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Abstract

Drug treatment induces cell type specific transcriptional programs, and as the number of

combinations of drugs and cell types grows, the cost for exhaustive screens measuring the

transcriptional drug response becomes intractable. We developed DeepCellState, a deep

learning autoencoder-based framework, for predicting the induced transcriptional state in a

cell type after drug treatment, based on the drug response in another cell type. Training the

method on a large collection of transcriptional drug perturbation profiles, prediction accuracy

improves significantly over baseline and alternative deep learning approaches when apply-

ing the method to two cell types, with improved accuracy when generalizing the framework

to additional cell types. Treatments with drugs or whole drug families not seen during train-

ing are predicted with similar accuracy, and the same framework can be used for predicting

the results from other interventions, such as gene knock-downs. Finally, analysis of the

trained model shows that the internal representation is able to learn regulatory relationships

between genes in a fully data-driven manner.

Author summary

A large number of gene expression profiles across different cell types are available, how-

ever many drug-cell combinations have not been profiled. Motivated by the need for accu-

rate methods for prediction of cell type specific drug responses, we developed

DeepCellState, a deep learning framework, with the goal of predicting the response in a

given cell type based on the response in another cell type. Training the method on the

largest available database for transcriptional response to drug perturbations, LINCS, we

observed that the method can predict with high accuracy the cell type specific response for

treatment with drugs not seen by the method, with improved accuracy as we generalized

the method from two to multiple cell types. Encouragingly, the method performed well

even when the response from completely unseen cell types were used as input. We further
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confirmed the robustness of our results through validation with data independently gen-

erated on other expression profiling platforms. Analysis of the learned models revealed

although the training is completely data driven and uses no prior knowledge about regula-

tory relationships between genes, the network itself is biologically interpretable and cap-

tures interactions between transcription factors and the targets they regulate.

Introduction

The transcriptional response to drug treatment is cell type specific, with some drugs eliciting

similar effects across lineages and others evoking a range of responses depending on the cell

type [1,2]. High throughput profiling of the transcriptional effects of drug treatment has

proven to be useful for analysis of drug mode of action [3], drug repurposing [4], and predict-

ing off-target effects from drug treatment [5]. Although large repositories of gene expression

profiles for a multitude of drug treatments in multiple cell types are available [6,7], it is not

combinatorially feasible to profile all the existing drugs in all the relevant cell types, motivating

a need for methods that can accurately predict cell type specific drug responses.

An autoencoder neural network is an unsupervised learning algorithm that finds an effi-

cient compact representation of data by compressing and then reconstructing the original

input. The primary goal of an autoencoder is dimensionality reduction. Autoencoders can

have different architectures. However, the crucial feature is a bottleneck layer (latent layer),

which has lower dimensionality compared to the input layer. Because of the bottleneck, only

important features are captured by the model. Combining this property together with the addi-

tion of noise to the input allows for the construction of denoising autoencoders to build robust

models from high-dimensional data. A number of recent studies have successfully applied

autoencoders to biological problems, where deep autoencoders were used to denoise single cell

RNA-seq data sets [8,9], analyze [10,11] and predict [12,13] gene expression, and to study the

transcriptomic machinery [14]. Autoencoders have been applied to perturbation response

modeling as well, focusing on single cell data [15], where for each perturbation, a large number

of expression profiles are available with relatively low variance within sets of profiles from the

same perturbation.

A particular application of autoencoders is DeepFake technology, mainly used in image

and video processing applications to generate synthetic media where the likeness of one person

is replaced by that of another one by training an autoencoder to compress the original input

into a lower dimension latent space [16]. The same encoder part is used to compress media

depicting two or more people, whereas separate decoders are used to decompress the likeness

of each person (S1 Fig). This enables similar facial expressions or actions to be encoded in a

similar way in the latent space while at the same time allowing for the reconstruction of per-

son-specific facial details on the decoder side.

