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Abstract

In general, recommendation can be viewed as a matching
problem, i.e., match proper items for proper users. However,
due to the huge semantic gap between users and items, it’s al-
most impossible to directly match users and items in their ini-
tial representation spaces. To solve this problem, many meth-
ods have been studied, which can be generally categorized
into two types, i.e., representation learning-based CF meth-
ods and matching function learning-based CF methods. Rep-
resentation learning-based CF methods try to map users and
items into a common representation space. In this case, the
higher similarity between a user and an item in that space
implies they match better. Matching function learning-based
CF methods try to directly learn the complex matching func-
tion that maps user-item pairs to matching scores. Although
both methods are well developed, they suffer from two fun-
damental flaws, i.e., the limited expressiveness of dot prod-
uct and the weakness in capturing low-rank relations respec-
tively. To this end, we propose a general framework named
DeepCF, short for Deep Collaborative Filtering, to combine
the strengths of the two types of methods and overcome
such flaws. Extensive experiments on four publicly avail-
able datasets demonstrate the effectiveness of the proposed
DeepCF framework.

Introduction

Over the past decades, with the fast development of web-
based service platforms such as e-commerce platforms and
news/music/movie platforms, recommender systems have
been extensively studied and widely deployed in many dif-
ferent scenarios to alleviate the information overload prob-
lem (Hu et al. 2018; Srivastava et al. 2018). Due to the dis-
tinguishing capability of utilizing collective wisdoms and
experiences, Collaborative Filtering (CF) algorithms, es-
pecially Matrix Factorization (MF) algorithms, have been
widely used to build recommender systems (Wang et al.
2018a; Zhao et al. 2018; Hu et al. 2017).

Matrix factorization assumes some relationship can be es-
tablished between users and items through some latent fac-
tors. By mapping users and items into a common representa-
tion space in which they can be compared directly, the simi-
larity between them can be further used to estimate how well
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they match. In this case, the model learns low-dimensional
dense representation for user and item, and then adopts dot
product as matching function to calculate matching score.
Since Deep Neural Networks (DNNs) are extremely good
at representation learning, deep learning methods have been
widely explored and have shown promising results in vari-
ous areas such as computer vision and natural language pro-
cessing (He et al. 2016a; Serban et al. 2016). In the past few
years, there are also many works adopting DNNs to intro-
duce auxiliary data such as images, text descriptions and de-
mographic information, to improve the representation learn-
ing process. What’s more, in vanilla matrix factorization, the
mapping between the original representation space and the
latent space is assumed to be linear, which can not be always
guaranteed. To better learn the complex mapping between
these two spaces, Xue et al. (Xue et al. 2017) proposed a
Deep Matrix Factorization (DMF), which uses a two path-
way neural network architecture to replace the linear embed-
ding operation used in vanilla matrix factorization. However,
when it comes to the matching score prediction, matrix fac-
torization methods still resort to dot product which simply
combines latent factors linearly and seriously limits the ex-
pressiveness of the model.

In addition to learning better representation for users and
items, DNNs are very suitable to learn the complex matching
function since they are capable of approximating any contin-
uous function (Hornik, Stinchcombe, and White 1989). For
example, He et al. (He et al. 2017) proposed NeuMF under
the Neural Collaborative Filtering (NCF) framework which
takes the concatenation of user embedding and item embed-
ding as the input of a Multi-Layer Perceptron (MLP) model
to make prediction. The high capacity and nonlinearity of
DNNs is used to learn the complex mapping relation be-
tween user-item representation and matching score. In this
case, MLP is used to replace dot product used in traditional
matrix factorization methods. However, as revealed in (Beu-
tel et al. 2018), MLP is very inefficient in catching low-rank
relations. In fact, using dot product to estimate matching
score in traditional matrix factorization methods is to arti-
ficially limit the model to learn similarity — a low-rank re-
lation that is thought to be positively related to matching
score according to human experience. Although using MLP
to learn the matching function directly endows the model
with a great flexibility, without introducing human experi-
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ence, the learning process may be inefficient. This is also
why NeuMF needs to incorporate MLP with a shallow ma-
trix factorization model.

