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DEEPCAS: A Deep Reinforcement Learning

Algorithm for Control-Aware Scheduling
Burak Demirel, Arunselvan Ramaswamy, Daniel E. Quevedo and Holger Karl

Abstract—We consider networked control systems consisting
of multiple independent controlled subsystems, operating over
a shared communication network. Such systems are ubiquitous
in cyber-physical systems, Internet of Things, and large-scale
industrial systems. In many large-scale settings, the size of the
communication network is smaller than the size of the system.
In consequence, scheduling issues arise. The main contribution
of this paper is to develop a deep reinforcement learning-based
control-aware scheduling (DEEPCAS) algorithm to tackle these
issues. We use the following (optimal) design strategy: First, we
synthesize an optimal controller for each subsystem; next, we
design a learning algorithm that adapts to the chosen subsystems
(plants) and controllers. As a consequence of this adaptation, our
algorithm finds a schedule that minimizes the control loss. We
present empirical results to show that DEEPCAS finds schedules
with better performance than periodic ones.

Index Terms—Deep learning, reinforcement learning, optimal
control, networked control systems, scheduling, communication

I. INTRODUCTION

A
RTIFICIAL intelligence (AI) offers an attractive set of

tools that are mostly model-free, yet useful in solving

stochastic and optimal control problems arising in cyber-

physical systems (CPS), Internet of Things (IoT), and large-

scale industrial systems. AI-based solutions have seen a major

resurgence in recent years, partly owing to recent advances in

computational capacities and owing to advances in deep neural

networks for function approximation and feature extraction.

Oftentimes, the use of reinforcement learning algorithms or

AI in conjunction with traditional controllers reduces the

complexity of system design while boosting efficiency.

The abovementioned systems are all characterized by large

sizes. However, typical resources, such as communication

channels, computational resources, network bandwidth etc., do

not scale with system size. In other words, resource allocation

is an important problem in this setting. In addition, in a

distributed control setting that involves feedback, resource

allocation is required to be “control-aware”, i.e., it is needed

to aid in optimizing closed-loop control performance. In such

feedback driven systems, controllers often rely on information
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Fig. 1. Networked control system (NCS) that consists of N control subsys-
tems closed over a shared communication network.

collected from various sensors to make intelligent decisions.

Hence, efficient information dispersion is essential for decision

making over communication networks to be effective. As

noted earlier, this is a hard problem since the number of

communication channels available is much smaller than what

is ideally required to transfer data from sensors to controllers.

Fig. 1 illustrates a simplified representation of the class

of CPS and IoT systems of interest. The system consists of

N independent subsystems that communicate over a shared

communication network, which contains M channels. We

assume that M ≪ N (M is much smaller than N ), and

that transmissions are via error-free channels. Each subsystem

consists of one smart sensor, one controller, and one plant.

Within each subsystem, there is feedback from the sensor

to the controller. These feedback loops are closed over this

resource-constrained communication network.

At every stage, DEEPCAS, our deep reinforcement

learning-based model-free scheduling algorithm, decides

which M of the N subsystems are allocated channels to

close the feedback loop. DEEPCAS takes scheduling decisions

by adapting to the control actions while trying to minimize

the control loss. At every stage, the smart sensors compute

estimates of the subsystem states, using Kalman Filter (I), for

transmission to the corresponding controller, see Fig. 1. The

controller runs Kalman Filter (II) to estimate the subsystem

state in the absence of transmissions. In addition to Kalman

Filter (I), each smart sensor also implements a copy of Kalman

Filter (II) and the control algorithm. In other words, the

smart sensor is cognizant of the state estimate used by the



controller at every time instant. DEEPCAS obtains feedbacks

(i.e., rewards) from sensors for taking scheduling decisions.

Previously, several scheduling strategies have been proposed

to determine the access order of different sensors and/or

actuators; see [1] and references therein. A popular approach is

to use periodic schedules [2]–[5] since they are easy to imple-

ment and they facilitate stability analysis of networked control

systems. Unfortunately, finding optimal periodic schedules for

control applications may not be easy since both period and

sequence need to be found. Further, restricting to periodic

schedules may lead to performance loss [6]. With a handful

of exceptions, the determination of optimal schedules indeed

requires solving a mixed-integer quadratic program, which

is computationally infeasible for all but very small systems;

see [6], [7].