Hodos et al. [2] used matrix completion approach to predict cell-specific drug perturbation

profiles using available expression data. Their method arranges existing profiles into a three-

dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either

local or global information to predict unmeasured profiles. The developed tensor-based

method was reported to achieve an average correlation of 0.54 using multiple cell types as

input. One can also apply the new framework of deep dictionary learning [17] or deep Boltz-

mann machine [18] to generate the missing cell type/perturbation combinations. Considering

that there is still large room for improvement for transcriptome perturbation analysis and

given the previous success of autoencoder-based approaches for modeling gene expression
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data, we developed DeepCellState, an autoencoder-based framework inspired by DeepFake

architecture, for predicting cell type specific transcriptional drug response. Using a common

encoder and separate decoders for each cell type (Fig 1A), the method accurately predicts the

response in one cell type based on the response in another, with prediction accuracy increasing

as the framework is generalized to multiple cell types. DeepCellState achieves significant

improvement over the baseline and alternative deep learning approaches. Cell types not used

in training can also be used as the basis for prediction, and the system is also able to predict the

response of the entire drug families not seen by the network. Additionally, the same frame-

work can be applied to predict the effects of loss of function (LoF) experiments. Analyzing the

trained network, we find that it captures physical interactions between transcription factors

and the target genes they regulate.

Results

DeepCellState network architecture for predicting cell type specific drug
response

The network architecture of DeepCellState, featuring a common encoder and cell type specific

decoders, is shown in Fig 1B. The encoder part uses two dense layers, with dropout applied to

the input for increased generalization capabilities by forcing the model to denoise the input

[19]. This is followed by a latent vector, which in turn is the input for the decoder, consisting

of two layers with the same dimensions as the dense layers in the encoder, but in reverse order.

The encoder side is trained using transcriptional drug response data from multiple cell types,

whereas distinct decoders are trained for each cell type separately. Additional details about the

network architecture and training strategy are provided inMethods.

Initial training and evaluation of model on two cell types

We initially developed the framework for two cell types, retrieving 12737 and 12031 transcrip-

tional profiles from the LINCS database [6] measuring the drug perturbation response in

MCF-7 and PC-3 cell lines respectively, to use for initial training and evaluation (Methods).

The transcriptional response profiles, measured at 978 “landmark genes” on the L1000 plat-

form, were averaged across treatment time and doses in order to decrease noise [3]. We only

kept profiles of drugs that were available for both MCF-7 and PC-3 for the convenience of

implementation, resulting in 1750 averaged profiles for each cell type.

A naïve baseline method for predicting the transcriptional response in a cell type after treat-

ment with a specific drug is to predict that the response to that drug will be the same as in

another cell type. After training our network and using 10-fold cross-validation, holding out

10% of drugs, we obtained an average Pearson correlation coefficient (PCC) of 0.60 between

predicted and actual treatment response to drugs not seen by the network, a significant

improvement (p<1e-300, t-test) compared to the baseline average correlation of 0.28 between

the responses in the input and output cell types (Figs 2A, 2B, 2C, 2D and S2), corresponding to

an average fold-increase of 2.14 over baseline.

We wanted to explore how the results will change if the number of drugs was different for

PC-3 and MCF-7 cell types. We repeated the 10-fold cross-validation 3 times: with 70% of PC-

3 training profiles removed, with 70% of MCF-7 training profiles removed, and 70% of both

PC-3 and MCF-7 training profiles removed. In each case, we measured MCF-7 profiles predic-

tion accuracy using PC-3 profiles as input. As expected, in the latter case, the performance was

the worst, dropping to 0.50 PCC. Interestingly, for the other two experiments similar perfor-

mance was obtained. For the case when MCF-7 training data was reduced, 0.55 PCC was
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Fig 1. Overview of the proposed framework. (A): Training and prediction procedures of DeepCellState. Transcriptional profiles are encoded by a shared
encoder that captures the drug response in a cell neutral way. The latent representations of the drug responses are decoded by cell-specific decoders, which
reconstruct the original input in a cell type specific way. After the shared encoder and decoders are trained, the response to a drug in a cell type can be
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achieved, while for the case when 70% of PC-3 profiles are dropped, the performance

decreased to 0.56. These results suggest that the output profile’s cell type data is slightly more

important than the number of training profiles which are used for the model input.

To make sure that the training was not biased by being exposed to drugs with similar tar-

gets, we next revised the testing strategy to hold out entire drug families with the same modes

of action [20], yielding similar results (S3A Fig and S1 Table andMethods).