According to the above discussion, we can see that there
are two types of methods for implementing collaborative
filtering (Xu, He, and Li 2018). One is based on repre-
sentation learning and the other one is based on matching
function learning. To overcome the shortages of these two
types of methods and further improve the performance of CF
methods, we incorporate them under the proposed DeepCF
framework. In particular, we first use these two types of
CF methods to obtain different representations for the in-
put user-item pair. Since these two types of methods have
different advantages and learn the representation from dif-
ferent perspectives, a stronger and more robust joint repre-
sentation for the user-item pair can be obtained by concate-
nating their learned representations. To calculate the match-
ing score, we then pass this joint representation into a fully
connected layer which enables the model to assign different
weights on the features. Besides, since the quantity of im-
plicit data far outweighs the quantity of explicit data in real
world, designing recommendation algorithms that can work
with implicit feedback data is extremely important and has
been one of the hot research topics in recommender system.
As a result, we focus on implicit feedback in this paper.

The main contributions of this work are as follows.

• We point out the significance of incorporating collab-
orative filtering methods based on representation learn-
ing and matching function learning, and present a
general Deep Collaborative Filtering (DeepCF) frame-
work. The proposed framework abandons the traditional
Deep+Shallow pattern and adopts deep models only to
implement collaborative filtering with implicit feedback.

• We propose a novel model named Collaborative Filtering
Network (CFNet) based on the vanilla MLP model un-
der the DeepCF framework, which has great flexibility to
learn the complex matching function while being efficient
to learn low-rank relations between users and items.

• We conduct extensive experiments on four real-world
datasets to demonstrate the effectiveness and rationality
of the proposed DeepCF framework.

Related Work

Collaborative Filtering with Implicit Data

Since most of users would not tend to rate items, it’s often
difficult to collect explicit feedback. As a result, the quantity
of implicit data, such as a click, view, collect, or purchase,
far outweighs the quantity of explicit data, such as a rat-
ing or a like. In this case, it’s very important to design rec-
ommendation algorithms that can work with implicit feed-
back data (Oard, Kim, and others 1998). The well-known
ALS model (Hu, Koren, and Volinsky 2008) and SVD++
model (Koren 2008) are the early exploration that studied
collaborative filtering on datasets with implicit feedback.
Both of the two models factorize the binary interaction ma-
trix and assume user dislike unselected items, i.e., assign 0

for unselected items in the binary interaction matrix. Sev-
eral works have been done to further improve collaborative
filtering with implicit data by assuming user prefer the se-
lected items than the unselected items (Rendle et al. 2009;
Mnih and Teh 2012; He and McAuley 2016).

Collaborative Filtering based on Representation
Learning

Since Simon Funk proposed Funk-SVD (Funk 2006) in
the famous Netflix Prize competition, matrix factorization
for collaborative filtering has been widely studied and con-
stantly developed over the past ten years (Salakhutdinov and
Mnih 2008; Koren, Bell, and Volinsky 2009; Koren 2009;
Ma 2013; Hu, Sun, and Liu 2014). Although these works
tried to improve matrix factorization from different ways,
e.g., introducing time, social information, text description,
and location, their main idea is still mapping user and item
into a common representation space where they can be com-
pared directly. Recently, deep learning methods have shown
promising results in various areas such as computer vision,
speech recognition and natural language processing. There
are also some works proposed to use DNNs for collaborative
filtering based on representation learning. AutoRec (Sedhain
et al. 2015) is the first model attempting to learn user repre-
sentation and item representation by using autoencoder to
reconstruct the input ratings. Collaborative Denoising Auto-
Encoders (CDAE) (Wu et al. 2016) further improved it by in-
putting both ratings and IDs. On the other hand, DMF (Xue
et al. 2017) uses a two pathway neural network architecture
to factorize rating matrix and learn representations. Overall,
representation learning-based methods learn representation
in different ways and can flexibly incorporate with auxiliary
data such as images, text descriptions, demographic infor-
mation and so on. However, they still resort to the dot prod-
uct or cosine similarity when predicting matching score.

