to parameter sharing– reduces

the number of parameters. We can address the problem of

poor learning in the middle layers due to naive stacking by

improving the gradient flow, that involve skip connections

coupled with convolutions. Moreover, while reducing the
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complexity, the deep capsule network must be able to han-

dle richer data sets than MNIST. We propose that localized

routing will be able to capture the higher level information

better than fully connected routing.

Sabour et al. [19] used regularization through the in-

corporation of reconstruction error (which is generated by

the decoder network) to reduce over fitting. Nevertheless,

a stronger regularization than [19] is necessary to reduce

overfitting when developing deeper networks, due to the in-

herent increase in the model complexity with model depth.

Hence, in an attempt to enhance the regularization, we pro-

pose a class-independent decoder. We observed an interest-

ing property of this decoder, which provides controllability

over the learning and perturbation of instantiation param-

eters. In existing capsule networks and decoders, it is not

possible to guarantee that the physical property represented

by a given instantiation parameter is the same across all the

classes. In the proposed decoder, it is guaranteed that the

represented property will be the same for any given instanti-

ation parameter across all the classes, providing higher con-

trollability, which is immensely advantageous in practical

applications and theoretical studies.

To this end, in this paper, we propose DeepCaps: a deep

capsule network architecture by leveraging two key ideas:

Dynamic routing and Going deeper in the network. The

novel dynamic routing algorithm that we propose achieves

parameter reduction and localized routing, making the rout-

ing possible in a convolutional framework rather than re-

sorting to fully-connected capsules, while skip connections

allow us to train deeper networks. More specifically, we

make the following contributions in the paper:

• Proposing a novel deep architecture for capsule net-

works, termed DeepCaps, that aims at improving the

performance of the capsule networks for more com-

plex image datasets. Further, we propose a novel 3D-

convolution-based dynamic routing algorithm to aid

the learning process of DeepCaps.

• Proposing a novel class-independent decoder network,

which acts as a better regularization term. We further

investigate on the observation that this novel decoder

has the ability to provide controllability over the in-

stantiation parameters.

• Evaluating the performance of DeepCaps on several

benchmark datasets: We significantly outperform the

existing state-of-the-art capsule network architectures,

while requiring a significantly lower number of param-

eters. For example, for the CIFAR10 dataset, Deep-

Caps achieves a 3% improvement in the accuracy in

comparison to [19], along with a 68% reduction in the

number of parameters.

The rest of the paper is organized as follows: In Sec-

tion 2, we discuss the related work on Capsule Networks,

Section 3 describes our DeepCaps architecture and the

novel 3D routing algorithm, Section 4 outlines the class-

independent decoder network. Section 5 shows our results.

Finally, Section 6 concludes the paper.

2. Related Work

One of the major issues which we face with deep net-

works is the vanishing/exploding gradients. When the er-

ror signal is passed through many layers, it can vanish and

wash out by the time it reaches the beginning of the net-

work [2], [4], which hinders the convergence. This issue is

being addressed in many models proposed, where ResNets

[5] and Highway Networks [20] bypass signals from one

layer to the next via identity connections. Stochastic depth

[10] shortens ResNets by randomly dropping layers dur-

ing training to allow better information and gradient flow.

DenseNets [9] ensure the maximum information flow be-

tween layers in the network, by connecting all layers (with

matching feature-map sizes) directly with each other. To

preserve the feed-forward nature, each layer obtains addi-

tional inputs from all preceding layers and passes on its own

feature-maps to all subsequent layers. They create short

paths from early layers to latter layers.

The idea of grouping the neurons is proposed in Hinton

et al. [7]. As an extension to this, Sabour et al. [19] pro-

posed a dynamic routing algorithm between capsules, us-

ing the concept of routing by agreement between capsules.

Dynamic routing helps the network to achieve eqivarience,

where CNNs can only achieve in-variance by the pooling

operation. In addition to dynamic routing, Hinton et al. [8]

used EM routing for matrix capsules representing each en-

tity by a pose matrix. There have been many extensions to

these: HitNet [3] uses a hybrid hit and miss layer for data

augmentations. Dilin et al. [23] solves the dynamic rout-

ing as an optimization problem, and achieves better perfor-

mance by introducing KL divergence between the coupling

distribution. CapsGan [11] uses a capsule network as the

discriminator in the GAN pipeline, to get visually better re-

sults than convolutional GANs. In contrast to these, our

work focuses on going deeper with the capsule networks

and increase its performance on more complex datasets.