Generalization of the method to multiple cell types

Proceeding to generalize the method to multiple cell types, we incrementally added transcrip-

tion profiles from A375, HA1E, HT29, HELA, and YAPC cells (1796, 1796, 1750, 1570, and

1570 number of profiles respectively after averaging across treatment times and dosages),

obtaining increased performance when the prediction was averaged over multiple input cell

types compared to the two cell types case (PCC = 0.66, p = 1.88e-59, S3B Fig and S2 Table).

The total time to train using this much larger data was only one hour and forty minutes,

increasing less than two times compared to the two cell type model. We also tested the predic-

tion capability using completely unseen cell types as input. We have used A375 profiles as

input to predict MCF-7 profiles by a model which was trained using only MCF-7 and PC-3

profiles. This resulted in a lower performance compared to using PC-3 profiles as input, yet

the results were still significantly better than baseline (S3C Fig, PCC = 0.49 compared to base-

line PCC = 0.28, p<1e-300).

Evaluation of trained model on external data and application of transfer
learning

To further validate the performance of DeepCellState, we evaluated its predictive capabilities

on independently generated data sets on expression profiling platforms other than the L1000

platform used for the training data. In the first dataset we used, the expression profiles of four

statins were measured in HepG2, MCF-7, and THP-1 cells [21] using CAGE technology.

Using HepG2 profiles as input and predicting MCF-7 response, the DeepCellState predictions

showed a correlation of 0.43 with the true response in MCF-7 cells (1.64-fold over baseline,

p = 0.037, S3 Table and Fig 2E). Next, we tested our method using data from a study measuring

the response to 15 anticancer agents [22] on Affymetrix Human Genome U133A 2.0 Array

platform, achieving 0.41 PCC (Fig 2F) compared to 0.28 PCC for baseline (1.46-fold improve-

ment, p = 0.026, S4 Table). The common drugs from the two external data sets were removed

from the training and validation sets. More details on the data processing are inMethods.

Performance on the anticancer external dataset could be further improved through transfer

learning, performing additional training of our model on a subset of the external data set. To

this end, we used the model trained on the LINCS data and additionally trained it on 14 drugs

from the anticancer set to predict the effects of treatment with the 15th drug. This was repeated

15 times, each time leaving out one drug, resulting in an average performance of 0.56 PCC

(p = 4.04e-06 compared to baseline). This result suggests that the transfer learning approach is

useful to complete a small drug response data set which is not large enough to train the deep

learning model by itself.

predicted by using the drug’s response in another cell type. (B): The architecture of the encoder and the decoders used in DeepCellState. Dropout is applied
to the input layer, forcing the model to denoise the input. The input is encoded as a vector of size 128 with a sparsity constraint enforced by L1
regularization. The model also employs skip connections from the dropout layer directly to the output layer, allowing some of the input to be directly
copied to the output during training.

https://doi.org/10.1371/journal.pcbi.1009465.g001
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Fig 2. Evaluation of the DeepCellState performance. (A): 10-fold cross-validation results. DeepCellState performance compared to the baseline. (B): Distribution of
fold-change in DeepCellState performance over baseline for predicting MCF-7 (blue) and PC-3 (red) response. (C): From top to bottom pentobarbital response in PC-3
(baseline), MCF-7 pentobarbital response predicted by DeepCellState based on the PC-3 response, and the observedMCF-7 response (ground truth). (D): Scatter plot of
individual gene values predicted for pentobarbital response compared to the observed response in MCF-7 cells. (E): Comparison of DeepCellState and baseline
performance for prediction of statin response from an external data set. (F): Comparison of predicted anticancer drug responses. HepG2 profiles are used as input for the
model while the output profiles are for MCF-7 cells. DeepCellState� represents results obtained by applying transfer learning: performing additional training on 14 drugs
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Prediction of transcriptional effects of loss of function

We further hypothesized that the DeepCellState approach may be useful for predicting the

response to cellular perturbations other than drug treatment. To test this, we added transcrip-

tional profiles from loss of function (LoF) experiments from the same database to the training

set. Using the updated set, we obtained an average correlation of 0.56 (corresponding to an

average fold-increase over baseline of 1.6, p<1e-300, S3D Fig) on the LoF experiments, the

lower performance compared to drug perturbations likely due to that the number of available

profiles for LoF was substantially lower than the number of drug treatment profiles (10230

LoF profiles in total compared to 24768 drug perturbation profiles for MCF-7 and PC-3 before

averaging).

