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Abstract

Motivation: Histone modifications are among the most important factors that control gene regula-

tion. Computational methods that predict gene expression from histone modification signals are

highly desirable for understanding their combinatorial effects in gene regulation. This knowledge

can help in developing ‘epigenetic drugs’ for diseases like cancer. Previous studies for quantifying

the relationship between histone modifications and gene expression levels either failed to capture

combinatorial effects or relied on multiple methods that separate predictions and combinatorial

analysis. This paper develops a unified discriminative framework using a deep convolutional neu-

ral network to classify gene expression using histone modification data as input. Our system, called

DeepChrome, allows automatic extraction of complex interactions among important features. To

simultaneously visualize the combinatorial interactions among histone modifications, we propose

a novel optimization-based technique that generates feature pattern maps from the learnt deep

model. This provides an intuitive description of underlying epigenetic mechanisms that regulate

genes.

Results: We show that DeepChrome outperforms state-of-the-art models like Support Vector

Machines and Random Forests for gene expression classification task on 56 different cell-types

from REMC database. The output of our visualization technique not only validates the previous ob-

servations but also allows novel insights about combinatorial interactions among histone modifica-

tion marks, some of which have recently been observed by experimental studies.

Availability and Implementation: Codes and results are available at www.deepchrome.org

Contact: yanjun@virginia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene regulation is the process of controlling gene expression to be-

come high or low. Cells use a wide range of mechanisms to regulate

genes and increase or decrease specific gene products through trans-

lation such as proteins. Multiple factors combinatorially regulate

genes at the DNA level. These can range from mutations in DNA se-

quences to various proteins binding to them. A principle factor that

plays a key role in this transcriptional regulation is the modification

of histones. DNA strings are wrapped around ‘bead’-like structures

called nucleosomes, which are composed of eight histone proteins

with DNA wrapped around the proteins. These histone proteins are

prone to modifications (e.g. methylation) that can change the spatial

arrangement of the DNA. This allows or restricts the binding of dif-

ferent proteins to DNA that leads to different forms of gene regula-

tion. The importance of histone modifications in gene regulation is

supported by evidence that aberrant histone modification profiles

have been linked to cancer (Bannister and Kouzarides, 2011). Unlike

DNA mutations, the epigenetic changes (like histone modifications)

are potentially reversible. This crucial difference makes the study of

histone modifications impactful in developing ‘epigenetic drugs’ for

cancer treatment.

In this direction, the role of histone modifications in controlling

gene expression has been investigated for many years and has re-

sulted in the Histone Code Hypothesis. According to this hypoth-

esis, combinations of different histone modifications specify distinct

chromatin (DNA scaffold) states and cause distinct downstream ef-

fects, such as gene regulation. Advancement in sequencing technol-

ogy has allowed us to quantify gene expression and also profile

different histone modifications as signals present in regions flanking

(i.e. surrounding) the gene. Initial studies, like Lim et al. (2009) and

Cain et al. (2011), investigated experimentally the correlation be-

tween histone modification marks and gene regulation.

Multiple computational models have been proposed to use his-

tone modifications in predicting gene expression (surveyed by Dong
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and Weng, 2013). Karli�c et al. (2010) and Costa et al. (2011) used

linear regression to quantify the relationship between histone modi-

fications and gene expression. This was followed by Cheng et al.

(2011) using Support Vector Machines (SVMs) for the task of gene

expression prediction from histone modification features.

Separately, Cheng et al. (2011) inferred the pairwise combinatorial

contribution of different histone modifications as binary interaction

terms among features. Furthermore, they studied higher order rela-

tionships using Bayesian networks. Next, Dong et al. (2012) intro-

duced Random Forests for predicting gene expression from histone

modification marks. The authors studied the combinatorial effects

by dividing histone modification marks into four functional catego-

ries and then reported the influence of these categorical combin-

ations through prediction performance. Recently, Ho et al. (2015)

introduced a rule-based learning model and reported 83 rules that

capture the interaction effects of different histone modification

marks on gene regulation. There are a few drawbacks in the previ-

ous studies. First, they rely on multiple models to separate prediction

and combinatorial analysis. Second, for input features, some of

them take the average value of histone modification signal from the

gene region (Costa et al., 2011; Karli�c et al., 2010) and fail to cap-

ture the subtle differences among signal distributions of histone

modifications. To overcome this issue, most of the later methods use

a ‘binning’ approach, that is, a large region surrounding the gene

transcription start site (TSS) is converted into consecutive smaller

bins. These studies either have separate models for each bin (bin-spe-

cific strategy in Cheng et al., 2011) or select the most relevant bins

(best-bin strategy in Dong et al., 2012) as the model input, and

therefore, cannot model connections among input bins.

Furthermore, when performing combinatorial analysis among his-

tones, most previous studies use the best-bin strategy and fail to

model the representation of neighboring bins. As seen in Figure 1,

histone modification signals can span across multiple neighboring

local bins.