Event- and self-triggering algorithms present popular alter-

natives to periodic scheduling; see [8] and references therein.

Linear, quadratic optimal control problems subject to such

scheduling schemes have been investigated in [9]–[12]. Many

of the aforementioned results only consider single-loop control

systems. There exists limited literature that study multi-loop

control systems [9]–[11]. One limitation is that many of these

results only investigate linear scalar systems.

Our contribution in the present work is in the develop-

ment of a deep reinforcement learning-based control-aware

scheduling algorithm, DEEPCAS. At its heart lies the Deep Q-

Network (DQN), a modern variant of Q learning, introduced

in [13]. In addition to being readily scalable, DEEPCAS

is completely model-free. To optimize the overall control

performance, we propose the following sequential design of

control and scheduling: In the first step, we design an opti-

mal controller for each independent subsystem. As discussed

in [12], under limited communication, the control loss has

two components: (a) best possible control loss (b) error due to

intermittent transmissions. If M = N , then (b) vanishes. Since

we are in the setting of M ≪ N , the goal of the scheduler is

to minimize (b). To this end, we first construct an associated

Markov decision process (MDP). The state space of this MDP

is the difference in state estimates of all controllers and sensors

(obtainable from the smart sensors). The single-stage reward

is the negative of the loss component (b). Since we are using

DQN to solve this MDP, we do not need the knowledge of

transition probabilities. The goal of DEEPCAS is to find a

scheduling strategy that maximizes the reward, i.e., minimizes

(b).

II. NETWORKED CONTROL SYSTEM: MODEL,

ASSUMPTIONS, AND GOALS

A. Model for each subsystem

As illustrated in Fig. 1, our networked control system con-

sists of N independent closed-loop subsystems. The feedback

loop within each subsystem (plant) is closed over a shared

communication network. For 1 ≤ i ≤ N , subsystem i is

described by

x
(i)
t+1 = A(i)

x
(i)
t +B(i)

u
(i)
t +w

(i)
t , (1)

where A(i) and B(i) are matrices of appropriate dimensions,

x
(i)
t ∈ R

ni is the state of subsystem i, u
(i)
t ∈ R

mi is the con-

trol input, and w
(i)
t ∈ R

ni is zero-mean i.i.d. Gaussian noise

with covariance matrix W (i). The initial state of subsystem i,

x
(i)
0 , is assumed to be a Gaussian random vector with mean

x̄
(i)
0 and covariance matrix X

(i)
0 and of each other.

At a given time t, we assume that only noisy output

measurements are available. We, thus, have:

y
(i)
t = C(i)

x
(i)
t + v

(i)
t , (2)

where v
(i)
t ∈ R

pi is zero-mean i.i.d. Gaussian noise with

covariance matrix V (i). The noise sequences, w
(i)
t and v

(i)
t ,

are independent of the initial conditions x
(i)
0 .

B. Control architecture and loss function

The dynamics of each subsystem is a stochastic linear time-

invariant (LTI) system given by (1). Further, each subsystem is

independently controlled. Dependencies do arise from sharing

a communication network. Subsystem i has a smart sensor

which samples the subsystem’s output y
(i)
t and computes an

estimate of the subsystem’s state. This value is then sent to

the associated controller, provided a channel is allocated to it

by DEEPCAS. If the controller obtains a new state estimate

from the sensor, then it calculates a control command based on

this state estimate. Otherwise, it calculates a control command

based on its own estimate of the subsystem’s state.

The control actions and scheduling decisions (of DEEP-

CAS) are taken to minimize the total control loss given by

J =

N
∑

i=1

J (i), (3)

where J (i) is the expected control loss of subsystem i and is

given by

J (i) = E

[

x
(i)⊤
T Q

(i)
f x

(i)
T

+

T−1
∑

t=0

(

x
(i)⊤
t Q(i)

x
(i)
t + u

(i)⊤
t R(i)

u
(i)
t

)

]

,

where Q(i) and Q
(i)
f are positive semi-definite matrices and

R(i) is positive definite.