Comparison with alternative approaches

We benchmarked DeepCellState against other potential methods to predict the cell response

given the response in another cell. For this purpose, we focused on paired MCF-7 and PC-3

samples, with 30% data used for the test set. Recently, variational auto-encoders (VAEs) were

used to deal with the paired biological data [23]. Anchor loss was used in this approach to

ensure that paired samples are encoded closely in the latent space. Generative adversarial net-

works (GANs) were also applied to paired and semi-paired biological data [24,25]. The authors

of MAGAN [25] proposed a dual GAN setup with a special correspondence loss for the labeled

data. In the dual GAN framework, each generator learns a mapping from one type of data to

another in order to generate increasingly realistic output that cannot be distinguished from

real data by a discriminator.

scGen [15] was proposed to predict single cell perturbation responses based on VAE archi-

tecture, where an encoder is used to learn the semantic embedding of both the normal cell

state and the stimulated state. The difference between such embeddings could then be consid-

ered as the embedding of the drug stimulation. When applying the method onto new cell

types, the authors proposed to perform latent space vector arithmetic, adding the stimulation

embedding to the normal cell embedding, and to pass the resulting vector through the

decoder, obtaining the predicted responses. Since we have multiple drugs and the amount of

data for each drug is limited, we modified the method to learn the difference between different

cell types (Methods).

Comparison of the tested methods on the benchmark dataset is shown in Fig 2G and S5

Table. We were unable to obtain a good performance using the dual GAN approach

(PCC = 0.26), likely due to the training data being too small. The data for each cell type has

very high variance, making it hard for a discriminator to learn the difference between simu-

lated and real cell response. scGen achieved an average correlation of 0.22, the main reason

being that scGen is designed specifically for one kind of stimulation. However, in the problem

we are trying to solve, multiple drugs and multiple cells need to be handled simultaneously

and scGen showed limited capacity in handling this multi-task problem. The VAE using

anchor loss obtained significant improvement over the baseline (PCC = 0.48 compared to

baseline PCC = 0.28), however, the profiles predicted by DeepCellState were considerably

more accurate (PCC = 0.61, p<2.09e-40). After these experiments, we attempted to incorpo-

rate VAE as well as GAN into the DeepCellState approach, but the improvement was not sig-

nificant enough to justify the added complexity.

and predicting one which is repeated 15 times each time leaving out one drug. (G): Comparison with alternative methods for paired data modeling, using PC-3 responses
to predict MCF-7 samples.

https://doi.org/10.1371/journal.pcbi.1009465.g002
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We next performed comparison with methods from study by Hodos et al (DNPP and

FaLRTC) [2] using all the cell types and performing 10-fold cross-validation. Since VAE and

GANmethods are designed specifically for translating between two domains, we could not

include them in this comparison. We have achieved 0.53 PCC for DNPP, 0.49 for FaLRTC,

and 0.65 for our approach (S4 Fig). We repeated the comparison using the processed data

from the original study which contains considerably more cell types (71 vs 30). Our method

still outperformed DNPP and FaLRTC, achieving 0.56 PCC, while DNPP and FaLRTC both

achieved 0.46 (S5 Fig). The details of this comparison are provided on our GitHub repository.

The tested deep learning approaches had similar running time to our method. Since

FaLRTC does not require any training, it can be run on the CPU and produces results for all

the data in less than fifteen minutes. Our method took about three hours for the same data,

however after the training is complete, the inference time for a new drug profile is only a frac-

tion of a second

Model performance analysis

We next investigated more deeply the relationship between the number of input profiles used

in training and the prediction performance. Results showed that significant improvement over

baseline was possible already for a small number of training examples, with higher perfor-

mance as the number of training examples increased (Fig 3A). To study the impact of the

latent layer size on the performance of DeepCellState, we tested five different layer sizes (8, 16,

32, 64 and 128 neurons) and trained our model 10 times for each size. Average results for the

test set (shown in Fig 3B) showed that performance started to drop significantly at a latent

layer size below 32.