Recently, deep learning methods have achieved state-of-the-art

accuracy on many prediction tasks such as image classification

(Krizhevsky et al., 2012). A deep learning model automatically

learns complex functions that map inputs to outputs. It eliminates

the need to use hand-crafted features or rules. One such variant of

deep learning is called Convolutional Neural Networks (CNNs),

which capture both local and global representations in the input

samples to learn the most important features that, in turn, help

make better predictions. CNNs have been used successfully in com-

puter vision (Pinheiro and Collobert, 2013; Szegedy et al., 2015),

natural language processing (Collobert and Weston, 2008; Kim,

2014) and bioinformatics (Alipanahi et al., 2015; Zhou and

Troyanskaya, 2015).

This paper introduces DeepChrome, a unified CNN framework

that automatically learns combinatorial interactions among histone

modification marks to predict the gene expression. It is able to han-

dle all the bins together, capturing both neighboring range and long

range interactions among input features, as well as automatically ex-

tract important features. In order to interpret what is learned, and

understand the interactions among histone marks for prediction, we

also implement an optimization-based technique for visualizing

combinatorial relationships from the learnt deep models. Through

the CNN model, DeepChrome incorporates representations of both

local neighboring bins as well as the whole gene TSS flanking re-

gions, therefore, overcoming the challenges faced by previous

studies.

The contributions of this work can be summarized as follows:

• DeepChrome is the first deep learning implementation for gene

expression prediction task using histone modification data as fea-

ture inputs. We apply our model on histone modification signal

data for 56 different cell types from latest REMC database

(Kundaje et al., 2015).
• Our model outperforms previous state-of-the-art SVM and

Random Forest implementations for 56 prediction tasks.
• DeepChrome enables visualization of high-order combinatorial

relationships among different histone modification signals. The

findings from our experiments not only validate previous obser-

vations but also provide insights supported by recent biological

evidence in literature.

2 Related work

The combinatorial effect of histone modifications in regulating gene

expression has been studied throughout literature (Dong and Weng,

2013). To better understand this relationship, scientists have gener-

ated experimental datasets quantifying gene expression and histone

modification signals across different cell-types. These datasets have

been made available through large-scale repositories, the latest being

the Roadmap Epigenome Project (REMC) (Kundaje et al., 2015).

2.1 Computational methods for predicting gene

expression using histone modifications
Computational methods have shown initial success in modeling and

understanding interactions among chromatin features, such as his-

tone modification marks, to predict gene expression. Karli�c et al.

(2010) established that there exists a quantitative relationship be-

tween histone modifications and gene expression. They applied a

linear regression model on histone modification signals and pre-

dicted gene expression from human T-cell studies (Wang et al.,

2008). They reported a high correlation of their predictions with the

observed gene expressions (Pearson coefficient r¼0.77) and showed

that a combination of only two to three specific modifications is suf-

ficient for making accurate predictions. Extending this concept

Fig. 1. Feature Generation for DeepChrome model. Bins of length 100 base-

pairs (bp) are selected from regions (65000 bp) flanking the transcription start

site (TSS) of each gene. The signal value of all five selected histone modifica-

tions in bins forms input matrix X, while discretized gene expression (label

þ1=� 1) is the output y
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further, Costa et al. (2011) implemented a mixture of several linear

regression models to extract the relative importance of each histone

modification signal and its effect on gene expression (high or low).

This study confirmed the activator and repressor roles of H3K4me3

and H3K27me3, respectively. It also demonstrated that a mixture of

two regression models performs better than a single regression

model. Both these studies applied relatively simple modeling on a

small dataset. They used the mean signal of the whole transcription

start site (TSS) flanking regions as input features. This leads to a po-

tential bias since histone modification signals exhibit diverse pat-

terns of local distributions with regard to different genes. Ignoring

the details of these neighborhood patterns is undesirable.

Cheng et al. (2011) applied Support Vector Machine (SVM)

models on worm datasets (Celniker et al., 2009) and reformulated

the task as gene expression classification and prediction. The au-

thors divided regions flanking transcription start site (TSS) and tran-

scription termination site (TTS) into 100 basepair (bp) bins and used

the histone modification signal in each bin as a feature for the SVM.

To incorporate information from all positions or bins, they trained

different models for different bins that resulted in 160 models for

160 bins. They validated the existence of the quantitive relationship

between histone modifications and gene expression by such bin-

specific modeling. Furthermore, using a separate linear regression

model, the paper inferred pairwise interactions between different

histone modifications using binary combinatorial terms. Since it is

infeasible to consider all possible higher order interaction terms

through polynomial regression, Bayesian networks were then used

for modeling such relationships. However, Bayesian networks do

not take into consideration local neighboring bin information and

their highly connected output network is difficult to interpret.

Using a similar experimental setup, Dong et al. (2012), applied a

Random Forest Classifier on histone modification signals to classify

gene expression as high or low. They then used the classified outputs

as inputs to a linear regression model to predict the gene expression

value. They used human datasets across seven different cell types

(Consortium et al., 2012) and reported a high correlation (Pearson

coefficient r¼0.83) between predicted and actual gene expressions.

To include information from all bins into a single model, the authors

performed feature selection where only the bin value which corre-

lated the most with gene expression was used as input. For combina-

torial analysis, instead of studying all possible combinations, the 11

histone modifications were grouped into four functional categories.

