
Workshop track - ICLR 2017

DEEPCLOAK:MASKING DEEP NEURAL NETWORK

MODELS FOR ROBUSTNESS AGAINST ADVERSARIAL

SAMPLES

Ji Gao1, Beilun Wang1, Zeming Lin1, Weilin Xu1, Yanjun Qi1

1 Department of Computer Science
University of Virginia
Charlottesville, VA 22904-4740

{jg6yd,bw4mw,xuweilin,yanjun}@virginia.edu

ABSTRACT

Recent studies have shown that deep neural networks (DNN) are vulnerable to ad-
versarial samples: maliciously-perturbed samples crafted to yield incorrect model
outputs. Such attacks can severely undermine DNN systems, particularly in
security-sensitive settings. It was observed that an adversary could easily gen-
erate adversarial samples by making a small perturbation on irrelevant feature
dimensions that are unnecessary for the current classification task. To overcome
this problem, we introduce a defensive mechanism called DeepCloak. By identi-
fying and removing unnecessary features in a DNN model, DeepCloak limits the
capacity an attacker can use generating adversarial samples and therefore increase
the robustness against such inputs. Comparing with other defensive approaches,
DeepCloak is easy to implement and computationally efficient. Experimental re-
sults show that DeepCloak can increase the performance of DNN models against
adversarial samples.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved great success in a variety of applications. Classifiers
based on DNN models have attained great performance on multiple security-sensitive tasks (Mi-
crosoft Corporation, 2015; Dahl et al., 2013). However, recent studies show that machine learning
classifiers are vulnerable to deliberate attacks. Attackers can easily generate a malicious sample by
adding a small perturbation to a normal sample. Then the malicious sample can fool the classifier
and force it to yield a wrong output. Such sample is called an adversarial sample. This paper fo-
cuses on finding a defensive approach that can make DNN models perform more reliable in the face
of adversarial samples.

Many recent studies focused on adversarial samples, including Szegedy et al. (2013); Papernot et al.
(2015); Goodfellow et al. (2014); Wang et al. (2016); Papernot et al. (2016b;a). Different algorithms
for generating adversarial samples have been invented. Szegedy et al. (2013) proposed an algorithm
to generate adversarial samples using Box L-BFGS method. It also showed that same adversarial
sample could be transferred to fool different DNN classifiers. Goodfellow et al. (2014) purposed
fast gradient sign method, which maximizes the consequence of the attack under limited size of
L∞-norm. Papernot et al. (2015) purposed another algorithm that generates adversarial samples fol-
lowing the saliency value. A recent paper Papernot et al. (2016a) proposed a black-box attack, which
first approximates the target classifier and then generates adversarial samples to the approximated
model.

Researchers also studied how to defend attacks enforced by adversarial samples. Goodfellow et al.
(2014) showed retraining a new model using adversarial samples can improve the adversarial ro-
bustness of the model. Papernot et al. (2016b) proposed defensive distillation to make the model
less sensible to gradient change. Wang et al. (2016) showed that one cause of adversarial sample is
those redundant features that are unnecessary to classification. A perturbation along an unnecessary
feature dimension can easily fool a classifier.

1

Workshop track - ICLR 2017

In this paper, we introduce a new defensive approach for DNN models: DeepCloak. The motivation
of DeepCloak is to increase model robustness by removing unnecessary features. Comparing to
previous defensive approach, DeepCloak has the following benefits: 1. DeepCloak doesn’t need
additional training process. Therefore it is computationally efficient. 2. DeepCloak can be easily
applied to any base DNN models.

In the rest part, Section 2 briefly introduces the background of adversarial samples and its relation-
ship to unnecessary features. Section 3 introduces our defense approach DeepCloak. It removes
unnecessary features in trained DNNs and thus increase the adversarial robustness. In Section 4,
experiment results show that DeepCloak works effectively for a popular DNN model.

2 BACKGROUND

2.1 ADVERSARIAL SAMPLES

For the following analysis, we denote a base DNN classifier as F (·) : Rn → Y, where x ∈ R
n

denotes a single sample and Y is the set of output classes.

Adversarial samples are deliberately created samples. We define of an adversarial sample x′ as:
x′ = x+∆x, |∆x| < ǫ, x′ ∈ X

F (x) 6= F (x′)
(2.1)

We assume inputs close to each other are similar. For example, in image classification, ∆x needs
to be small so that x and x′ are imperceptible to human eyes while the machine classifier F still
classifies x and x′ into two different classes.