To pinpoint the benefit of the skip connection and regularization, we trained a simple

model without a dropout layer, L1 regularization, and skip connection. For the two cell type

case, the drop in performance was modest (PCC = 0.58, p<3.29e-9). However, for the external

datasets the drop in performance was much more significant. For the statin data, we got an

average PCC decrease of 0.04, and for the anticancer data the decrease was even higher, about

0.09 on average across three runs. We believe there are two reasons for this. Firstly, skip con-

nection helps the model to deal with situations when it cannot predict a gene value. In this

case, the value from the input layer can be copied directly. Secondly, without the regularization

the model captures the technical bias of the LINCS data, performing significantly worse when

data generated by a different platform is used. Overall, these results confirm that skip connec-

tion and regularization are beneficial for our model. Finally, we tested the benefits of adding

the regularization techniques one by one and the results have reinforced our previous conclu-

sion (S6 Table).

Biological interpretation of trained model

We set out to analyze general and cell type specific regulatory properties captured by the

trained model, expecting that the latent vector itself should capture a general response to the

input perturbations, whereas the decoder parts should represent behavior related to function-

ality specific to each cell type. To this end, we computed the PCC between the output of the

nodes in the latent layer for the drugs in the test set between MCF-7 and PC-3 cells. Indeed,

although considerably different, the inputs from the same drug in the two cell types consis-

tently yielded similar output in the latent layer as illustrated in a t-SNE plot (Fig 3C) in the

input and the latent space, where drugs with profiles divergent for different cell types in the

input space (Fig 3C, left panel) could be observed to be encoded using very similar latent rep-

resentations (Fig 3C, right panel). Similarly, a matrix containing correlations between latent
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responses for MCF-7 and PC-3 cells, sorted by the magnitude of the correlation of the input

profiles, showed a consistently strong signal on the diagonal (Fig 3D), independent of the cor-

relation between the responses in the input space.

It has been shown previously that autoencoders are able to capture transcription factor (TF)

gene regulatory relationships [14,26]. To test if this was the case also for the DeepCellState

framework, we used TF target gene lists from ChIP-Atlas [27] which include MCF-7 specific

targets. After filtering, we computed the overlap between the targets implied by our model (see

Methods) and targets based on ChIP-seq binding data, obtaining average fold enrichment of

2.5 (Fig 3E), with higher enrichment for the MCF-7 targets of four out of six transcription

Fig 3. Analysis of the developed method. (A): Average PCC obtained for different size subsets of the training set. The y-axis indicates average correlation, and the x-
axis indicates number of drugs used. (B): Dependency between the number of latent nodes and the average PCC. (C): t-SNE clustering of profiles in the input and the
latent space. Profiles used are from test fold 1 of the two cell type model (MCF7, PC3) which achieved correlation above 0.40 PCC. (D): Matrix displaying latent vector
response correlation. Drugs on each axis are sorted from high to low correlation in the input space. (E): Overlaps of top target genes of TFs based on chromatin
immunoprecipitation data compared to target gene prediction based on DeepCellState trained model. (F): Heatmap of most important genes for MCF-7 and PC-3
decoders.

https://doi.org/10.1371/journal.pcbi.1009465.g003
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factors, compared to the general set of targets according to ChIP-Atlas. Identification of the

most important genes in the cell type specific decoder response (seeMethods) revealed enrich-

ment of biological processes [28] that matched known properties of each cell type (Fig 3F, S7

Table). For the top genes common to the decoders, the high ranking hits were enriched for

terms including “response to abiotic stimulus” (p = 0.0144) and “cellular response to chemical

stimulus” (p = 0.018), expected since the model was trained using drug profiles (S8 Table).

Additionally, several significantly enriched terms (p = 1.12e-04, p = 2.32e-04) were related to

positive regulation of cell death and apoptotic process, likely due to some doses being toxic as

previously observed [29]. Conversely, top genes of the MCF-7 decoder included several genes

involved in mammary gland development (SRC, STAT5B, EGF). Similarly, BMP4, GLI2, and

FGFR2, which are known to be involved in prostate morphogenesis, were among the top

important genes of the PC-3 decoder. Taken together, these results suggest that the trained

network is able to capture known biological processes and regulatory relationships, and that

additional, deeper analysis may reveal relationships previously unnoticed.