These groupings were used to determine prediction accuracy based

on each category as a sole feature as well as combinations of differ-

ent categories. This technique gives a broader picture of the com-

binatorial effect. However, individual details of histone

modifications are missed. In addition, this approach cannot capture

the possible influence of other bins besides the ‘best bin’ for gene

regulation.

In order to elucidate the possible combinatorial roles of histone

modifications in gene regulation, Ho et al. (2015) applied rule learn-

ing on the T-cells datasets (Wang et al., 2008) and produced 83

valid rules for gene expression (high) and repression (low). The au-

thors selected the 20 most discriminative histone modifications as

input into a rule learning system. They used several heuristics to fil-

ter out unexpected rules that were obtained by the learning system

after scanning the entire search space. However, this study does not

consider detailed feature patterns across local bins and does not per-

form prediction of gene expression.

Ernst and Kellis (2015) leveraged the correlated nature of epigen-

etic signals in the REMC database, including histone modifications.

Their tool, ChromImpute, imputed signals for a particular new sam-

ple using an ensemble of regression trees on all the other signals and

samples. EFilter (Kumar et al., 2013), a linear estimation algorithm,

predicted gene expression in a new sample by using imputed expres-

sion levels from similar samples. Unlike the studies discussed above,

these works focus on imputing or predicting signals for new

samples.

In summary, we compare the aforementioned studies in Table 1

using six different functional aspects. All previous studies have

missed one or more aspects. In contrast, our model, DeepChrome,

exhibits all six properties. It is a unified framework, scalable to large

datasets. It performs automatic feature selection and can incorpor-

ate information from all the bin positions. It also provides an

optimization-based strategy to simultaneously visualize combinator-

ial relationships among multiple histone modifications.

2.2 Connecting to deep learning
In recent years, deep learning models have become popular in the

bioinformatics community, owing to their ability to extract mean-

ingful and hierarchical representations from large datasets. Qi et al.

(2012) used a deep multilayer perceptron (MLP) architecture with

multitask learning to perform sequence-based protein structure pre-

diction. Zhou and Troyanskaya (2014) created a generative stochas-

tic network to predict secondary structure on the same data as used

by Qi et al. (2012). Recently, Lin et al. (2016) outperformed all the

state-of-the-art works for protein property prediction task using a

deep convolutional neural network architecture. Leung et al. (2014)

implemented a deep neural network for predicting alternative splic-

ing patterns in individual tissues and differences of splicing patterns

across tissues. Later, Alipanahi et al. (2015) applied a convolutional

neural network model for predicting sequence specificities of DNA-

and RNA-binding proteins as well as generating motifs, or

Table 1. Comparison of previous studies for the task of quantifying gene expression using histone modification data

Computational study Unified

strategy

Non-linear

model

Including

Bin Info

Representation learning Prediction Combinatorial

interactions

Neighboring bins Whole Region

Linear regression (Karli�c et al., 2010) � � � � � � �
Support vector machine (Cheng et al., 2011) � � Bin-specific strategy � � � �

Random forest (Dong et al., 2012) � � Best-bin strategy � � � �
Rule learning (Ho et al., 2015) � � � � � � �

DeepChrome � � Automatic � � � �

The columns indicate properties (a) whether the study has a unified end-to-end architecture or not (b) if it captures non-linearity among features (c) how has

the bin information been incorporated (c) if representation of features is modeled on local and global scales (d) whether gene expression prediction is provided

and finally, (e) if combinatorial interactions among histone modifications are modeled. DeepChrome is the only model that exhibits all six desirable properties.
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consensus patterns, from the features that were learnt by their

model. Lanchantin et al. (2016) proposed a deep convolutional/

highway MLP framework for the same task and demonstrated im-

proved performance. Similarly, Zhou and Troyanskaya (2015) used

DNA sequences as inputs to predict different chromatin features and

understand the effect of non-coding variants on these measurements

of interest. In contrast, to our knowledge, a deep learning frame-

work has not yet been explored for the task of understanding the

combinatorial effect of histone modifications on gene regulation.

3 Approach

Previous computational methods failed to capture higher-order com-

binatorial effects among histone modifications, used bin-related

strategies that cannot represent neighboring bins, or relied on mul-

tiple methods to separate prediction and combinatorial analysis. We

utilize a deep convolutional neural network model for predicting

gene expression from histone modification data. The network auto-

matically learns both the combinatorial interactions and the classi-

fier jointly in one unified discriminative framework, eliminating the

need for human effort in feature engineering. Since the combinator-

ial effects are automatically learned through multiple layers of fea-

tures, we present a visualization technique to extract those

interactions and make the model interpretable.

3.1 Input generation
Aiming to systematically understand the relationship between gene

regulation and histone modifications, we divided the 10 000 base-

pair (bp) DNA region (65000 bp) around the transcription start site

(TSS) of each gene into bins of length 100 bp. Each bin includes

100 bp long adjacent positions flanking the TSS of a gene. In total,

we consider five core histone modification marks from REMC data-

base (Kundaje et al., 2015), which are summarized in Table 2. These

five histone modifications are selected as they are uniformly profiled

across all cell-types considered in this study. This makes the input

for each gene a 5�100 matrix, where columns represent different

bins and rows represent histone modifications. For each bin, we re-

port the value of all 5 histone signals as the input features for that

bin (Fig. 1). We formulate the gene expression prediction as a binary

classification task. Specifically, the outputs of DeepChrome are

labels þ1 and –1, representing gene expression level as high or low,

respectively. Following Cheng et al. (2011), we use the median gene

expression across all genes for a particular cell-type as a threshold to

discretize the gene expression target. Figure 1 summarizes our input

matrix generation strategy.