2.2 ADVERSARIAL SAMPLES AND UNNECESSARY FEATURES

Wang et al. (2016) show that the effectiveness of adversarial samples is related to extra unnecessary
features extracted by the machine classifier. If a classifier extracts many unnecessary features in the
training process, it will be vulnerable to adversarial attacks.

To solve this problem, we then propose an approach that can reduce the number of unnecessary
features. Presented in Figure 2 of Appendix Section 6.2, the basic motivation is that the distance
between an adversarial sample and its seed example will be small along relevant feature dimensions
and relatively large along the unnecessary dimensions for the current task. Therefore, we propose
to remove unnecessary features for a DNN model by directly modifying its network structure.

3 METHOD: DEEPCLOAK

The basic idea of DeepCloak is to remove unnecessary features that can be used for generating
adversarial samples. To identify which feature is unnecessary, we test pairs of adversarial samples
x′ and its normal seed x, and compare the difference between the extracted features in DNN. Those
features changed rapidly are utilized by the adversary, and thus should be removed to improve the
robustness of the model.

To remove those unnecessary features, we insert a mask layer in a DNN model right before the
linear layer handling classification. Th mask layer serves as a selector, which will keep the necessary
features and remove the unnecessary features by setting them to 0. The size of the feature vector is
kept unchanged. The proposed structure is shown in Figure 1.

2

Workshop track - ICLR 2017

Figure 1: A sketch of DeepCloak: A mask layer with weights either 0 or 1 is added right
before the classification layers.

The input of the mask layer is the feature vector extracted by previous layers of the DNN model.
The weight of the mask layer is either 0 or 1. An element-wise multiplication is done by the mask
layer. Therefore, the output is either the input feature or 0. We remove the top n% of features with
highest sensitivity to adversarial samples.

The process is summarized in Algorithm 1. X can be a subset of the full training set, so the process
of learning the mask can be fast. No retraining of the model is needed.

Algorithm 1 DeepCloak algorithm

Input: Training set X = {x1, x2 . . . xN}, DNN classifier F (), adversarial power ǫ. g() represents
feature extraction layers of F ()

1: Initialize a vector v with all 0.
2: for i = 1, 2, . . . , N do
3: Generate an adversarial sample x′

i
using sample xi with power ǫ.

4: Forward xi into the network, get the output feature vector g(xi)
5: Forward x′

i
into the network, get the output feature vector g(x′

i
)

6: Add |g(xi)− g(x′

i
)| into v.

7: end for
8: Set v’s top m entries to 0 and the rest to 1.
9: Insert the mask layer v into DNN F after the inspected feature layer.

Essentially the sensitivity of are accumulated into the v vector as v =
∑

N

i=1
|g(xi) − g(x′

i
)| after

step 7 of Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

• Dataset: We choose CIFAR-10 (Krizhevsky & Hinton, 2009), an image dataset with 50,000 32x32
training images and 10,000 testing images.

• We choose a Residual network with 164 layers(He et al., 2016) as our target DNN model. The
model is pre-trained and achieves high performance on the corresponding dataset.

• Metric: We generate adversarial samples for every sample in the test set and test all adversarial
samples on each DNN model. The accuracy on the adversarial sample set is reported as “adver-
sarial accuracy” to measure the adversarial robustness of a DNN model.

4.2 EXPERIMENT RESULT

The result of DeepCloak against adversarial samples is displayed in Table 1. DeepCloak can reduce
the effectiveness of such adversarial samples by 10%. The adversarial perturbation is generated
using fast gradient sign method using ǫ = 10 (Appendix Section 6.1).

Nodes masked(%) Adversarial accuracy Relative increase Accuracy Relative decrease

0% 0.2961 0.00% 0.943 0.00%

1% 0.3923 32.49% 0.9372 -0.62%

2% 0.4234 42.99% 0.9132 -3.16%

3% 0.414 39.82% 0.9093 -3.57%

4% 0.4146 40.02% 0.8954 -5.05%

5% 0.4229 42.82% 0.9 -4.56%

6% 0.4173 40.93% 0.9017 -4.38%

Table 1: The result of DeepCloak on Res-net against adversarial attacks. There are totally
256 nodes in the feature output layer.