Collaborative Filtering based on Matching
Function Learning

NeuMF (He et al. 2017) is a recently proposed frame-
work that replaces the dot product used in vanilla MF with
a neural network to learn the matching function. To off-
set the weakness of MLP in capturing low-rank relations,
NeuMF unifies MF and MLP in one model. NNCF (Bai
et al. 2017) is a variant of NeuMF that takes user neigh-
bors and item neighbors as inputs. ConvNCF (He et al.
2018) uses an outer product operation to replace concate-
nation used in NeuMF so that the model can better learn
pairwise correlations between embedding dimensions. Other
than NeuMF, there are also many other works attempting
to learn the matching function directly by making full use
of auxiliary data. For example, Wide&Deep (Cheng et al.
2016) adapts LR and MLP to learn the matching function
from input continuous features and categorical features of
user and item. DeepFM (Guo et al. 2017) replaces LR with
Factorization Machines (FM) to avoid manual feature en-
gineering. NFM (He and Chua 2017) proposed to use a
bi-interation pooling layer to learn feature crosses. What’s
more, tree-based models are also studied and proven to
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be effective (Zhao, Shi, and Hong 2017; Zhu et al. 2017;
Wang et al. 2018b). In this paper, we focus on pure collabo-
rative filtering without using auxiliary data. In this case, we
mainly discuss NeuMF and compare it with the proposed
DeepCF framework.

According to the above discussion, both representation
learning-based and matching function learning-based col-
laborative filtering methods have been broadly studied and
proven to be effective. Despite their strengths, both of the
two types of methods have weaknesses, i.e., the limit ex-
pressiveness of dot product and the weakness in capturing
low-rank relations. To our best knowledge, so far there is no
work to point out the significance of combining the strengths
of the two types of collaborative filtering methods to over-
come these weaknesses. In this paper, we present a general
framework that ensembles these two types of methods to en-
dow the model with a great flexibility of learning the match-
ing function while maintaining the ability to learn low-rank
relations efficiently.

Preliminaries

Problem Statement

Suppose there are M users and N items in the system, fol-
lowing (Wu et al. 2016; He et al. 2017), we construct the
user-item interaction matrix Y ∈ R

M×N from users’ im-
plicit feedback as follows,

yui =

{

1, if interaction (user u, item i) is observed;

0, otherwise.
(1)

Comparing with explicit feedback, implicit feedback has
two major problems. First, unlike ratings, an observed in-
teraction (yui = 1) can only reflects users’ preference indi-
rectly, i.e., it can not tell how much exactly a user likes an
item. Second, an unobserved interaction (yui = 0) does not
mean user u does not like item i. In fact, user u may have
never seen item i since there are too many items in a system.
These two problems pose huge challenges in learning from
implicit data, especially the second one.

To perform collaborative filtering on implicit data which
lacks real negative feedback is also known as the One-Class
Collaborative Filtering (OCCF) problem (Pan et al. 2008).
In general, there are two ways to tackle this problem, one
is to treat all unobserved interactions as weak negative in-
stances (Hu, Koren, and Volinsky 2008; Pan et al. 2008)
and the other is to sample some negative instances from
unobserved interactions (Pan et al. 2008; Wu et al. 2016;
He et al. 2017). In this paper, we prefer the second method,
i.e., uniformly sample negative instances from unobserved
interactions.