C. Smart sensors and pre-processing units

Within our setting, the primary role of a smart sensor is to

take measurements of a subsystem’s output. Also, it plays a

vital role in helping DEEPCAS with scheduling decisions. It

is from the smart sensors that DEEPCAS gets all the necessary

feedback information for scheduling. For these tasks, each

smart sensor employs two Kalman filters: (1) Kalman Filter

(I) is used to estimate the subsystem’s state, (2) a copy of

Kalman Filter (II) is used to estimate the subsystem’s state as

perceived by the controller. Note that the controller employs

Kalman Filter (II). Below, we discuss the set-up in more detail.



Kalman filter (I): Since we assume that the sensors have

knowledge of previous plant inputs, the sensors employ stan-

dard Kalman filters to compute the state estimate x̂
(i)s
t|t and

covariance P
(i)s
t|t recursively as:

x̂
(i)s
t|t−1 = A(i)

x̂
(i)s
t−1|t−1 +B(i)

u
(i)
t−1

P
(i)s
t|t−1 = A(i)P

(i)s
t−1|t−1A

(i)⊤ +W (i)

Kt = P
(i)s
t|t−1C

(i)⊤
(

C(i)P
(i)s
t|t−1C

(i)⊤ + V (i)
)−1

x̂
(i)s
t|t = x̂

(i)s
t|t−1 +K

(i)
t

(

y
(i)
t − Cx̂

(i)s
t|t−1

)

P
(i)s
t|t =

(

I −K
(i)
t C(i)

)

P
(i)s
t|t−1 ,

starting from x̂
(i)s
0|−1 = x̄

(i)
0 and P

(i)s
0|−1 = X

(i)
0 .

Kalman filter (II): The controller runs a minimum mean

square error (MMSE) estimator to compute estimates of the

subsystem’s state as follows:

x̂
(i)c
t|t−1 = A(i)

x̂
(i)c
t−1|t−1 +B(i)

u
(i)
t−1 , (4)

x̂
(i)c
t|t =

{

x̂
(i)s
t|t if the MMSE estimate received ,

x̂
(i)c
t|t−1 otherwise ,

(5)

with x̂
(i)c
0|−1 = x̄

(i)
0 .

D. Goal: minimizing the control loss

For the control problem studied, the certainty equivalent

(CE) controller is still optimal; see [12] for details. Using

the control commands, generated by the CE controllers, the

minimum value of the total control loss, (3), has two compo-

nents: (a) best possible control loss (b) error due to intermittent

communications. Hence, the problem of minimizing control

loss has two separate components: (i) designing the best

(optimal) controller for each subsystem and (ii) scheduling

in a control-aware manner.

Component I: Controller design. The controller in feedback

loop i takes the following control action, u
(i)
t , at time t:

u
(i)
t = −L

(i)
t x̂

(i)c
t|t , (6)

where x̂
(i)c
t|t is the state estimate used by the controller,

L
(i)
t = (B(i)⊤S

(i)
t+1B

(i) +R(i))−1B(i)⊤S
(i)
t+1A

(i) (7)

and S
(i)
t is recursively computed as

S
(i)
t = A(i)⊤S

(i)
t+1A

(i) +Q(i) −A(i)⊤S
(i)
t+1B

(i)

× (B(i)⊤S
(i)
t+1B

(i) +R(i))−1B(i)⊤S
(i)
t+1A

(i), (8)

with initial values S
(i)
N = Q

(i)
f . Let x̂

(i)s
t|t be the state estimate

of Kalman Filter (I), as employed by the sensor. We have

x̂
(i)c
t|t = x̂

(i)s
t|t when the sensor and controller of the feedback

loop i have communicated. Otherwise, x̂
(i)c
t|t is the state

estimate obtained from Kalman Filter (II). The minimum value

of the control loss of subsystem i is given by

J (i) = x̄
(i)⊤
0 S

(i)
0 x̄

(i)
0 + Tr

(

S
(i)
0 X

(i)
0

)

+

T−1
∑

t=0

Tr
(

S
(i)
t+1W

(i)
)

+
T−1
∑

t=0

Tr
(

P
(i)s
t|t Γ

(i)
t

)

+
T−1
∑

t=0

E

[

e
(i)⊤
t|t Γ

(i)
t e

(i)
t|t

]

, (9)

where Γ
(i)
t , L

(i)⊤
t (B(i)⊤S

(i)
t+1B

(i) + R(i))L
(i)
t and e

(i)
t|t ,

x̂
(i)s
t|t − x̂

(i)c
t|t stems from communication errors in subsystem

i. Recall that there are N subsystems and M << N commu-

nication channels.