Table 1 also indicates that only a small percentage of features are important for adversarial samples.
In the table, masking 1% of features can increase the performance by 10% in the adversarial setting.
Therefore, we only need to remove a small percent of features to improve the adversarial robustness
greatly, and the model still achieves high accuracy on normal test samples.

3

Workshop track - ICLR 2017

5 CONCLUSION

In this study, we present DeepCloak, a simple and cost-efficient strategy to reduce the effectiveness
of adversarial samples on DNN classifiers. Experiments shows that DeepCloak can increase model
performance in the adversarial setting. In the future, we will explore more approaches that can
reduce the number of feature dimensions to increase the adversarial robustness.

REFERENCES

George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-scale malware classification using
random projections and neural networks. In ICASSP, 2013.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nique report, University of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Microsoft Corporation. Microsoft Malware Competition Challenge. https://www.kaggle.

com/c/malware-classification, 2015.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. arXiv preprint arXiv:1511.07528,
2015.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against deep learning systems using adversarial examples.
arXiv preprint arXiv:1602.02697, 2016a.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. In Security and Privacy (SP),
2016 IEEE Symposium on, pp. 582–597. IEEE, 2016b.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.
URL http://arxiv.org/abs/1312.6199.

Beilun Wang, Ji Gao, and Yanjun Qi. A theoretical framework for robustness of (deep) classifiers
under adversarial noise. arXiv preprint arXiv:1612.00334, 2016.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

4

https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/malware-classification
http://arxiv.org/abs/1312.6199

Workshop track - ICLR 2017

6 APPENDIX

6.1 FAST GRADIENT SIGN ALGORITHM

As introduced in Section 1, multiple algorithms have been proposed to generate the adversarial
sample x. Fast Gradient Sign Algorithm proposed by Goodfellow et al. (2014) is one efficient
algorithm in creating adversarial samples. The perturbation is calculated through the following
equation:

∆x = ǫ sign(∇zLoss(F (z), F (x))) (6.1)

This is motivated by controlling the L∞ norm of ∆x, which results in the size of perturbation in
each feature dimension are the same. Maximizing the difference between F (x) and F (x′) while
limiting the L∞ norm of ∆x means to follow the gradient direction on every dimension, which is
exactly the sign of the gradient.

6.2 EXAMPLE OF AN UNNECESSARY FEATURE CAN BE UTILIZED BY ADVERSARIAL

SAMPLES

Figure 2: One possible type of adversarial vulnerability when learning a linear classifier from
unnecessary features

Figure 2 shows a situation when a linear classification model uses an unnecessary feature. For
simplicity, we assume human annotators only use one feature to do the classification. Since the
machine classifier use one extra feature, the attacker can push the original sample (blue cross) along
that extra feature dimension (y-axis) to generate an adversarial samples (green cross), which is
misclassified by the machine classification model.

6.3 MORE EXPERIMENTS

6.3.1 EXPERIMENT ON DIFFERENT MODELS AND DATASETS

We add experiments to show our method can be applied to a wide range of DNN models. The results
are displayed in Table 2, Table 3 and Table 4.

More specifically, we train a small CNN on the MNIST dataset (LeCun et al., 1998) , and also
VGG (Simonyan & Zisserman, 2014) model and Wide Residual Network model (Zagoruyko &
Komodakis, 2016) on the CIFAR-10 dataset.

5

Workshop track - ICLR 2017

Nodes masked(%) Adversarial accuracy Relative increase Accuracy Relative decrease

0% 0.5586 0.00% 0.9827 0.00%

1% 0.5604 0.32% 0.9821 -0.06%

2% 0.5589 0.05% 0.9817 -0.10%

3% 0.5573 -0.23% 0.9817 -0.10%

4% 0.5601 0.27% 0.9820 -0.07%

5% 0.5644 1.04% 0.9816 -0.11%

6% 0.5691 1.88% 0.9807 -0.20%

7% 0.5791 3.67% 0.9812 -0.15%

8% 0.5794 3.72% 0.9810 -0.17%

9% 0.5802 3.87% 0.9808 -0.19%

10% 0.5839 4.53% 0.9807 -0.20%

Table 2: The result of DeepCloak on a small CNN model(with 2 conv layers, 2 pooling layers
and a linera layer) trained on MNIST against adversarial samples. There are totally 200

nodes in the feature output layer.