The recommendation problem with explicit feedback is
usually formulated as a rating prediction problem which es-
timates the missing values in rating matrix R. The predicted
scores are then used for ranking items and finally the top-
ranking items are recommended to users. Similarly, to tackle
the recommendation problem with implicit feedback, we can
formulate it as an interaction prediction problem which es-
timates the missing values in interaction matrix Y, i.e., es-
timates whether the unobserved interactions would happen

or not. However, unlike explicit feedback, implicit feedback
is discrete and binary. Solving the above binary classifica-
tion problem can not help us to further rank and recom-
mend items. One feasible solution is to employ a probabilis-
tic treatment for interaction matrix Y. We can assume yui
obeys a Bernoulli distribution:

P (yui = k|pui) =

{

1− pui, k = 0;

pui, k = 1

=pkui(1− pui)
1−k, (2)

where pui is the probability of yui being equal to 1. What’s
more, pui can be further interpreted as the probability that
user u is matched by item i. In this case, a value of 1 for pui
indicates that item i perfectly matches user u and a value
of 0 indicates that user u and item i do not match at all.
Rather than modeling yui which is discrete and binary, our
method models pui instead. In this manner, we transform the
binary classification problem, i.e., the interaction prediction
problem, to a matching score prediction problem.

Learning the Model

A model-based method generally assumes that data can be
generated by an underlying model as ŷui = f(u, i|Θ),
where ŷui denotes the prediction of yui, i.e., the predicted
probability that user u is matched by item i, Θ denotes
model parameters, and f denotes the function that maps
model parameters to the predicted score. In this manner, we
need to figure out two key questions, i.e., how to define func-
tion f and how to estimate parameters Θ. We will answer the
first question in the next section.

For the second question, most of the existing works gen-
erally estimate parameters through optimizing an objec-
tive function. Two types of objective functions are com-
monly used in recommender system, namely, point-wise
loss (Hu, Koren, and Volinsky 2008; He et al. 2016b) and
pair-wise loss (Rendle et al. 2009; Mnih and Teh 2012;
He and McAuley 2016). In this paper, we explore the point-
wise loss only and leave the pair-wise loss in our future
work. Point-wise loss has been widely studied in collabo-
rative filtering with explicit feedback under the regression
framework (Funk 2006; Salakhutdinov and Mnih 2008). The
most commonly used point-wise loss is the squared loss
(SE). However, the squared loss is not suitable for implicit
feedback because it’s derived by assuming the error between
the given rating rui and the predicted rating r̂ui obeys a nor-
mal distribution, which does not hold in the implicit feed-
back scenario since yui is discrete and binary. As afore-
mentioned in Problem Statement, we assume yui obeys
a Bernoulli distribution, i.e., yui ∼ Bern(pui). By replac-
ing pui with ŷui in Equation 2, we can define the likelihood
function as

L(Θ) =
∏

(u,i)∈Y+∪Y−

P (yui|Θ)

=
∏

(u,i)∈Y+∪Y−

ŷ
yui

ui (1− ŷui)
1−yui ,

(3)
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where Y+ denotes all the observed interactions in Y and Y−

denotes the sampled unobserved interactions, i.e., the nega-
tive instances. Furthermore, taking the negative logarithm of
the likelihood (NLL), we obtain

ℓBCE = −
∑

(u,i)∈Y+∪Y−

yui log ŷui

+ (1− yui) log(1− ŷui). (4)

Based on all the above assumptions and formulations, we
finally obtain an objective function which is suitable for
learning from implicit feedback data, i.e., the binary cross-
entropy loss function.

To sum up, the recommendation problem with implicit
feedback can be formulated as an interaction prediction
problem. To endow algorithm with the ability to rank items,
we employ a probabilistic treatment for interaction matrix
Y so that yui is assumed to obey a Bernoulli distribution.
Instead of modeling yui, we model pui which is the prob-
ability of yui being equal to 1. Since pui can also be in-
terpreted as the probability that user u is matched by item
i, the interaction prediction problem can be transformed to
a matching score prediction problem. In this manner, using
maximum likelihood estimation to estimate model parame-
ters Θ is equivalent to minimizing the binary cross-entropy
between yui and ŷui.

The Proposed Framework

In this section, we first introduce the general processes
of representation learning-based CF methods and match-
ing function learning-based CF methods. Then we elaborate
these two types of methods and their MLP implements we
used in this paper. Finally we illustrate how to fuse these
two methods in the proposed DeepCF framework and how
to learn the final model.