SegCaps [15] uses capsules for image segmentation and

they achieve the state-of-the-art results on LUNA16 dataset.

This is the closest work to ours on the basis of routing.

They use 2D convolution for the voting procedure. By us-

ing 2D convolutions, it takes all the capsule along depth as

the inputs for the transformation, thus, mixing the informa-

tion contained in the capsules. In our 3D-convolution-based

routing, we design the strides along the depth to be the cap-

sule dimension, as a result of which, each capsules along

the depth dimension is voted separately.
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Our work explores the possibilities of creating deeper

networks consisting of multiple capsule layers. We believe,

to the best of our knowledge, that this is the first attempt

to go deeper with capsule networks. Further, the instantia-

tion parameters of the capsule networks have shown a novel

way of representing the images, by encoding physical vari-

ations such as rotation and skewness in a vector. A small

perturbation in an instantiation parameter will change the

corresponding physical variations in the reconstructed im-

age. Still which parameter causes what kind of changes in

the reconstructed images has been not studied.

3. DeepCaps

One of the main drawbacks with dynamic routing in the

current form [19] is that it can only be implemented in a

fully connected manner (e.g., it cannot be implemented in

a convolutional manner). In [19], after the primary capsule

layer, capsule vectors are flattened and dynamically routed

to the classification capsules. Thus, if it is necessary to

go deep into the architecture with the dynamic routing al-

gorithm in [19], we need to keep stacking fully connected

capsule layers, which is equivalent to stacking fully con-

nected layers in MLP models. This is not computationally

efficient as the feature space is large at the start of the net-

work. Hence, in order to stack convolutional capsule layers

similar to the conventional CNNs, a novel dynamic routing

algorithm is required.

3.1. 3D Convolution Based Dynamic Routing

Let the output of the capsule layer l be Φ
l ∈

R
(wl,wl,cl,nl), where wl is the height and the width of the

feature map, cl is the number of 3D capsule tensors, and nl

is the number of atoms (i.e. capsule dimension). In this sec-

tion, we illustrate the novel mechanism that we propose in

order to route the 3D capsule tensors from layer l to predict

the new 3D capsule tensor Φl+1 ∈ R
(wl+1,wl+1,cl+1,nl+1).

First, we reshape Φ
l into a single channel tensor Φ̃

l,

which has a shape of (wl, wl, cl×nl, 1) and convolve it with

(cl+1 × nl+1) number of 3D convolutional kernels. Let Ψl
t

be the tth kernel in layer l where t ∈ [cl+1 × nl+1], which

results in the intermediate votes V, and has the shape of

(wl+1, wl+1, cl, cl+1 × nl+1). Keeping the size of Ψl
t and

stride as nl along with depth, allow us to get a vote for sin-

gle capsule from layer l. See Fig. 1. Using a 3D convolution

kernel with height and the width of the kernel greater than

1 as the transformation matrix, allows us to predict higher

level capsules using a set of lower level capsules.

Each element vi,j,k,m in V can be obtained by perform-

ing the 3D convolution operation, which is defined accord-

ing to the Eq. 1 below:

vi,j,k,m =
∑

p

∑

q

∑

r

Φ̃
l(i−p, j−q, k−r) ·Ψl

t(p, q, r)

(1)

In order to keep the shape of the intermediate votes V to

be consistent with number of channels in the input capsule

tensor Φ̃l, we use (1, 1, nl) as the stride for the 3D convo-

lution operations.

Subsequently, we reshape the intermediate votes V to

the inceptive votes Ṽ for the proposed iterative routing al-

gorithm. It has the shape of (wl+1, wl+1, nl+1, cl+1, cl),
since we are predicting cl+1 capsule tensors for each s ∈ cl.