Nodes masked(%) Adversarial accuracy Relative increase Accuracy Relative decrease

0% 0.2360 0.00% 0.9363 0.00%

1% 0.2443 3.52% 0.9355 -0.09%

2% 0.2481 5.13% 0.9369 0.06%

3% 0.2490 5.51% 0.9363 0.00%

4% 0.2527 7.08% 0.9361 -0.02%

5% 0.2539 7.58% 0.9358 -0.05%

6% 0.2564 8.64% 0.9354 -0.10%

7% 0.2583 9.45% 0.9350 -0.14%

8% 0.2609 10.55% 0.9360 -0.03%

9% 0.2604 10.34% 0.9346 -0.18%

10% 0.2632 11.53% 0.9340 -0.25%

Table 3: The result of DeepCloak on VGG network trained on CIFAR-10 against adversarial
samples. There are totally 512 nodes in the feature output layer.

Nodes masked(%) Adversarial accuracy Relative increase Accuracy Relative decrease

0% 0.2546 0.00% 0.9537 0.00%

1% 0.2652 4.16% 0.9529 -0.08%

2% 0.2683 5.38% 0.9517 -0.21%

3% 0.2753 8.13% 0.9512 -0.26%

4% 0.2797 9.86% 0.9500 -0.39%

5% 0.2828 11.08% 0.9491 -0.48%

6% 0.2900 13.90% 0.9486 -0.53%

7% 0.2927 14.96% 0.9476 -0.64%

8% 0.2963 16.38% 0.9461 -0.80%

9% 0.2993 17.56% 0.9470 -0.70%

10% 0.2966 16.50% 0.9458 -0.83%

Table 4: The result of DeepCloak on Wide Residual Network trained on CIFAR-10 against
adversarial samples. There are totally 640 nodes in the feature output layer.

In all three tables, masking a small amount of nodes in the output features can increase the adversar-
ial performance of the model. The accuracy on normal samples is slightly sacrificed. But comparing
with the increase of adversarial accuracy, the changes are much smaller. We observe that many fea-
tures are unimportant for the small CNN and VGG models, as removing 10% of the features lead
to a tiny loss in relative accuracy. The percentage of nodes masked should be tuned for different
architectures.

6.3.2 COMPARING TO A RANDOM MASK

To justify our result, we compare DeepCloak mask with a random mask. That is, we insert a fixed
mask layer with weights 0 and 1 randomly signed. To compare with DeepCloak, same percentage
of nodes have been masked. The result has been displayed in Figure 3.

6

Workshop track - ICLR 2017

Figure 3: Compare DeepCloak with a random mask

6.3.3 EXPERIMENT OF CHANGING ATTACK POWERS

Experimental result shown in Table 1 to Table 4 fix the attack power (ǫ of fast gradient sign method)
as 10. Here we show the experimental result when changing the value of attack powers.

Figure 4: Comparing the performance of DeepCloak when varying attack powers on Res-net.
Different colors indicate different attacking powers.

Figure 4 show the experiment result when changing attack powers. The performance of the base
model gets better when the attack power becomes smaller. DeepCloak works better when the attack
power is large when the original model is highly affected by adversarial samples. For most curves,
masking 1% of nodes can lead to better adversarial accuracy already.

7

Workshop track - ICLR 2017

6.3.4 EXPERIMENT OF MASKING DIFFERENT LABELS SEPARATELY

It is possible that some features only work for some particular output labels. Therefore, we then
try to learn different masks for different labels. The process is still like Algorithm 1, but we do it
separately for every possible output labels. We remove the same number of features for every labels.

The result is shown in Figure 5. Comparing to only hold a global mask, this method have a slight
decrease in performance when the number of features being masked is small. This is probably
because different masks make the model biased to some specific labels.

Figure 5: The performance of keeping separate weights

8

	Introduction
	Background
	Adversarial samples
	Adversarial samples and unnecessary features

	Method: DeepCloak
	Experiments
	Experiment setting
	Experiment result

	Conclusion
	Appendix
	Fast gradient sign algorithm
	Example of an unnecessary feature can be utilized by adversarial samples
	More experiments
	Experiment on different models and datasets
	Comparing to a random mask
	Experiment of changing attack powers
	Experiment of masking different labels separately