The General Process

The processes for representation learning-based CF meth-
ods and matching function learning-based CF methods can
be concluded as the workflow shown in Figure 1. Both of
the two types of methods start from extracting data from
database. IDs, historical behaviors and other auxiliary data
can all be used to construct the initial representations of user
u and item i, which are denoted by vU

u and vI
i respectively.

The CF models then calculate pu = f(vU
u ) and qi = g(vI

i ),
i.e., the latent representations for user u and item i. Next, a
non-parametric operation is performed on pu and qi to ag-
gregate the latent representations. Finally, mapping function
h(·) is used to calculate the matching score ŷui. Notice that
the last two steps are referred to as the matching function.

Representation Learning

For representation learning-based CF methods, the model
focuses more on learning representation function and the
matching function is usually assumed to be simple and non-
parametric, e.g., dot product or cosine similarity. In this
manner, the model is supposed to learn to map users and
items into a common space where they can be directly com-
pared. For example, taking one-hot IDs as inputs, the vanilla
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Figure 1: The general process for representation learning-
based CF methods and matching function learning-based CF
methods.

MF (Funk 2006) adopts linear embedding function as func-
tion f(·) and function g(·) to learn the latent representations.
The latent representations pu and qi are then aggregated by
the dot product function to calculate the matching score. In
this case, mapping function h(·) is assumed to be the iden-
tity function. For another example, taking ratings as inputs,
DMF (Xue et al. 2017) adopts MLP as function f(·) and
function g(·) to learn better latent representation by making
full use of the non-linearity and high capacity characteristics
of neural networks. The cosine similarity between pu and qi

is then calculated and used as matching score.
In this paper, we focus on implicit data only so no aux-

iliary data are used. The user-item interaction matrix Y is
taken as input, i.e., user u is represented by the correspond-
ing row yu∗ in Y and item i is represented by the corre-
sponding column y∗i in Y. In this paper, we adopt MLP to
learn latent representations for users and items. Therefore,
the representation learning part for users can be defined as:

a0 = WT
0 yu∗

a1 = a(WT
1 a0 + b1)

· · · · · ·

pu = aX = a(WT
XaX−1 + bX),

(5)

where Wx, bx, and ax denote the weight matrix, bias vector
and activation for the x-th layer’s perceptron respectively.
a(·) is the activation function and we use ReLU function in
this paper. The latent representation qi for item i is calcu-
lated in the same manner. Different from the existing repre-
sentation learning-based CF methods, the matching function
part is defined as:

ŷui = σ(WT
out(pu ⊙ qi)), (6)

where Wout and σ(·) denote the weight matrix and the
sigmoid function respectively. By substituting the non-
parametric dot product or cosine similarity with element-
wise product and a parametric neural network layer, our
model still focuses on catching low-rank relations between
users and items but is more expressive since the importance
of latent dimensions can be different and the mapping can
be non-linear.

In summary, the representation learning component used
in this paper is implemented by Equation 5 and Equation 6,
which is called CFNet-rl.

Matching Function Learning

Although matching function learning-based CF methods fo-
cus more on matching function learning. The representation
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Figure 2: The architecture of CFNet.

learning part is still necessary since vU
u and vI

i are usually
extremely sparse and have high dimension, making it diffi-
cult for the model to directly learn the matching function.
Therefore, matching function learning-based CF methods
usually use a linear embedding layer to learn latent represen-
tations for users and items. With the dense low-dimensional
latent representations, the model is able to learn the match-
ing function more efficiently.

In this paper, we adopt MLP to learn the matching func-
tion. Instead of IDs, we take the interaction matrix Y as in-
put. Therefore, the matching function learning component
can be formalized as:

pu = PT
yu∗

qi = QT
y∗i

a0 =

[

pu

qi

]

a1 = a(WT
1 a0 + b1)

· · · · · ·

aY = a(WT
YaY−1 + bY)

ŷui = σ(WT
outaY),

(7)

where P and Q are the parameter matrices of the linear
embedding layers. The meanings of other notions are the
same as CFNet-rl. In this manner, the representation learn-
ing functions f(·) and g(·) are implemented by the linear
embedding layers. The latent representations pu and qi are
then aggregated by a simple concatenation operation. Fi-
nally, MLP is used as the mapping function h(·) to calcu-
late the matching score ŷui. Notice that although concatena-
tion is the simplest aggregation operation, it maintains max-
imally the information passed from the previous layer and
allows to make full use of the flexibility of the MLP model.