Component II: Control-aware scheduling. The main aim of

the scheduling algorithm is to help minimize J of (3). To this

end, one must minimize

T−1
∑

t=0

E

[

e
(i)⊤
t|t Γ

(i)
t e

(i)
t|t

]

(10)

of (9) for every 1 ≤ i ≤ N . Note that T in (10) is the control

horizon. At any time t, the scheduler decides which M among

the N subsystems may communicate. Note that e
(i)
t|t = 0 when

a communication channel is assigned to subsystem i at time t.
In the following section, we present a deep reinforcement

learning algorithm for control-aware scheduling called DEEP-

CAS. DEEPCAS communicates only with the smart sensors.

At every time instant, sensors are told if they can transmit to

their associated controllers. Then, the sensors provide feedback

on the scheduling decision for that stage. Note that we do not

consider the overhead involved in providing feedback.

III. DEEP REINFORCEMENT LEARNING FOR

CONTROL-AWARE SCHEDULING

As stated earlier, at the heart of DEEPCAS lies the DQN.

The DQN is a modern variant of Q-learning that effectively

counters Bellman’s curse of dimensionality. Essentially, DQN

or Q-learning finds a solution to an associated Markov decision

process (MDP) in an iterative model-free manner. Before

proceeding, let us recall the definition of an MDP. For a more

detailed exposition, the reader is referred to [14]. An MDP,

M, is given by the following tuple (S,A, P, r, γ), where

S is the state-space of M;

A is the set of actions that can be taken;

P is the transition probability, i.e., P (s, s′; a) is the proba-

bility of transitioning to state s′ when action a is taken

at state s;

r is the one stage reward function, i.e., r(s, a) is the reward

when action a is taken at state s;

γ is the discount factor with γ ∈ [0, 1].

Below, we state the MDP Md associated with our problem.

S: The state space S consists of all possible augmented error

vectors. Hence, the state vector st at time t is given by

(e
(1)
t|t , . . . , e

(N)
t|t ).

A: Action space is given by the M -size subsets of the chan-

nels: {S | S ⊂ {1, 2, . . . , N}, |S| = M}. Hence, the car-

dinality of the action space is given by |A| =
(

N
M

)

.



r: At time t, the reward r(t) is given by

−
∑N

i=1 e
(i)
t|tΓ

(i)
t e

(i)
t|t .

γ: Although it would seem natural to use γ = 1, we use

0 < γ < 1 since it hastens the rate of convergence.

Note that the scheduler (DEEPCAS) takes action just before

time t and receives rewards just after time t, based on

transmissions at time t. Also, note that DEEPCAS only gets

non-zero rewards from non-transmitting sensors. DEEPCAS

is model-free. Hence, it does not need to know transition

probabilities.

Let us suppose we use a reinforcement learning algorithm,

such as Q-learning, to solve Md. Since the learning algorithm

will find policies that minimize the future expected cumulative

rewards, we expect to find policies that minimize scheduling

effects on the entire system. This is a consequence of our

above definition of reward r. Below, we provide a brief

overview of Q-learning and DQN, the reinforcement learning

algorithm at the heart of DEEPCAS. Simply put, DEEPCAS

is a DQN solving the above defined MDP Md.

DEEPCAS. At any time t0, the scheduler is interested in

maximizing the following expected discounted future reward:

R(t0) := E

[

T−1
∑

t=t0

γt−t0r(t)

]

.

Recall that r(t) is the single stage cost given by

−
N
∑

i=1

e
(i)
t|tΓ

(i)
t e

(i)
t|t . Q-learning is a useful methodology to solve

such problems. It is based on finding the following Q-factor

for every state-action pair:

Q∗(s, a) := max
π

E [Rt | st = s, at = a, π] ,

where π is a policy that maps states to actions. The algorithm

itself is based on the Bellman equation:

Q∗(s, a) = Es′∼E [r + γmax
a′∈A

Q∗(s′, a′) | s, a] .