Here, the value of wl+1 can be analytically calculated using

the Eq. 2 below:

wl+1 =
wl − Kernel size+ 2× Padding

Stride
+ 1 (2)

If the dynamic routing algorithm in [19] was used for

routing, it would have routed all capsules in layer l to all the

capsules in layer l + 1. However, the feature maps result-

ing from the convolution operation have localized features,

thus, adjacent capsules share similar information. We can

eliminate this redundancy by routing a block of capsules s,

from layer l to the capsules in layer l + 1, instead of rout-

ing each capsule in layer l individually. This modification

results in a significant reduction of the number of parame-

ters by a factor c · (wlwl+1)2, in comparison to the dynamic

routing algorithm.

Similarly, with a 3D convolutional kernel transforming

a subset of capsules in a block to one vote, we achieve lo-

calized voting. For example, a 3 × 3 × 8 kernel will trans-

form the adjacent 9 capsules to one vote. In other words,

in layer l, a low level entity may be represented by either

a single capsule, or more often a group of capsules, which

are adjacent to each other. Hence, rather than routing them

separately to a higher level capsule, we group them together

and route. Due to these additional requirements that are not

fulfilled by the existing routing algorithms, we propose the

following novel routing algorithm.

First, we initialize the logits Bs as 0, where Bs ∈

R
(wl+1,wl+1,cl+1), for each s ∈ [cl]. The corresponding cou-

pling coefficients Ks are calculated using a softmax 3D

function, as defined by Eq. 3, which we propose as a 3D

version of the existing softmax function. [19]

Ks = softmax 3D(Bs)

kpqrs =
exp(bpqrs)

∑

x

∑

y

∑

z exp(bxyzs)

(3)

Here, the logits are normalized among all the predicted

capsules from capsule tensor s in layer l. This is due to

the fact that a single capsule tensor in layer l predicts all
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Figure 1. Dynamic routing using 3D convolutions: In a high level explanation, each capsule tensor in layer l will predict cl+1 capsule

tensors. Therefore, cl number of predictions are available for a capsule tensor in layer l + 1. In the first routing iteration, all are equally

weighted and summed together to get the final prediction S. Then, in the following iterations, coupling coefficients are updated according

to the agreement with S and Ṽ.

the possible outputs of every (p, q, r)th capsule in the layer

l+1. In other words, each capsule tensor in layer l+1 will

have cl corresponding predictions from layer l. Each pre-

diction will be weighted with kpqrs to get a single prediction

Spqr, which will be passed through squash 3D function,

as defined by Eq. 4, to limit the length of a capsule vector

between 0 and 1, as it represents the probability of existence

of an entity.

Ŝpqr = squash 3D(Spqr)

=
‖Spqr‖

2

1 + ‖Spqr‖2
·

Spqr

‖Spqr‖

(4)

The key concept of the routing algorithm proposed

by [19] is routing by agreement between the outputs of the

capsules. The agreement between Ŝ and Ṽs is measured by

their dot product and the logits are updated with the agree-

ment measure.

We iterate through the proposed routing algorithm i

times, where we empirically set i = 3 following [19]. Af-

ter the iterations, the output of the layer l + 1, Φl+1 can be

obtained by Ŝ.

3.2. DeepCaps Architecture

Even though the architecture proposed by [19] performs

well with MNIST, fashion MNIST [25] and similar datasets,

its performance on CIFAR10 and other datasets containing

complex objects can be considered sub-par. This is due to

the fact that the MNIST images can be easily classified with

low level features such as edges and blobs, while CIFAR10

images require high level understanding of features. Thus,

in this paper we propose a novel deep capsule architecture

which contains 16 convolutional capsule layers and a fully-

connected capsule layer. However, going deep with capsule

networks poses several challenges, which we discuss and

attempt to solve by proposing customized layers below.