Discussion

We here present DeepCellState, an autoencoder-based method that can successfully predict

the transcriptional drug response in a cell type based on the response in another cell type. This

problem was addressed in a recently proposed method that attempts to fill the gaps remaining

in the combinatorial drug-cell space [2] through a computational framework that first arranges

existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell

types, and then uses either local or global information to predict unmeasured profiles. Differ-

ent approaches were evaluated, with the best one achieving an average correlation of 0.54 com-

pared to 0.66 for DeepCellState. One issue with the proposed tensor based method is that the

performance strongly depends on the density of the constructed tensor, meaning that cell type

specific prediction of the response of a particular drug is heavily dependent on the amount of

profiles for that same drug in other cell types. In contrast to the tensor-based methods, the

DeepCellState framework is capable of predicting the response of drugs never seen previously

by the network and can also make predictions that improve significantly over baseline using

the response in completely unseen cell types as input. Our results on even a relatively small

amount of LoF data suggest that the approach may be able to capture changes in cellular state

in a more general way.

Previous autoencoder-based methods for analyzing transcriptome and other data capturing

cellular states have mainly focused on predicting cell state at the single cell level [15,25,30].

Unlike these methods, DeepCellState can handle a large number of different perturbations,

without requiring many data points for each. In a recent example, an autoencoder-based

approach was used to translate between different domains of the single cell data [23], specifically

between imaging and sequencing data. While the authors suggested the use of the approach for

other types of translations, one requirement mentioned was that data come from the same cell

population. With DeepCellState, we explicitly set out to predict the cell state in a particular cell

type based on the state in one or more other cell types. Thus, we expect that the method can be

readily applied to data sets measuring cell quantifiable characteristics other than transcriptome,

e.g. imaging, Hi-C, or ATAC-seq data, with samples coming from different cell types.

It is a well-known fact that deep learning models are difficult to interpret. We have intro-

duced several approaches to analyze the trained models. Using gradient descent optimization,

it was possible to reveal cell type specific TF regulation captured by the network. By masking

parts of the input profile, we were able to analyze each decoder, revealing the sets of genes

which are used to make a prediction.
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The results here serve as a proof-of-principle and may be improved by various modifica-

tions to the architecture and training strategy. Additionally, the performance may be increased

by measuring a larger set of genes than the 978 “landmark genes” measured on the L1000 plat-

form, or by adding measurements of additional transcriptional features such as non-coding

RNAs and transcribed enhancers. Performance is also expected to increase as more data cap-

turing additional cellular states becomes available, especially if produced under controlled and

standardized experimental conditions.

Methods

LINCS data processing

Drug response expression profiles from LINCS phase 2 dataset (GSE70138) were used for

training and evaluation. The latest level 5 data (signatures from aggregating replicates and con-

verted to z-scores) was used (downloaded May 27, 2020). There are usually several treatment

times and doses for each drug treatment; we averaged the profiles for the same drug across dif-

ferent timepoints and doses to reduce noise. Finally, the profiles were normalized to the range

from -1 to +1 based on the whole data matrix.

Model architecture and training

The architecture of the autoencoder used in our method is shown in Fig 1B. The encoder con-

sists of two dense layers with 512 and 256 neurons respectively. Dropout is applied to the input

to increase the generalization capabilities of the model. The dropout rate is 0.5 which means

half of the input genes will be set to 0 during training. This makes our model act as a denoising

autoencoder since all values in the output layer need to be predicted. The last layer of the

encoder is flattened and fed into a dense layer with 128 nodes, which represents our latent vec-

tor. The decoder takes the latent vector as an input and consists of two layers with 256 and 512

neurons respectively. The output layer has a direct connection to the dropout layer. The moti-

vation is that some of the input can be “leaked” into the output [31].

We use L1 regularization for the latent layer, which acts as a sparsity constraint on the activ-

ity of the latent representations. Activation function is leaky relu [32] with alpha equal to 0.2

for all layers except the output layer, which uses tanh activation. The optimizer used is ADAM

[33] with a learning rate equal to 1e-4 and batch size is 128. Validation set is employed for

early stopping with patience of 5 epochs.