Note that DEEPCAS has no knowledge of networked control

system dynamics. This unknown dynamics is represented by E ,

in the above equation. Since our state space is continuous, we

use a deep neural network (DNN) for function approximation.

Specifically, we try to find good approximations of the Q-

factors iteratively. In other words, the neural network takes

as input state s and outputs Q(s, a, θ) for every possible

action a, such that Q(s, a, θ) ≈ Q∗(s, a). This deep function

approximator, with weights θ, is referred to as a Deep Q-

Network. The Deep Q-Network is trained by minimizing a

time-varying sequence of loss functions Lt(θt) given by

Lt(θt) =
(

1/2
)

Es,a∼ρ(s,a)

[

(Q(s, a, θt)− yt)
2
]

,

where yt := Es′∼E [r + γmaxa′ Q(s′, a′, θt−1) | s, a] is the

expected cost-to-go based on the latest update of the weights;

ρ is the behavior distribution [13]. Training the neural network

involves finding θ∗, which minimizes the loss functions. Since

the algorithm is run online, training is done in conjunction with

scheduling. At time t, after feedback (reward) is received, one

gradient descent step can be performed using the following

gradient term:

∇θtLt(θt) = Es,a∼ρ(·);s∼E

[

(

Q(s, a; θt)− r

− γmax
a′

Q(s′, a′, θt−1)
)

∇θtQ(s, a; θt)

]

. (11)

To make the algorithm implementable, we update the weights

θt using samples than finding the above expectation exactly. At

each time, we pick actions using the ǫ-greedy approach [13].

Specifically, we pick a random action with probability ǫ, and

we pick a greedy action with probability 1− ǫ. This ǫ-greedy

approach for picking actions induces the behavior distribution

ρ. In other words, the actions at every stage are picked using

distribution ρ. Note that a greedy action at at time t is one that

maximizes Q(st, a; θ). Initially it is desirable to explore, hence

ǫ is set to 1. Once the algorithm has gained some experience,

it is better to exploit this experience. To accomplish this, we

use an attenuating ǫ to 0.

Although we train our DNN in an online manner, we do not

perform a gradient descent step using (11), since it can lead

to poor learning. Instead, we store the previous K experiences

(st, at, rt, st+1), t0−K+1 ≤ t ≤ t0, in an experience replay

memory D. When it comes to training the neural network

at time t, it performs a single mini-batch gradient descent

step. The mini-batch (of gradients) is randomly sampled from

the aforementioned experience replay D. The idea of using

experience replay memory, to overcome biases and to have a

stabilizing effect on algorithms, was introduced in [13].

DQN for control-aware scheduling

1: Initialize the replay memory D to capacity K.

2: Initialize the weights, θ, of the Q-Network.

3: for the entire duration do

4: With probability ǫ select a random action at.
5: With probability 1 − ǫ pick at that maximizes

Q(st, a, θ).
6: Execute action at to obtain reward rt and observe

st+1.

7: Store (st, at, rt, st+1) in D.

8: Sample random mini-batch transitions

((sj , aj , rj , sj+1)) from D.

9: Corresponding to (sj , aj , rj , sj+1), set

yj := rj + γmax
a′

Q(sj+1, a
′; θ).

10: Perform a gradient descent step with loss given by

(yj −Q(sj , aj ; θ))
2.

IV. EXPERIMENTAL RESULTS

Recall that DQN is at the heart of our DEEPCAS, which

uses a deep neural network to approximate Q-factors. The

input to this neural network is the appended error vector.

The hidden layer consists of 1024 rectifier units. The output

layer is a fully connected linear layer with a single output

for each of the
(

N
M

)

actions. The discount factor γ in our Q-

learning algorithm is fixed at 0.95. The size of the experience



replay buffer is fixed at 20, 000. The exploration parameter ǫ is

initialized to 1, then attenuated to 0.001 at the rate of 0.9. For

training the neural network, we use the optimizer ADAM [15]

with a learning rate of e−4 and a decay of 0.001. The control

horizon is set to T = 500. Note that we used the same set of

parameters for all of the experiments presented below.