Our setup is similar to Cheng et al. (2011) and Dong et al.

(2012), except that we primarily focus on the regions around TSS in-

stead of also including regions from gene body or transcription ter-

mination site (TTS). This is based on the observations from Cheng

et al. (2011) showing that signals close to the TSS are the most in-

formative, therefore, eliminating the need to obtain bins from

regions toward the end of the gene. In addition, due to the scalability

of CNNs, we were able to use larger regions flanking TSS than pre-

vious studies in order to better capture effects of distal signals as

well as to cover more regions. This, therefore, enhances the possibil-

ity to model long range interactions among histone modifications.

3.2 An end-to-end architecture based on convolutional

neural network
Convolution Neural Networks (CNNs) were first popularized by

LeCun et al. (1998) and have since been extensively used for a wide

variety of applications. In this paper, we have implemented a CNN

for gene expression classification task using the Torch7 (Collobert

et al., 2011) framework. Our DeepChrome model, summarized in

Figure 2, is composed of five stages. We assume our training set con-

tains Nsamp gene samples of the labeled-pair form ðXðnÞ; yðnÞÞ, where

XðnÞ are matrices of size Nf (¼5) �b (¼ 100) and yðnÞ 2 f�1;þ1g
for n 2 f1; . . . ;Nsampg.

1. Convolution: We use temporal convolution with Nout filters,

each of length k. This performs a sliding window operation across

all bin positions, which produces an output feature map of size

Nout � ðb� kþ 1Þ. Each sliding window operation applies Nout dif-

ferent linear filters on k consecutive input bins from position p ¼ 1

to ðb� kþ 1Þ. In Figure 2, the red rectangle shows a sliding window

operation with k ¼ 4 and p ¼ 1. Given an input sample X of size

Nf � b, the feature map, Z, from convolution is computed as

follows:

Z ¼ fconvðXÞ

Zp;i ¼ Bi þ
XNf

j¼1

Xk

r¼1

Wi;j;rXpþr�1;j

(1)

This is generated for the pth sliding neighborhood window and the

ith hidden filter, where p 2 f1; . . . ; ðb� kþ 1Þg and

i 2 f1; . . . ;Noutg. W, of size Nout �Nf � k, and B, of size Nout � 1,

are the trainable parameters of the convolution layer and Nout de-

notes the number of filters.

2. Rectification: In this stage, we apply a non-linearity function

called rectified linear unit (ReLU). The ReLU is an elementwise op-

eration that clamps all negative values to zero:

freluðzÞ ¼ reluðzÞ ¼ maxð0; zÞ (2)

3. Pooling: Next, in order to learn translational invariant features,

we use temporal maxpooling on the output from the first two steps.

Maxpooling simply selects the max values in a certain range, which

forms a smaller representation of a large TSS-proximal region for a

given gene. Maxpooling is applied on an input Z of size Nout � P,

where P ¼ ðb� kþ 1Þ. With a pooling size of m, we obtain an out-

put V of size Nout � bP
mc:

V ¼ fmaxpoolðZÞ

Vi;p ¼ max
m

j¼1
Zi;mðp�1Þþj

(3)

where p 2 f1; . . . ; bP
mcg and i 2 f1; . . . ;Noutg. In Figure 2, the blue

rectangle shows the result of a maxpooling operation on the feature

map where m¼3.

4. Dropout: The output is then passed through a dropout layer

(Srivastava et al., 2014), which randomly zeroes the inputs to the

next layer during training with a chosen probability of 0.5. This

regularizes the network and prevents over-fitting. It resembles

Table 2. Five core histone modification marks, as defined by

Kundaje et al. (2015), along with their functional categories

Histone mark Associated with Functional category

H3K4me3 Promoter regions Promoter mark

H3K4me1 Enhancer regions Distal mark

H3K36me3 Transcribed regions Structural mark

H3K9me3 Heterochromatin regions Repressor mark

H3K27me3 Polycomb repression Repressor mark
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ensemble techniques, like bagging or model averaging, which are

very popular in bioinformatics.