In summary, the matching function learning component
used in this paper is implemented by Equation 7, which is
called CFNet-ml.

Table 1: Statistics of the Datasets.
Statistics ml-1m lastfm AMusic AToy

# of Users 6040 1741 1776 3137
# of Items 3706 2665 12929 33953

# of Ratings 1000209 69149 46087 84642
Sparsity 0.9553 0.9851 0.9980 0.9992

Fusion and Learning

Fusion In the previous two subsections, we have presented
the MLP implementations for the two types of methods, i.e.,
the CFNet-rl model and the CFNet-ml model. To incorporate
these two models, we need to design a strategy to fuse them
so that they can enhance each other. One of the most com-
mon fusing strategies is to concatenate the learned represen-
tations to obtain a joint representation and then feed it into a
fully connected layer. In our case, for CFNet-rl, the match-
ing function shown in Equation 6 can be split into two steps.
The model first calculates the element-wise product for user
latent factor and item latent factor, and then sums it up with
different weights. The product vector obtained in the first
step is called the predictive vector in this paper. For CFNet-
ml, the last layer of MLP is called the predictive vector as
well. In both cases, the predictive vectors can be viewed
as the representation for the corresponding user-item pair.
Since the two types of CF methods have different advantages
and learn the predictive vectors from different perspectives,
the concatenation of the two predictive vectors will result in
a stronger and more robust joint representation for the user-
item pair. What’s more, the consequent fully connected layer
enables the model to assign different weights on the features
contained in the joint representation. Suppose we denote the
predictive vectors of the representation learning component
and the matching function learning component as arlY and

aml
Y respectively, then the output of the fusion model can be

defined as:

ŷui = σ(WT
out

[

arlY
aml
Y

]

). (8)

Using Equation 8 to incorporate CFNet-rl and CFNet-ml, we
finally obtain the proposed CFNet model. The architecture
of CFNet is shown in Figure 2.

Learning As discussed in the previous section, the objec-
tive function to minimize for the DeepCF framework is the
binary cross-entropy function. To optimize the model, we
use mini-batch Adam (Kingma and Ba 2014). The batch size
is fixed to 256 and the learning rate is 0.001. The model pa-
rameters are randomly initialized with a Gaussian distribu-
tion (with a mean of 0 and standard deviation of 0.01) and
the negative instances Y− are uniformly sampled from un-
observed interactions in each iteration.

Pre-training According to (Erhan et al. 2010), the ini-
tialization is of significance to the convergence and perfor-
mance of deep learning model. Using pre-trained models to
initialize the ensemble model can significantly increase the
convergence speed and improve the final performance. Since
CFNet is composed of two components, i.e., CFNet-rl and
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Table 2: Comparison results of different methods in terms of NDCG@10 and HR@10.

Datasets Measures
Existing methods CFNet Improvement of

ItemPop eALS DMF NeuMF CFNet-rl CFNet-ml CFNet CFNet vs. NeuMF

ml-1m
HR 0.4535 0.7018 0.6565 0.7210 0.7127 0.7073 0.7253 0.6%

NDCG 0.2542 0.4280 0.3761 0.4387 0.4336 0.4264 0.4416 0.7%

lastfm
HR 0.6628 0.8265 0.8840 0.8868 0.8840 0.8834 0.8995 1.4%

NDCG 0.3862 0.5162 0.5804 0.6007 0.6001 0.5919 0.6186 3.0%

AMusic
HR 0.2483 0.3711 0.3744 0.3891 0.3947 0.4071 0.4116 5.8%

NDCG 0.1304 0.2352 0.2149 0.2391 0.2504 0.2420 0.2601 8.8%

AToy
HR 0.2840 0.3717 0.3535 0.3650 0.3746 0.3931 0.4150 13.7%

NDCG 0.1518 0.2434 0.2016 0.2155 0.2271 0.2293 0.2513 16.6%

CFNet-ml, we can pre-train these two components and use
them to initialize CFNet. Notice that CFNet-rl and CFNet-
ml are trained from scratch using Adam while the CFNet
with pre-training is optimized by the vanilla SGD. This is
because Adam requires momentum information of the pre-
vious updated parameters which is not saved in CFNet with
pre-training.