To initialize our model, we first train a regular autoencoder using profiles of all cell types as

both input and output. Then we create a separate decoder for each cell type by copying the

weights from the autoencoder. These decoders are trained one by one together with the shared

encoder, where the inputs are profiles from all cell types and the outputs are profiles with the

decoder’s cell type only. In the final stage, when there has been no improvement in the valida-

tion set for 5 epochs, the encoder weights are frozen and only decoders are trained until there is

no improvement. When making a prediction for a certain drug and cell combination, any cell

profile can be used as an input. The cell specific decoder is used to make the final prediction.

DeepCellState is implemented in Python 3 using TensorFlow [34] library and the models

were trained using NVIDIA Quadro RTX 6000 GPU. Training two cell decoders takes about

one hour to complete, however new predictions can be made in less than a second.

External data processing

We trained an encoder and three decoders (HepG2, MCF-7 and PC-3) for external validation.

The common drugs from the two external data sets were removed from the training and

PLOS COMPUTATIONAL BIOLOGY DeepCellState: A framework for predicting cell type specific transcriptional states

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1009465 October 5, 2021 11 / 17

https://doi.org/10.1371/journal.pcbi.1009465


validation sets. The statin data set was generated by converting CAGE data to gene expression

data by mapping to GENCODE version 34. CAGE tags in a 1000 base pair window around a

landmark gene start were summed. We added a small value c = 2 to each gene value to avoid

problems when calculating log fold change. Each generated profile was multiplied by a million

and divided by the total sum of the profile. The resulting profiles for controls and treatments

were averaged across replicates followed by a computation of log fold change after treatment

for each gene. For the anticancer data we directly calculated log fold change between the aver-

age control and treatment values. In both statin and anticancer tests, we only used landmark

genes, setting missing gene values to 0. Only the 24 h time point was used as it is the most com-

mon time point in LINCS phase 2 compound data (96% of the data).

Methods related to analysis/interpretation of model

Since it is hard to directly learn the inner-workings of the deep learning model, we study it by

feeding in different inputs and analyzing the output. To calculate the top genes for each

decoder, we iterated through all the data, for each profile using 100 random genes subsets of

size 100 to input in the model. The gene sets which performed the best to make the prediction

were considered to be important. For each profile we picked the top 10 subsets that performed

the best. After doing this for all the profiles, we ranked the genes based on their frequency in

these subsets.

For the TF analysis, we downloaded target genes for 22 TFs profiled in MCF-7 cells from

ChIP-Atlas [27]. We filtered them by retaining TFs that were upregulated in at least one drug

treatment profile (i.e. has value> 0.5), and that had at least 50 targets in ChIP-Atlas (with tar-

gets defined as genes having a binding score of at least 100). This resulted in 6 remaining TFs

and we picked the top 50 target genes for each. To make a prediction of target genes using

DeepCellState, we started with a random profile and performed gradient descent optimization

to find the input profile that maximizes the TF. As the obtained profile will also have other

upregulated genes, the top 50 with the highest values are the DeepCellState prediction for the

TF targets. For each TF we calculated fold enrichment and p-values using binomial statistic for

the overlap between the DeepCellState set and the ChIP-Atlas set, using a similar method as

described on the PANTHER website [28].

Comparison with alternative approaches

scGen [15] was designed to predict single cell perturbation responses based on VAE architec-

ture, where an encoder f is used to learn the semantic embedding, z, of both the normal cell

state and the stimulated state. The difference between such embeddings could then be consid-

ered as the embedding of the drug stimulation. When applying the method onto new cell

types, the authors proposed to perform latent space vector arithmetic, adding the stimulation

embedding, δ, to the normal cell embedding, and to pass the resulting vector through the

decoder, h, obtaining the predicted responses.

Mathematically, we have

dn2s ¼ avgðzstimulatedÞ � avgðznormalÞ;

x0stimulated ¼ hðf ðxnormalÞ þ dn2sÞ;

where δn2s is the stimulation embedding; zstimulated is the embedding of the stimulated cell pro-

file; znormal is the embedding of the normal cell profile; xnormal is the input normal cell profile;

x0stimulated is the predicted stimulated cell profile.
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Regarding our task, since we have multiple drugs and the amount of data for each drug is

limited, we modified the method to learn the difference between different cell types, instead of

the difference between conditions. Consequently, we have

dp2m ¼ avgðzmcf7Þ � avgðzpc3Þ;

x0mcf7 ¼ hðf ðxpc3Þ þ dp2mÞ:

Both the encoder, f, and decoder, h, are trained using the standard VAE training protocol

described in the original paper [15] with our data as discussed above.