Algorithm 1 Dynamic Routing using 3D convolution

1: procedure ROUTING

2: Require: Φl ∈ R
(wl,wl,cl,nl), r and cl+1, nl+1

3: Φ̃
l ← Reshape(Φl) ∈ R

(wl,wl,cl×nl,1)

4: V← Conv3D(Φ̃l) ∈ R
(wl+1,wl+1,cl,cl+1

×nl+1)

5: Ṽ← Reshape(V) ∈ R
(wl+1,wl+1,nl+1,cl+1,cl)

6: B← 0 ∈ R
(wl+1,wl+1,cl+1,cl)

Let p ∈ wl+1, q ∈ wl+1, r ∈ cl+1 and s ∈ cl

7: for i iterations do

8: for all p, q, r, kpqrs ← softmax 3D(bpqrs)

9: for all s, Spqr ←
∑

s kpqrs · Ṽpqrs

10: for all s, Ŝpqr ← squash 3D(Spqr)

11: for all s, bpqrs ← bpqrs + Ŝpqr · Ṽpqrs

12: return Φ
l+1 = Ŝ

In the first few layers of the network, as the feature map

space is large, routing is computationally expensive at the

start. Hence, we keep the number of routing iterations as

one at the first few layers. We need to stack layers to build

a deep capsule network. However, since all the operations

are required to be in capsule form, stacking of convolutional

layers will not be useful as it produces the outputs as scalar

feature maps. Therefore, in order to address these require-

ments, we propose ConvCaps layer, which is similar to a

convolutional layer, except that its outputs will be squashed

4D tensors. We use ConvCaps layer where i = 1, and for

any i > 1 we use ConvCaps3D layer.

Let Φl ∈ R
(wl,wl,cl,nl) be the input to the ConvCaps

layer and Φ
l+1 ∈ R

(wl+1,wl+1,cl+1,nl+1) be the output

from the layer l. wl+1 is obtained from the convolutional

strides and padding, refer (Eq. 2). First Φl is reshaped

into (wl, wl, cl × nl) and convoluted with (cl+1 × nl+1)
filters, producing (cl+1 × nl+1) feature maps of width
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and height (wl+1, wl+1). This will then be reshaped into

(wl+1, wl+1, cl+1, nl+1) shaped Φ
l+1 tensor and squash

function is applied to the capsules. This helps us to con-

vert the feature maps into the capsule domain. In [19], when

i = 1 the predictions are equally weighted sum of the votes.

The convolution operation is an alternative way, except it

gives a weighted sum of the input capsules to predict next

layer votes. Further, when i is set to a value greater than 1,

the ConvCaps3D layer is used with 3D convolution based

dynamic routing algorithm 1.

In order to reshape ConvCaps, we introduce

FlatCaps, which are used to remove the spatial re-

lationship between adjacent capsules in ConvCaps layer

l, while keeping the part-whole relationships between

the capsules in ConvCaps layer l and FC caps layer

l + 1. Thus, the FlatCaps takes a (wl, wl, cl, nl) shaped

tensor and reshape it into a (al, nl) shaped matrix, where,

al = wl × wl × cl.

FC caps are similar to the fully connected layers in

deep neural networks. Here, Φl ∈ R
(al,nl) is mapped

into Φl+1 ∈ R
(al+1,nl+1). Each capsule in Φl is trans-

formed into a capsule in Φl+1 by a transformation matrix

Wi,j ∈ R
nl

×nl+1

. Here, the W s are learned during the

training process via back propagation.

With the use of these layers, we build our DeepCaps

architecture as illustrated by Fig. 2. The model contains

four main blocks, skip connected CapsCells, 3D convolu-

tional CapsCells, a fully-connected capsule layer and a de-

coder network. A skip connected capsule cell has three

ConvCaps layers with the first layer output convolved and

skip connected to the last layer output. The motivation be-

hind skip connections is to reduce vanishing gradients in

deep models. In addition, this allows us to route low-level

capsules to high-level capsules with skip connections. We

use element-wise layer addition to join the two capsule lay-

ers’ outputs after the skip connections. Since the capsules

are represented with vectors, a channel-wise concatenation

was not used as it duplicates the same capsule, but element-

wise addition reduces the bias and reduces the susceptibility

to noise. Subsequently, we have a cell with ConvCaps3D

layer, where the number of routing iterations is kept to 3.