5. Classical feed-forward neural network layers: Next, the learnt

region representation is fed into a MLP classifier to learn a classifi-

cation function mapping to gene expression labels. This standard

and fully connected MLP network has multiple alternating linear

and non-linear layers. Each layer learns to map its input to a hidden

feature space, and the last output layer learns the mapping from a

hidden space to the output class label space (þ1=� 1) through a

softmax function. Figure 2, shows a MLP with 2 hidden layers and a

softmax function at the end. This stage is represented as fmlpð:Þ.
The whole network output form can be written as:

f ðXðnÞÞ ¼ fmlpðfmaxpoolðfreluðfconvðXðnÞÞÞÞÞ (4)

All the above stages are effective techniques that are widely prac-

ticed in the field of deep learning. All parameters, denoted as H, are

learned during training in order to minimize a loss function which cap-

tures the difference between true labels y and predicted scores from f ð:Þ
(When training this deep model, parameters, at first, are randomly ini-

tialized and input samples are fed through the network. The output of

this network is a score prediction associated with a sample. The differ-

ence between a prediction output f ðXÞ and its true label y is fed back

into the network through a ‘back-propagation’ step.). The loss function

L, on the entire training set of size n, is defined:

L ¼
XNsamp

n¼1

lossðf ðXðnÞÞ; yðnÞÞ (5)

We use stochastic gradient descent (SGD) (Bottou, 2004) to train

our model via backpropagation. For a set of training samples, in-

stead of calculating the true gradient of the objective using all train-

ing samples, SGD calculates the gradient per sample and updates

accordingly on each training sample. For our objective function, the

loss Lð:Þ [Equation (5)] is minimized by the gradient descent step

that is applied to update network parameters H as follows:

H H� g
@L

@H
(6)

where g is the learning rate (set to 0.001).

3.3 Visualizing combinatorial effect through

optimization
In addition to being able to make high accuracy predictions on the

gene expression task, an important contribution of DeepChrome is

that it allows us to discover and visualize the combinatorial

relationships between different histone modifications which lead to

such predictions. Until recently, deep neural networks were viewed

as ‘black boxes’ due to the automatically learned features spanning

multiple layers. Since gene expression is dependent on the combina-

torial interactions among histone modifications, it is critical to

understand how the network extracts features and makes its predic-

tions. In other words, we wish to understand the combinatorial pat-

terns of histone modifications which lead to either a high or low

gene expression prediction by the network. We attempt to do this by

extracting a map of feature patterns that are highly influential in

predicting gene expression directly from the trained network. This

approach, called a network-centric approach (Yosinski et al., 2015),

finds the class specific features from the trained model and is inde-

pendent of specific testing samples.

The technique we use to generate this visualization was inspired

from works by Simonyan et al. (2013) and Yosinski et al. (2015),

which seek to understand how a convolutional neural network inter-

prets a certain image class on the task of object detection. We, in-

stead, seek to find how our network interprets a gene expression

class (high or low). Given a trained CNN model and a label of inter-

est (þ1 or –1) in our case, we perform a numerical optimization

procedure on the model to generate a feature pattern map which

best represents the given class. This optimization includes four

major steps:

1. Randomly initialize an input Xc (of size Nf ð¼ 5Þ � bð¼ 100Þ).
2. Find the best values of entries in Xc by optimizing the follow-

ing equation (7). We search for Xc so that the loss function is mini-

mized with respect to the desired labels þ 1 (gene expression ¼
high) or –1 (gene expression ¼ low). Using equation (4), f ðXcÞ pro-

vides the predicted label using the trained DeepChrome model on an

input Xc. We would like to find an optimal feature pattern, Xc, so

that its predicted label f ðXcÞ is close to the desired class label c:

arg min
Xc

Lvisual ¼ arg min
Xc

fLðf ðXcÞ; y ¼ cÞ þ kkXck2
2g (7)

where c ¼ þ1 or –1, Lð:Þ is the loss function defined in equation (5).

L2 regularization, kXck2
2, is applied to scale the signal values in Xc,

and k is the regularization parameter. A locally optimal Xc can be

found by the back-propagation method. This step is similar to the

CNN training procedure, where back-propagation is used to minim-

ize the loss function by optimizing the network parameters H.

However, in this case, the optimization is performed with respect to

the input values (Xc) and the network parameters are fixed to the

values obtained from the classification training. Xc is optimized in

the following manner:

Input : X [N
f
 x b] 

HM1 

HM2 
HM3 

HM4 
HM5 

Gene A 

Bins 

H
is

to
ne

 M
od

if
ic

at
io

ns
  

Convolution Max  
Pooling 

Multi-Layer 
Perceptron 

Soft Max 

y = +1/-1 

Feature Map 
[N

out
 x (b-k+1)]

Output
 

(b=100) 

(N
f=

5)

(k=4, p=1) (m=3) Drop-out 

Fig. 2. DeepChrome convolution neural network (CNN) model. The input matrix X, comprising of 100 bins with signals from five histone modifications, goes

through different CNN stages. These stages are: convolution, pooling followed by dropout, and MLP with alternating linear and non-linear layers. Softmax func-

tion, in the end, maps the output from the model into classification prediction
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Xtþ1
c  Xt

c � a
@Lvisual

@Xc
(8)

where a is the learning rate parameter and t represents the iteration

step of the optimization.

3. Next, we set all the negative output values to 0 and normalize

Xc 2 ½0; 1�:

XcðnormÞ ¼
Xc

maxðXcÞ
(9)

4. Finally, we set a threshold of 0.25 to define ‘active’ bins. Bins

in XcðnormÞ with values >0.25 are considered important since they in-

dicate that such histone modification signals are important for pre-

dicting particular class. We count the frequency of these active bins

for a particular histone modification mark. A high frequency count

(>mean frequency count across all histone modification marks) of

active bins indicates the important influence of these histone modifi-

cation signals on target gene expression level.

