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Deepcode: Feedback Codes via Deep Learning
Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

Abstract—The design of codes for communicating reli-
ably over a statistically well defined channel is an important
endeavor involving deep mathematical research and wide-
ranging practical applications. In this work, we present
the first family of codes obtained via deep learning, which
significantly outperforms state-of-the-art codes designed
over several decades of research. The communication
channel under consideration is the Gaussian noise channel
with feedback, whose study was initiated by Shannon;
feedback is known theoretically to improve reliability of
communication, but no practical codes that do so have
ever been successfully constructed.

We break this logjam by integrating information theo-
retic insights harmoniously with recurrent-neural-network
based encoders and decoders to create novel codes that
outperform known codes by 3 orders of magnitude in
reliability and achieve a 3dB gain in terms of SNR. We
also demonstrate several desirable properties of the codes:
(a) generalization to larger block lengths, (b) composability
with known codes, and (c) adaptation to practical con-
straints. This result also has broader ramifications for cod-
ing theory: even when the channel has a clear mathematical
model, deep learning methodologies, when combined with
channel-specific information-theoretic insights, can poten-
tially beat state-of-the-art codes constructed over decades
of mathematical research.

Index Terms—Channel coding, Deep learning, Neural
networks, Recurrent neural networks, Feedback communi-
cation, Schalkwijk–Kailath scheme

I. INTRODUCTION

The ubiquitous digital communication enabled via

wireless (e.g. WiFi, mobile, satellite) and wired (e.g.

ethernet, storage media, computer buses) media has been

the workhorses underlying the current information age.

The advances of reliable and efficient digital communi-

cation have been primarily driven by the design of codes

which allow the receiver to recover messages reliably

and efficiently under noisy conditions. The discipline

of coding theory has made significant progress in the

past seven decades since Shannon’s celebrated work in

1948 [1]. As a result, we now have near optimal codes in

H. Kim is with the Samsung AI Research in Cambridge, United
Kingdom. Y. Jiang and S. Kannan are with the Department of
Electrical Engineering at University of Washington. S. Oh is with
the Department of Computer Science and Engineering at University
of Washington. P. Viswanath is with the Department of Electrical
Engineering at University of Illinois at Urbana Champaign. Email:
hkim1505@gmail.com, yihanrogerjiang@gmail.com,

ksreeram@uw.edu, sewoong@cs.washington.edu,

pramodv@illinois.edu

This paper is an extended version of work appeared in the 32nd
Conference on Neural Information Processing Systems (NeurIPS 2018).

a canonical setting, namely, additive white Gaussian noise

(AWGN) channel. However, several channel models of

great practical interest lack efficient and practical coding

schemes.

A channel with feedback (from the receiver to

the transmitter) is an example of a long-standing open

problem with significant practical importance. Modern

wireless communication includes feedback in one form or

the other; for example, the feedback can be the received

value itself, or quantization of the received value or an

automatic repeat request (ARQ) [2]. Accordingly, there

are different models for channels with feedback, and

among them, the AWGN channel with output feedback

is a model that captures the essence of channels with

feedback; this model is also classical, introduced by

Shannon in 1956 [3]. In this channel model, the received

value is fed back (with unit time delay) to the transmitter

without any processing (refer to Figure 1). Designing

codes for this channel via deep learning approaches is

the central focus of this paper.

Whereas the output feedback does not improve

the Shannon capacity of the AWGN channel [3], it is

known to provide better reliability at finite block lengths

[4]. On the other hand, practical coding schemes have

not been successful in harnessing the feedback gain

thereby significantly limiting the use of output feedback in

practice. This state of the art is at odds with the theoretical

predictions of the gains in reliability via using feedback:

the seminal work of Schalkwijk and Kailath [4] proposed

a (theoretically) achievable scheme (S-K scheme) with

superior reliability guarantees. However, the S-K scheme

is shown to be extremely sensitive to both the precision of

the numerical computation and noise in the feedback [5],

[6]. Whereas several works extended the S-K scheme

to noisy feedback settings [7], [8], [9], the success has

been limited. For example, the scheme of [8] is designed

for channels with noisy feedback, but not only is the

reliability poor, it is often independent of the feedback

quality as shown in Figure 12, suggesting that the

feedback data is not being fully exploited. More generally,

it has been proven that no linear code incorporating the

noisy output feedback can achieve a positive rate of

communications [9]. This is especially troubling since

all practical codes are linear and linear codes are known

to achieve capacity (without feedback) [10], whereas [9]

proposes an asymptotically optimal and nonlinear coding

scheme for channels with noisy feedback based on a
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three-phase detection and retransmission protocol.