Then, the ConvCaps outputs are flattened and concate-

nated with the outputs of the capsules before 3D routing

(in CapsCell 3) prior to the dynamic routing. Intuitively,

this step aids to generalize the model for a broad range of

diverse datasets. For an example, low level capsules from

cell 1 or 2 would be sufficient for datasets consisting of im-

ages with poor information content such as MNIST, while

we need to go deep enough until 3D ConvCaps capsules for

datasets consisting of images with rich information content

such as CIFAR10. Once all the capsules are collected and

concatenated, they are routed to the class capsules via the

FC caps layer. Here, the decision making happens and the

input image is encoded into the final capsule vector. Finally,

we use a decoder network to reconstruct the input image, as

proposed in [19]. However, the decoder proposed in [19]

merely consists of two fully connected layers, which can-

not properly reconstruct the spatial relationships learned by

the capsule network. Hence, we replace the decoder in [19]

with a deconvolutional decoder, which is better at recon-

structing spatial relationships.

3.3. Loss Function

We use the margin loss [19] as the loss function for

DeepCaps. The marginal loss function enhances the class

probability of the true class, while suppressing the class

probabilities of the other classes.

Lk = Tk max(0,m+ − ‖vk‖)
2

+ λ(1− Tk)max(0, ‖vk‖ −m−)2
(5)

Here Tk is 1 if the true class is k and zero otherwise. We

use m+ = 0.9 and m− = 0.1 as the lower bound for the

correct class and the upper bound of the incorrect class as in

Sabour et al. [19]. λ is used to control the effect of gradient

back propagation at the initial phase of the training.

4. Class Independent Decoder Network

Our decoder network consists of deconvolutional layers

[26] which reconstructs the input data by utilizing the in-

stantiation parameters extracted from the DeepCaps model.

In comparison with the fully-connected layer decoder [19],

this captures more spatial relationships while reconstructing

the images. Further, we use binary cross entropy as the loss

function for improved performance [12].

The existing decoder, which is used as regularization for

Capsule Networks, is class dependent. Let P ∈ R
a×b con-

tains the activity vector for all classes, where a is the num-

ber of classes in final class capsule and b is the capsule di-

mension. P is masked by the class with highest probability,

results in P̂ as shown in below Eq. 6:

p̂i,j =

{

pi,j i = t

0 i 6= t
(6)

Here i ∈ [a], j ∈ [b] and t = argmaxi(‖Pi‖
2
2) for the

inference stage, and t = true label in the training stage.

Matrix P̂ is vectorized and fed in to the decoder network,

as illustrated by Fig. 3. This vectorized P̂ ∈ R
a×b contains

non-zero values from t · b to (t + 1) · b dimensions and

zeros elsewhere. Therefore, the decoder network gets the

class information from the dimension-specific distribution,

which provides class information to the decoder indirectly,

making the decoder class dependant.

Hence, we propose a novel class-independent decoder

network which acts as a better regularizer for the capsule
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Figure 2. A four cell DeepCaps model, with first three cells using

i = 1 and in the last cell 3D convolution based dynamic routing is

applied.

networks, since it is forced to learn the activity vectors

jointly within a constrained R
b space. In our setting, only

vector Pt ∈ R
1×b is fed into the decoder, where t =

true label in the training stage, and t = argmaxi(‖Pi‖
2
2).

Apart from regularization, a key advantage of having a

decoder network is that it can be utilized for tasks such

as data generation [19]. However, a significant limitation

of these decoders is the lack of controllability over which

physical parameter is captured by which instantiation pa-

rameter. For example, if a certain instantiation parameter

for a given class causes rotation for that particular class,

there is no guarantee that the same instantiation parame-

ter would cause rotation in any other classes. As a result,

generating data with similar requirements, such as the same

thickness or skewness, is a challenge.

As a solution to these issues, we propose the following

procedure. Instead of masking the non-predicted class in-

stantiation parameters, we only send the Pt ∈ R
1×b, as il-

lustrated by Fig. 4. In contrast to the decoder learning pro-

cedure in [19], the learning of each instantiation parameter

in the proposed method is drawn from the same joint distri-

bution. Hence, the entity encapsulated by the any given in-

stantiation parameter, which is learned by the decoder, will

be the same irrespective of the image label.