Experiments

In this section, we conduct experiments to demonstrate the
effectiveness of the proposed DeepCF framework and its
MLP implementation (i.e., the CFNet model). We also ver-
ify the utility of pre-training by comparing the CFNet mod-
els with and without pre-training. Hype-parameter sensitiv-
ity analysis is discussed in the last part of this section. We
implement the proposed model based on Keras1 and Tensor-
flow2, which will be released publicly upon acceptance.

Experimental Settings

Dataset We evaluate our models on four public datasets:
MovieLens 1M (ml-1m)3, LastFM (lastfm)4, Amazon music
(AMusic) and Amazon toys (AToy)5. The ml-1m dataset has
been preprocessed by the provider. Each user has at least
20 ratings and each item has been rated by at least 5 users.
We process the other three datasets in the same way. The
statistics of these four datasets are summarized in Table 1.

Evaluation Protocols Following (He et al. 2017), we
adopt the leave-one-out evaluation, i.e., the latest interaction
of each user is used for testing. Since ranking all items is
time-consuming, we randomly sample 100 unobserved in-
teractions for each user. We then rank the 100 items with the
test item according to the prediction. Two widely adopted
evaluation measures, namely Hit Ratio (HR) and Normal-
ized Discounted Cumulative Gain (NDCG) are used to eval-
uate the ranking performance. The ranked list is truncated at
10 for both measures. Intuitively, the HR measures whether
the test item is present on the top-10 list or not, and the

1https://github.com/keras-team/keras
2https://github.com/tensorflow/tensorflow
3https://grouplens.org/datasets/movielens/
4http://www.dtic.upf.edu/∼ocelma/

MusicRecommendationDataset/
5http://jmcauley.ucsd.edu/data/amazon/

NDCG measures the ranking quality which assigns higher
scores to hit at top position ranks.

Comparison Results

The comparison methods are as follows.

• ItemPop is a non-personalized method that is often used
as a benchmark for recommendation tasks. Items are
ranked by their popularity, i.e., the number of interactions.

• eALS (He et al. 2016b) is a state-of-the-art MF method. It
uses all unobserved interactions as negative instances and
weights them non-uniformly by item popularity.

• DMF (Xue et al. 2017) is a state-of-the-art representation
learning-based MF method which performs deep matrix
factorization with normalized cross entropy loss as loss
function. We ignore the explicit ratings and take the im-
plicit feedback as input.

• NeuMF (He et al. 2017) is a state-of-the-art matching
function learning-based MF method which combines hid-
den layers of GMF and MLP to learn the interaction func-
tion based on cross entropy loss. It is the most related
work to the proposed models. Different from our mod-
els, it adapts the deep+shallow pattern which has been
widely adopted in many works such as (Cheng et al. 2016;
Guo et al. 2017). What’s more, NeuMF takes IDs as input
and the proposed CFNet takes interaction matrix as input.

Since the proposed models focus on modeling the rela-
tionship between users and items, we mainly compare with
user-item models. The comparison results are listed in Ta-
ble 2. The best and the second best scores are shown in bold.
According to the table, we have the following key observa-
tions:

• CFNet achieves the best performance in general and ob-
tains high improvements over the state-of-the-art meth-
ods. Most importantly, such improvement increases along
with the increasing of data sparsity, where the datasets
are arranged in the order of increasing data sparsity.
This justifies the effectiveness of the proposed DeepCF
framework that combines representation learning-based
CF methods and matching function learning-based CF
methods.