We conducted three sets of experiments. For the first two

sets, we used the reward described in Section III. For the last

experiment, we used the total control cost as the reward. The

reader is referred to (9) in Section II-D for the control cost

associated with subsystem i. Using the full control cost as

the reward allows us to discuss the stability of the networked

control system, see Section V for details.

A. Experiment 1 (N=3, M=1, and T=500)

For our first experiment, we used DEEPCAS to schedule

one channel for three subsystems. We considered three second-

order single-input-single-output (SISO) subsystems consisting

of one stable (subsystem 2) and two unstable subsystems

(subsystems 1 and 3). If there were three channels, then there

would be no scheduling problem and the total optimal control

loss J would be 13.8487. Since there is only a single channel

available, one expects a solution to the scheduling problem to

allocate it to subsystems 1 and 3 for a more substantial fraction

of the time, as compared to subsystem 2. This expectation is

fair since subsystems 1 and 3 are unstable while subsystem

2 is stable. Once trained, on an average DEEPCAS indeed

allocates the channel to subsystem 1 for 52% of the time, to

subsystem 2 for 12% of the time, and to subsystem 3 for 36%

of the time.

We train DEEPCAS continuously over many epochs. Each

epoch corresponds to a single run of the control problem with

horizon 500. At the start of each epoch, the initial conditions

for the control problem are chosen as explained in § II. The

black-curve in Fig. 2 illustrates the learning progress in Exper-

iment 1. The abscissa axis of the graph represents the epoch

number while the ordinate axis represents the average control

loss. The plot is obtained by taking the mean of 30 Monte

Carlo runs. Since DQN is randomly initialized, scheduling

decisions are poor at the beginning, and the average control

loss is high. As learning proceeds, the decisions taken improve.

After only 10 epochs, DEEPCAS converges to a scheduling

strategy with an associated control loss of around 21.

Traditionally, the problem of scheduling for control systems

is solved by using control theoretic heuristics to find periodic

schedules. For Experiment 1, we exhaustively searched the

space of all periodic schedules, with periods ranging from 2
to 11. Using this strategy, we were able to acheive a minimum

possible control loss of J = 22.8112. In comparison, DEEP-

CAS finds a scheduling strategy with an associated control

loss of 21.15. In addition to being faster, DEEPCAS does not

need any system specification and can schedule efficiently for

very long control horizons.

B. Experiment 2 (N=6, M=3, and T=500)

For our second experiment, we train DEEPCAS to schedule

three channels for a system with six second-order SISO
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Fig. 2. Convergence of the empirical average control loss.

subsystems. If N = M , then the total control loss would

be 18.234. As before, learning is done continuously over

many epochs. The red-curve in Fig. 2 illustrates the learning

progress of DEEPCAS in scheduling three channels among

six subsystems. The abscissa and ordinate axes are as before.

As evidenced in the figure, DEEPCAS quickly finds schedules

with an associated control loss of around 20.

We are unable to compare the results of Experiment 2

with any optimal periodic schedules. This is because optimal

periodic scheduling strategies do not extend to the system

size and control horizon considered here. Further, performing

an exhaustive search for finding periodic schedules is not

possible since the number of possibilities are in the order of
(

6
3

)n
= 20n, where n is the period-length.

C. Experiment 3 (same set-up as Experiment 1 but with −J
as reward)

The systems considered hitherto have independent subsys-

tems. This facilitates the splitting of the total control cost into

two components; see (9). The one-stage reward in our algo-

rithm is the negative of the error due to lack of communication

defined in (10). However, in general multi-agent settings, the

previously mentioned splitting may not be possible. To show

that our results are readily extensible to more general settings,

we repeated Experiments 1 and 2 with negative of the one-

stage control cost as the reward. The results of the modified

experiments are very similar to the original ones. The learning

progress of the modified Experiment 1, with full cost, is given

by the green-curve in Fig. 2.

V. STABILITY ISSUES

In our framework, the controller and scheduler run in

tandem. The control policy, πc, is fixed before the scheduler

is trained. As a consequence of training, the scheduler finds a

scheduling policy πs. Thus, the controller-scheduler pair finds

a policy tuple (πc, πs). To investigate the stabilizing properties

of DEEPCAS, we make the following mild assumptions on

this policy tuple.