This visualization technique represents the notion of a class that

is learnt by the DeepChrome model and is not specific to a particular

gene. The optimized feature pattern map XcðnormÞ is representative

for a particular gene expression label ofþ1 (high) or –1 (low). In

Figure 5, DeepChrome visualizes XcðnormÞ as heat-maps. Through

these maps, we obtain intuitive outputs for understanding the com-

binatorial effects of histone modifications on gene regulation.

4 Experiment setup

4.1 Dataset
We downloaded gene expression levels and signal data for five core

histone modification signals for 56 different cell types from the

REMC database (Kundaje et al., 2015). REMC is a public resource

of human epigenomic data produced from hundreds of cell-types.

Core histone modification marks, as defined by Kundaje et al.

(2015), have been listed in Table 2 and are known to play important

roles in gene regulation. We focus on these ‘core’ histone modifica-

tions as they have been uniformly profiled for all 56 cell types

through sequencing technologies. The gene expression data has been

quantified for all annotated genes in the human genome and has

been normalized for all 56 cell types in the REMC database. As

mentioned before, the target problem has been formulated as a bin-

ary classification task. Thus, each gene sample is associated with a

label þ1=� 1 indicating whether gene expression is high or low, re-

spectively. The gene expression values were discretized using the me-

dian of gene expressions across all genes for a particular cell-type.

4.2 Baselines
We compare DeepChrome to two baseline studies, Cheng et al.

(2011) which uses Support Vector Machines (SVM) and Dong et al.

(2012) which uses a Random Forest Classifier. Their implementa-

tion strategies are as follows:

• SVM (Cheng et al., 2011): The authors selected 160 bins from re-

gions flanking the gene TSS and TTS. Each bin position uses a

separate SVM classification model, resulting in 160 different

models in total. This gave insights into important bin positions

for classifying gene expression as high or low. Following this

bin-specific model strategy, we provide results for performance

of the best bin (SVM Best Bin) along with average performance

across all bins (SVM Avg) in Section 5.1 and in Figure 3.
• Random Forest Classifier (Dong et al., 2012): In this study, bins

were selected from regions flanking the TSS, TTS and gene body.

This study selected the bin values having the highest correlation

with gene expression as ‘best bins’. A matrix with all genes and

best bins for each histone modification signal was used as input

into the model to predict gene labels (þ1=� 1) as output. Since

this baseline performs feature selection using the best bin strat-

egy, our experiment uses the best-bin Random Forest perform-

ance as a baseline in Figure 3.

We implemented these baselines using the python-based scikit-

learn (Pedregosa et al., 2011) package.

4.3 Hyperparameter tuning
For each cell type, our sample set of total 19 802 genes was divided

into 3 separate, but equal size folds: training (6601 genes), valid-

ation (6601 genes) and test (6600 genes) sets. We trained

DeepChrome using the following hyperparameters: filter size

(k ¼ f10;5g), number of convolution filters (Nout ¼ f20; 50; 100g)
and pool size for maxpooling (m ¼ f2; 5g). Table 3 presents the val-

idation set results for tuning different combinations of kernel size k

and pool size m. k denotes the local neighborhood representations

of flanking bins. m represents selected whole regions in our CNN

model. We report the maximum, minimum and mean AUC scores

obtained across 56 cell types. Performances of models using these

different hyperparameter values did not vary significantly (P-val-

ue�0:92) from each other. We also trained a deeper model with 2

convolution layers and observed no significant (P-value¼ 0:939) in-

crease in performance.

• We selected k ¼ 10, Nout ¼ 50 and m ¼ 5 for training the final

CNN models based on highest Max. and Min. AUC scores in

Table 3. The number of hidden units chosen for the two MLP

layers were 625 and 125, respectively. We trained the model for

100 epochs and observed that it converged early (around 15–20

epochs).
• For the SVM implementation, an RBF kernel was selected

and the model was trained on varying hyperparameter values

Fig. 3. Performance Evaluation on Test Set. (Best viewed in color) The bar

graph represents AUC scores of DeepChrome versus state-of-the-art baseline

models for 56 cell types (i.e. 56 different classification tasks). The results have

been arranged from best performing cell type (E123) to the worst performing

cell type (E112) for the test set (6600 genes). DeepChrome (Average

AUC¼0.80) consistently outperforms both SVM (Average AUC: SVM Best

Bin¼ 0.75 and SVM Avg¼0.66) and Random Forest Classifier (Average

AUC¼0.59) for the task of binary classification of gene expression. SVM

based baseline has a separate model for each bin (bin specific model), thus,

results for both average AUC scores across all bins (SVM Avg) and best per-

forming AUC score among the bins (SVM Best Bin) are presented
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of C 2 f0:01; 0:1; 1;10; 100; 1000g and c 2 f0:01;0:1;1; 2g.
The C parameter balances the tradeoff between misclassifica-

tion of training examples and simplicity of the decision sur-

face, while the c parameter defines the extent of influence of

a single training sample.
• For the Random Forest Classifier implementation, we varied the

number of decision trees, nd 2 f10;20; . . . ; 200g trained in each

model.