• The performance of DMF degrades severely when taking
implicit feedback as input while the proposed CFNet-rl
consistently outperforms it. This indicates that replacing
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Table 3: Performance of CFNet with/without pre-training.
Without pre-training With pre-training

Datasets HR NDCG HR NDCG

ml-1m 0.6962 0.4222 0.7253 0.4416
lastfm 0.8685 0.5920 0.8995 0.6186

AMusic 0.3530 0.2204 0.4116 0.2601
AToy 0.3067 0.1653 0.4150 0.2513

the non-parametric cosine similarity with element-wise
product and a parametric neural network layer signifi-
cantly improves the performance.

Impact of Pre-training

Different from the CFNet with pre-training, we use mini-
batch Adam to learn the CFNet without pre-training with
random initializations. As shown in Table 3, the CFNet with
pre-training outperforms the CFNet without pre-training in
all cases. This result verifies the utility of the pre-training
process which ensures CFNet-rl and CFNet-ml to learn fea-
tures from different perspectives and therefore allows the
model to generate better results.

Sensitivity Analysis of Hyperparameters

Negative Sampling Ratio To analyze the effect of nega-
tive sampling ratio, we test different negative sampling ratio,
i.e., the number of negative samples per positive instance,
on the ml-1m dataset. From the results shown in Figure 3,
we can find that sampling merely one or two instances is not
enough and sampling more negative instances is helpful. The
best HR@10 is obtained when the negative sampling ratio is
set to 3 and the best NDCG@10 is obtained when the nega-
tive sampling ratio is set to 6. Overall, the optimal sampling
ratio is around 3 to 7. Sampling more negative instances not
only requires more time to train the model but also degrades
the performance, which is consistent with the results shown
in (He et al. 2017).

The Number of Predictive Factors Another hyper-
parameter used in the CFNet model is the number of predic-
tive factors, i.e., the dimensions of arlY and aml

Y . As shown
in Table 4, the proposed model generates the best perfor-
mance with 64 predictive factors on most of the datasets ex-
cept the AMusic dataset. On the Amusic dataset, the best
performance is achieved with 16 factors. According to our
observation, more predictive factors usually lead to better
performances since it endows the model with larger capabil-
ity and greater ability of representation.

Conclusion and Future Work

In this work, we have explored the possibility of fusing rep-
resentation learning-based CF methods and matching func-
tion learning-based CF methods. We have devised a general
framework DeepCF and proposed its MLP implementation,
i.e., CFNet. The DeepCF framework is simple but effective.
Although we have implemented the two components with
MLP in this paper, different types of representation learning-
based methods and matching function learning-based meth-
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Figure 3: The effect of negative sampling ratio on perfor-
mance on the ml-1m dataset.

Table 4: Performance of CFNet with different number of
predictive factors.

Datasets Measures
Dimensions of predictive vectors

8 16 32 64

ml-1m
HR 0.6820 0.6982 0.7157 0.7253

NDCG 0.3992 0.4161 0.4351 0.4416

lastfm
HR 0.8840 0.8857 0.8937 0.8995

NDCG 0.6049 0.6111 0.6143 0.6186

AMusic
HR 0.4003 0.4313 0.4262 0.4116

NDCG 0.2480 0.2617 0.2661 0.2601

AToy
HR 0.3797 0.3902 0.4026 0.4150

NDCG 0.2273 0.2331 0.2383 0.2513

ods can be integrated under the DeepCF framework. This
work points out the significance of incorporating these two
types of methods, allowing the model to have both great
flexibility to learn the complex matching function and high
efficiency in learning low-rank relations between users and
items. In future work, we will study the following problems.
First, auxiliary data can be used to further improve the initial
representations of users and items. Richer information usu-
ally leads to better performance. Second, except for element-
wise product and concatenation, it is also very interesting to
explore other aggregation methods. Third, DeepCF does not
only support point-wise loss, using pairwise loss is also a
feasible solution for learning the model. Finally, although
we use DeepCF to solve the top-N recommendation prob-
lem with implicit data, it’s also suitable for other data mining
tasks that study the relations between two kinds of objects.
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