A1 lim inf
n→∞

1
n

∑n
t=0 J(t) = lim sup

n→∞

1
n

∑n
t=0 J(t), where

J(t) :=
∑N

i=1 J
(i)(t) is the single-stage control loss and

J (i)(t) = x̄
(i)⊤
0 S

(i)
0 x̄

(i)
0 + Tr

(

S
(i)
0 X

(i)
0

)

+ Tr
(

S
(i)
t+1W

(i)
)

+ Tr
(

P
(i)s
t|t Γ

(i)
t

)

+E

[

e
(i)⊤
t|t Γ

(i)
t e

(i)
t|t

]

is the single stage loss of subsystem i at time t. In

other words, we assume that the limit of the average

cost sequence exists. This limit may be infinite, i.e.,

lim
n→∞

1
n

∑n
t=0 J(t) < ∞ or = ∞.

A2 The discount factor γ used for training is such that

lim inf
α↑1

(1 − α)
∞
∑

t=0
αtJ(t) ≤

∞
∑

t=0
γtJ(t) + M0, for some

0 < M0 < ∞. Again, it could be that
∑∞

t=0 γ
tJ(t) = ∞.

In which case, (A2) is trivially satisfied.

In our framework, the controller uses a control policy, πc,

that solves the average cost control problem. The scheduler

learns a scheduling policy, πs, to solve the discounted cost

problem. Since they run in tandem, the control loss value J(t),
at any time t, depends on both the control and scheduling

actions taken at time t. Further, we have empirically observed

that our scheduler can be successfully trained for all discount

factors γ close to 1. Before proceeding, consider the following

theorem due to Abel:

Theorem 1 (Abel, [16]) Let {ct}t≥0 be a sequence of posi-

tive real numbers, then

lim inf
n→∞

1
n

∑

ct ≤ lim inf
α↑1

(1− α)

∞
∑

t=0

αtct.

It follows from (A1) and Abel’s theorem that

lim
n→∞

1
n

∑

J(t) ≤ lim inf
α↑1

(1− α)

∞
∑

t=0

αtJ(t) .

Recall that our scheduler can be successfully trained to solve

the discounted cost problem for all discount factors close to

(but not equal to) 1. In other words, given a discount factor

γ ≈ 1, the scheduler finds a policy πs(α) such that

∞
∑

t=0

γtJ(t) < ∞.

If we couple this observation with (A2), we get:

lim inf
α↑1

(1− α)

∞
∑

t=0

αtJ(t) ≤

∞
∑

t=0

γtJ(t) +M(γ) < ∞,

for some γ ≈ 1 and M(γ) > 0. If we choose γ as the discount

factor for our training algorithm, it follows that:

lim
n→∞

1
n

∑

J(t) ≤ lim inf
α↑1

(1− α)

∞
∑

t=0

αtJ(t)

≤

∞
∑

t=0

γtJ(t) +M(γ) < ∞.

We claim that system stability follows from this set of inequal-

ities. To see this, observe that
∑N

i=1‖x
(i)
t ‖Q ≤ J(t). Hence,

lim sup
n→∞

1
n

∑n
t=0

∑N
i=1‖x

(i)
t ‖Q ≤ lim

n→∞

1
n

∑n
t=0 J(t) < ∞. In

other words, the following claim is immediate.

Claim 1 Under (A1) and (A2), the scheduling algorithm

can be successfully trained for discount factors close to 1,

consequently
∑∞

t=0 γ
tJ(t) < ∞. Further, the policy πs thus

found, stabilizes the system, i.e., sup
t≥0

∑N
i=1‖x

(i)
t ‖Q < ∞.

VI. CONCLUSIONS

This paper considered the problem of scheduling the sensor-

to-controller communication in a networked control system,

consisting of multiple independent subsystems. To this end, we

presented DEEPCAS, a reinforcement learning-based control-

aware scheduling algorithm. This algorithm is model-free and

scalable, and it outperforms scheduling heuristics, such as

periodic schedules, tailored for feedback control applications.
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