All the above models were trained on the training set, and the

parameters for testing were selected based on their results on the val-

idation set. We then applied the selected models on the test dataset.

The AUC scores [Area Under Curve (AUC) score from Receiver

Operating Characteristic (ROC) curve is interpreted as the probabil-

ity that a randomly selected ‘event’ will be regarded with greater sus-

picion (in terms of its continuous measurement) than a randomly

selected ‘non-event’. AUC score ranges between 0 and 1, where val-

ues closer to 1 indicate more successful predictions.] (performance

metric) are reported in Section 5.1.

5 Results

5.1 Performance evaluation
The bar graph in Figure 3 compares the performance of

DeepChrome and three baselines on test dataset for gene expression

classification across 56 different cell-types (or tasks). DeepChrome

(Average AUC¼0.80) outperforms the baselines for all the cell

types shown along the X-axis. As discussed earlier, Cheng et al.

(2011) implement a different SVM model for each bin position.

Therefore, we report both average AUC score for all the bins (SVM

Avg) as well as the best AUC score among all bins (SVM Best Bin).

‘SVM Best Bin’ (Average AUC¼0.75) gives better results than

‘SVM Avg’ (Average AUC¼0.66). However, its AUC scores are still

lower than those of DeepChrome. Random Forest gives the worst

performance (Average AUC¼0.59). Additionally, we observe that

the performances of all three models vary across different cell types

and follow a similar trend. For some cell types, like E123, the pre-

diction task resulted in higher AUC scores among all models than

other cell types.

5.2 Validating the influence of bin positions on

prediction
Cheng et al. (2011) obtained predictions for each bin (due to bin-

specific strategy) and reported that, on average, the best AUC scores

were obtained from bins that are close to the TSS. Figure 4(a) shows

that our implementation of this SVM baseline confirms this observa-

tion. Since our convolutional network makes a prediction on the en-

tire flanking region (i.e. all the bins at once), we cannot evaluate the

AUC for each individual bin. However, we can roughly determine

which bins are the most influential for a specific gene prediction. To

do this, we look at the strongest activations among the output of the

convolution step (the feature map, as shown in Fig. 2). Since the col-

umn in the feature map corresponds to the bins in the input region,

we can simply look at the feature map values to determine which

bin positions are most influential for that prediction. To validate

our model, we ran all of our test samples through a trained deep net-

work, and took the average of all the feature maps across all 56

models. Figure 4(b) shows that bins near the center, closer to TSS,

are assigned with higher values by the convolution layers. This indi-

cates that DeepChrome maintains similar trends as observed by

Cheng et al. (2011). This trend indicates histone modification sig-

nals of bins that are closer to TSS are more influential in gene

predictions.

5.3 Visualizing combinatorial interactions among

histone modifications
In order to interpret the combinatorial interactions among histone

modifications, we present a visualization technique in Section 3.3.

Table 3. Results on validation set (6601 genes) during tuning

across different combinations of kernel size k and pool size m

Kernel size, pool size (k, m) AUC scores (validation set)

Max Min Mean

(5,2) 0.94 0.65 0.77

(5,5) 0.94 0.65 0.77

(10,2) 0.94 0.65 0.76

(10,5) 0.94 0.66 0.77

k captures the local neighborhood representations of bins and m combines

the important representations across whole regions for our CNN model. We

report the maximum, minimum and mean AUC score obtained across 56 cell

types (or tasks). The best performing values of k¼ 10 and m¼ 5 (highest

Max. and Min. AUC scores) were selected for evaluating test performance of

DeepChrome.
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Fig. 4. Validating the influence of positions for gene expression classification. Cheng et al. (2011) reported that the bin positions closer to the transcription start

site (TSS) of each gene are more important when predicting gene expression. This is confirmed by our implementation of this bin-specific baseline model in (a).

For each bin position, it shows the mean AUC score across all the cell types. In (b), we plot the filter outputs from the convolution layer of DeepChrome model.

For each bin, its value has been averaged across all filters and cell-types. The solid lines represent the best-curve fit to the data points plotted in the figures. The

trends for both (a) and (b) are similar

DeepChrome: deep-learning for predicting gene expression i645

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i639/2450757 by guest on 21 August 2022



Figure 5 presents four visualization results from DeepChrome on

four cell types with high AUC scores. Each visualization result is a

heat-map which shows the histone modification combinatorial

pattern that is best representative of high (label¼þ1) or low

(label¼ –1) gene expression. Note that this is different than Section

5.2 where we validated the importance of bin positions in general,

rather than the combinatorial interactions for a specific class. The

values in the heatmaps are within the range ½0; 1�, representing how

important a particular bin is for prediction of the class of interest.

A threshold of 0.25 was selected to filter ‘active’, or important,

bins that are most influential for a particular classification. We cal-

culated the frequency count of active bins for each histone modifi-

cation. Histone marks with high frequency counts (>mean

frequency count across all histone marks) are considered to be

strongly affecting the gene expression to become high or low. As

expected, we observe a relationship among promoter and struc-

tural histone modification marks (H3K4me3 and H3K36me3) for

47 out of 56 (84%) cell-types when gene expression is high.