Further, this procedure helps us to understand the types

of variations in the MNIST dataset. For example, rotation

and elongation being a dominant variation in the dataset

while localized changes being less dominant among char-

acters is reflected by the variance of the activity vector.

In other words, the instatiation parameters causing rota-

tions have higher variance whereas those causing localized

changes have lower variance.

Figure 3. Decoder network used in [19], which takes all the vectorized

masked activity vectors.

Figure 4. Proposed decoder, which takes only the activity vectors of

the predicted class.

610730



5. Experiments and Results

5.1. Implementation

We used Keras and Tensorflow libraries for the devel-

opment of DeepCaps. For the training procedure, we used

Adam optimizer [13] with an initial learning rate of 0.001,

which is reduced by half after each 20 epochs. During the

initial phases of the training, λ in Eq. 5 is set to 0.2 and in-

creased to 0.5 in the latter part of the training. The models

are trained on GTX-1080 and V100 GPUs, and a weighted

average ensembling is used for the 7-ensemble models re-

ported in Table 1.

5.2. Classification Results

We test our DeepCaps model with several benchmark

datasets, CIFAR10 [14], SVHN [18] , Fashion-MNIST [25]

and MNIST [16], and compare its performance with the

existing capsule network architectures. For CIFAR10 and

SVHN, we resize the 32×32×3 images to 64×64×3 and

for other datasets, original image sizes are used throughout

our experiments.

Table 1. Classification accuracies of DeepCaps, CapsNet [19] and

other variants of Capsule Networks, with the state-of-the-art re-

sults. We outperform all the capsule domain networks in CI-

FAR10, SVHN and Fashion-MNIST datasets, while achieving

similar performace on the MNIST dataset.

Model CIFAR10 SVHN F-MNIST MNIST

DenseNet [9] 96.40% 98.41% 95.40% -

ResNet [6] 93.57% - - 99.59%

DPN [1] 96.35% - 95.70% -

Wan et al. [22] - - - 99.79%

Zhong et al. [27] 96.92% - 96.35% -

Sabour et al. [19] 89.40% 95.70% 93.60% 99.75%

Nair et al. [17] 67.53% 91.06 % 89.80% 99.50%

HitNet [3] 73.30% 94.50% 92.30% 99.68%

DeepCaps 91.01% 97.16% 94.46% 99.72%

DeepCaps (7-ensembles) 92.74% 97.56% 94.73% -

Even though our results are slightly below or on-par

with the state-of-the-art results, our results comfortably sur-

pass all the existing capsule network models in CIFAR10,

SVHN and Fashion-MNIST datasets. If we take the cap-

sule network implementations with best results, there is a

3.25% improvement in CIFAR10 and 1.86% improvement

in SVHN compared to the capsule network model proposed

in [19]. For Fashion-MNIST dataset, we outperform the re-

sults of HitNet [3] by 1.62% and for MNIST, DeepCaps

produced on-par state-of-the-art results. Table 1 shows

our results in comparison with the existing capsule net-

work results and state-of-the-art results for the correspond-

ing datasets. We highlight that we were able to achieve a

near state-of-the-art performance across datasets while sur-

passing the results of all the existing capsule network mod-

els.

We rescaled the images only for CIFAR10 and SVHN

datasets as a data augmentation, since they have more rich

high level features compared to MNIST and F-MNIST.

Having 64 × 64 resolution images allows us to add more

layers to go down deep in the network.

For the models trained on CIFAR10, DeepCaps has only

7.22 Million number of parameters, while CapsNet [19]

has 22.48 Million number of parameters. Still we achieved

91.01% on CIFAR10 with a single model, where CapsNet

has a 7 ensembles accuracy of 89.40%. We tested both mod-

els’ inference time on NVIDIA V100 GPU, CapsNet takes

2.86 ms for a 32×32×3 image, while our model takes only

1.38 ms for a 64× 64× 3 image.