MAGAN [25] was developed to tackle the problem of aligning corresponding sets of sam-

ples. MAGAN is composed of two GANs, each with a generator network G that takes as input

X and outputs a target dataset X0. For the minibatch (x1, x2), the loss for generator G12 is

defined as sum of reconstruction loss, discriminator loss, and correspondence loss:

x
12
¼ G

12
ðx

1
Þ;

x
121

¼ G
21
ðx

12
Þ;

LG1
¼ Lr þ Ld þ Lc;

Lr ¼ Lðx
1
; x

121
Þ;

Ld ¼ �Ex1�Px1

½log D
2
ðx

12
Þ�;

Lc ¼ Lðx
1
; x

12
Þ:

The loss for discriminator D1 is defined as:

Ld ¼ �Ex1�Px1

½log D
1
ðx

1
Þ þ log D

1
ðx

121
Þ� � Ex2�Px2

½logð1� D
1
ðx

21
ÞÞ�:

Since in our task all the data are paired, we used the following correspondence loss, as sug-

gested in the original paper [25]:

Lc ¼ MSEðxpc3!mcf 7; xmcf7Þ þMSEðxmcf7!pc3; xpc3Þ:

We used the total loss to train two generators, Gpc3!mcf7 and Gmcf7!pc3, together with two

discriminators, Dpc3 and Dmcf7.

To implement VAE with anchor loss, we have trained a standard VAE with two decoders

and employed the following loss to ensure that all them paired samples are encoded close to

each other by encoder E in the latent space:

Lanchor ¼
Xm

i¼1

jEðxi;pc3Þ � Eðxi;mcf7Þj:

For DNPP and FaLRTC, we generated 10 test folds, selecting 10% of profiles randomly.

When constructing the input for the methods, we set the test set profiles to “nan” values. The

two methods then fill out the “nan” values and the new profiles are compared against the

ground truth.
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Supporting information

S1 Fig. DeepFake approach for the face swap. Similar facial expressions are encoded in a sim-

ilar way in the latent space, while person specific facial details are reconstructed on the decoder

side.

(TIF)

S2 Fig. Examples of MCF-7 profiles predicted with low, medium, and high PCC. (A): MCF-

7 anastrozole response predicted with PCC 0.47. (B): MCF-7 GSK 2110183 response predicted

with 0.61 PCC. (C): MCF-7 XL 888 response predicted with PCC 0.93.

(TIF)

S3 Fig. Different testing strategies of DeepCellState. (A): Results obtained by holding out

entire drug families for the testing. (B): Performance of DeepCellSate by inclusion of profiles

from other cell types in the training set. (C): Performance evaluation using completely unseen

cell type as input. (D): Results for shRNA for LoF experiments profiles prediction.

(TIF)

S4 Fig. Comparison with DNPP and FaLRTC using 10-fold cross-validation.

(TIF)

S5 Fig. Comparison with DNPP and FaLRTC using the processed dataset.

(TIF)

S1 Table. Number of drugs in the ten drug families with the highest number of drugs.

(XLSX)

S2 Table. Performance of baseline and DeepCellState for each cell type.

(XLSX)

S3 Table. Performance of baseline and DeepCellState when predicting statin response pro-

files.

(XLSX)

S4 Table. Performance of baseline and DeepCellState when predicting response profiles of

anticancer agents.DeepCellState� are results obtained after performing additional training on

14 anticancer agents and predicting for one repeated for each drug.

(XLSX)

S5 Table. Performance of DeepCellState and alternative methods for paired data model-

ing, using PC-3 responses to predict MCF-7 samples.

(XLSX)

S6 Table. Effect of regularization techniques on average PCC for different models.

(XLSX)

S7 Table. Top 50 genes identified for each decoder.

(XLSX)

S8 Table. Enriched Gene Ontology terms for top important genes in the latent layer.
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