Similarly, we observe an opposite trend with repressor marks

(H3K9me3 and H3K27me3) showing combinatorial relationship

for 50 out of 56 (89%) cell-types, when gene expression is low. In

other words, our model automatically learns that in order to clas-

sify a high or low gene expression, there needs to be high counts

among promoter marks, or repressor marks, respectively.

Next, we validated our visualization results with the findings in

previous studies. Both of our baseline papers, Cheng et al. (2011)

and Dong et al. (2012), showed that there is a combinatorial correl-

ation between H3K4me3 (promoter mark) and H3K36me3 (struc-

tural mark). This pattern can be seen in Figure 5 for high gene

expression cases. Similarly, Dong et al. (2012) also reported a com-

binatorial correlation between promoter mark (H3K4me3) and dis-

tal promoter mark (H3K4me1), which is also validated by the

DeepChrome visualization for 35 out of 56 cell-types (62.5%). In

addition, experimental studies have shown that these promoter

marks play a role in the activation of genes, and this trend is seen in

our visualization when the assigned label is þ1.

Another combinatorial pattern that we noticed in the majority

of cell-types (89%, i.e 50 out of 56 cell-types) was that of

H3K9me3 (heterochromatin repressor) and H3K27me3 (polycomb

repressor) for low gene expression case (label¼ –1). We found this

observation in multiple recent biological studies such as Boros

et al. (2014). This study reported that these two repressor marks

coexist and cooperate in gene silencing. With almost no expert

knowledge, we were able to find and visualize this combination

through DeepChrome. To our knowledge, none of the previous

computational studies have reported this combinatorial effect be-

tween H3K9me3 and H3K27me3. In short, the DeepChrome visu-

alization technique provides the potential to learn novel insights
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Fig. 5. DeepChrome visualization. (Best viewed in color) Four examples of feature maps generated by our optimization technique from four trained models. The

scores in these feature maps are 2 ½0; 1� and a threshold of 0.25 was selected to indicate ‘active’ (or important) bins. The bar graph represents the count of active

bins for each histone modification. Higher frequency count (>mean frequency count across all histone marks) indicates greater influence of the histone modifica-

tion mark in prediction of gene expression labels. Multiple marks with high frequency count are considered to be combinatorially affecting the gene expression

to become high or low. (a) As expected, we observe a relationship among promoter and structural histone modification marks (H3K4me3 and H3K36me3) when

gene expression is high. (b) Similarly, we observe an opposite trend with repressor marks (H3K9me3 and H3K27me3) showing combinatorial relationship, when

gene expression is low. These pattern maps not only support previous quantitative observations in Cheng et al. (2011) and Dong et al. (2012), but also provide

novel insights that are supported by recent biological studies. For example, a recent study by Boros et al. (2014) has reported evidence of coexistence of

H3K27me3 and H3K9me3 modifications in gene silencing
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into combinatorial relationships among histone modifications for

gene regulation.

6 Discussion

We have presented DeepChrome, a deep learning framework that

not only accurately classifies gene expression levels using histone

modifications as input, but also learns combinatorial relationships

among these modification marks that regulate genes. We imple-

ment a Convolutional Neural Network based model, inspired from

deep learning work in image recognition applications, and evaluate

its performance on 56 cell types from the latest REMC dataset. To

our knowledge, we are the first to implement deep learning on the

task of gene expression classification using histone modification

signals.

DeepChrome outperforms state-of-the-art models using SVM

and Random Forests for the target task over 56 cell-types (or

tasks). In addition, we propose an optimization strategy to ex-

tract combinatorial relationships among histone modifications

from the trained models. Our findings not only validate previous

observations but also provide new insights for underlying gene

regulation mechanisms that have been observed in recent experi-

mental studies. We note that these insights are, for now, restricted

to our literature search. Therefore, we provide the optimized his-

tone pattern maps from the DeepChrome models for all 56 cell

types for both cases of gene expression being classified as high

and low online (www.deepchrome.org). We hope that biologists

are able to utilize these results for drawing significant hypotheses

on histone modification interactions that lead to gene activation

or silencing.

For future work, we would like to observe DeepChrome’s per-

formance on adding histone modifications to understand their

combinatorial effects as well. We would also perform cross-cell

predictions, where one model is trained on data from one cell type

and predictions are made on the other cell types. Previous studies

have reported that the correlations among histone modifications

remain consistent across cell types. However, the decrease in per-

formance (right tail in Fig. 3) for some cell types in our results sug-

gests the potential to explore this further. Another plausible

direction is to understand the effect of relationships among histone

modifications for regulating individual genes. This can help biolo-

gists in designing ‘epigenetic drugs’ that can manipulate histone

modification marks and control the expression of a particular gene

target.

In summary, DeepChrome opens multiple new avenues for

studying and exploration of genetic regulation via epigenetic factors.

This is made possible due to deep learning’s ability to handle a large

amount of existing data as well as to automatically extract import-

ant features and complex interactions, providing us with important

insights. Techniques like DeepChrome hold the potential to bring us

one step closer to properly investigating gene regulation mechan-

isms, which in turn can lead to understanding of genetic diseases.

Conflict of Interest: none declared.
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