5.3. Class-Independent Decoder Image Reconstruc-
tion

Our class-independent decoder acts as a better regular-

ization term, yet it also helps to jointly learn the inter class

reconstruction. Hence, all the instantiation parameters are

distributed in the same space. For example, specific vari-

ations in the handwritten digit, such as boldness, rotation

and skewness are captured in same locations of the instanti-

ation parameter for all the classes. In other words, for class

‘9’ if 7th instantiation parameter is responsible for rotation,

then it will be the same 7th parameter causing rotation in

any other classes as well. The outputs of the decoder used

in [19] also subjected to changes in the perturbation of ac-

tivity vectors, yet, a specific dimension may cause rotation

in the reconstructed output for one class, and at the same

time, it will not be the same dimension causing rotation in

another class. This is due to the fact that the activity vec-

tors are distributed in a dimensional-wise separable activ-

ity vector space. Using our class independent decoder, we

can generate data for any class with a certain requirement.

For example, if we want to generate bold data from a text,

we once find the instantiation parameter responsible for the

boldness for any class, then we can perturb it to generate

bold letters across all classes, which we can not do in [19],

unless we know all the locations of instantiation parameters

corresponding to boldness for all the classes. See Fig. 5.

With this class independent decoder, we can label each

instantiation parameter causing specific changes in the re-

constructed images. For the models that we trained, we ob-

served that the 28th parameter always causes the vertical

elongation, and the 1st parameter is responsible for thick-

ness. Further, we observed that, when we rank these instan-

tiation parameters by variance, the instantiation parameter

with the higher variance causes global variations such as

rotation, elongation and thickness, while parameters with

lower variance are responsible for localized changes. See

Fig. 6. The instantiation parameter space is not restricted

to be orthogonal, hence, few instantiation parameters share

a common attribute of an image. Yet, the instantiation pa-
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Figure 5. Left half of images are generated by our decoder network, and the right half of the images are generated by decoder used in [19].

When the 28
th dimension of the activity vector is changed between [-0.075,0.075], we can clearly observe that all the variations in the left

half of the images are the same, like elongation in vertical direction. In the right half images, the variations are different for each class. For

an example ‘7’ is shrunken in the vertical dimension, ‘1’ is elongated in the vertical direction and ‘9’ is showing some rotation.
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Figure 6. All the 32 instantiation parameters and its variance across

the MNIST dataset. Although, instantiation parameter space is not

orthogonal, high variance instantiation parameters show clear sep-

arable changes in the reconstructed images, while, low variance

instantiation parameters show mixed changes.
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Figure 7. Perturbations on a single instantiation parameter of the

above digit shows that, high variance instantiation parameters

cause global changes and low variance instantiation parameters re-

sponsible for localized changes.

rameters with higher variance demonstrates clearly separa-

ble variations as illustrated by Fig. 7.

6. Conclusion

In this paper, we proposed a new deep architecture for

Capsule Networks, termed DeepCaps, drawing intuition

from the concepts of skip connections and 3D convolutions.

Skip connections within a capsule cell allow good gradient

flow in back propagation. At the bottom of the network,

we use a higher number of routing iterations when the skip

connections jump more than a layer. 3D convolutions are

used to generate votes from the capsule tensors which are

used for dynamic routing. This helps us to route a localized

group of capsules to a certain higher-level capsule. As a

result, we were able to go deeper with capsules using less

computational complexity compared to Sabour et al. [19].

Our model surpasses the state-of-the-art performance on CI-

FAR10, SVHN and Fashion-MNIST, while achieving the

state-of-the art performance on MNIST datasets in the Cap-

sule Network domain.

Further, we introduced a novel class-independent de-

coder network, which acts as a regularization for the Deep-

Caps. Since it learns from the activity vectors which are dis-

tributed in the same space, we observed that across all the

classes, a specific instantiation parameter captures a specific

change. This opens up new avenues in practical applications

such as data generation.

Furthermore, we were able to get better performance on

comparatively complex datasets such as CIFAR10, where

the CapsNet in [19] did not show significant performance.

As future work, we would like to build even deeper and

higher level understanding models and apply on Ima-

geNet dataset. The class-independent decoder network also

showed potential in data generation applications with spe-

cific requirements such as generate text data with same

styles. Further, we hope to investigate on eliminating the

correlation between the instantiation parameters.
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