Throughout the paper, we consider a finite-length

block coding with a fixed rate setting (i.e., the total

number of channel usages does not change). Under the

variable length setting (i.e., total number of channel

usages varies and depends on the feedback) with noisy

output feedback, the transmitter and the receiver may

not be in an agreement on whether the transmission

is over or not, and this can cause an error on current

and the upcoming transmissions [7]. Under the variable

length setting, [11], [12] proposes a coding scheme for

channels with noisy feedback and demonstrates that

the improvement in reliability function resulting from

the variable-length coding is not fragile to the noise in

the feedback. In [13], the authors propose a variable-

length code with active feedback (i.e., coded feedback

as opposed to the output feedback) and show that their

code improves the reliability under noisy feedback if

the feedback Signal-to-Noise Ratio (SNR) is sufficiently

larger than the forward SNR.

In this paper, we demonstrate new neural network-

driven encoders (with matching decoders) that operate

significantly better (100–1000 times in Bit Error Rate

(BER) and 3dB gain in SNR) than state of the art on the

AWGN channel with (noisy) output feedback. We show

that architectural insights from simple communication

channels with feedback, when coupled with recurrent

neural network architectures, can discover novel codes.

We consider Recurrent Neural Network (RNN) param-

eterized encoders (and decoders), which are inherently

nonlinear and map information bits directly to real-valued

transmissions in a sequential manner.

Designing codes driven by deep learning has been

of significant interest recently, starting from [14] which

proposes an autoencoder framework for communications.

In [14], it is demonstrated that for classical AWGN

channels, feedforward neural codes can mimic the per-

formance of a well-known code for a short block length

(4 information bits). Extending this idea to orthogonal

frequency division multiplex (OFDM), [15], [16] show

that neural codes can mimic the performance of state-

of-the-art codes for short block lengths (8 information

bits). Several results extend the autoencoder idea to other

settings of AWGN channels [17] and modulation [18].

Beyond AWGN channels, [19] considers the problem of

communicating a complicated source (text) over erasure

channels and shows that RNN-based neural codes which

map raw texts directly to codewords can beat the state-

of-the art codes, when the reliability is evaluated by

human perception (as opposed to bit error rate). Deep

learning has been applied also in the problem of designing

decoders for existing encoders [20], [21], [22], [23], [24],

[25], [26], demonstrating the efficiency, robustness, and

adaptivity of neural decoders over the existing decoders.

In a different context, for distributed computation, where

an encoder adds redundant computations so that the de-

coder can reliably approximate the desired computations

under unavailabilities, [27] showed that neural network

based codes can beat the state of the art codes.

While several works in the past years apply deep

learning for channel coding, very few of them consider

the design of novel codes using deep learning (rather

than decoders). Furthermore, none of them are able to

beat state-of-the-art channel codes on a canonical (well

known) channel in terms of the standard reliability metric.

We demonstrate first family of codes obtained via deep

learning which outperforms state-of-the-art codes, signal-

ing a potential shift in code design, which historically

has been driven by individual human ingenuity with

sporadic progress over the decades. Henceforth, we call

this new family of codes Deepcode. We also demonstrate

the superior performance of variants of Deepcode under

a variety of practical constraints. Our main contributions

are as follows:

1) We demonstrate Deepcode – a new family of

RNN-driven neural codes that has three orders

of magnitude better reliability than state of the art

with both noiseless and noisy feedback (and 3dB

gain in SNR). Our results are significantly driven

by the intuition obtained from information and

coding theory, in designing a series of progressive

improvements in the neural network architectures.

We provide a detailed comparison on the complex-

ity; while Deepcode has complexity linear in block

length, without any optimization of complexity,

Deepcode is more complex than traditional codes

(Section III and IV).

2) We show that variants of Deepcode significantly

outperform state-of-the art codes under a variety of

practical constraints (example: delayed feedback,

very noisy feedback link) (Section IV).

3) We show composability: Deepcode naturally con-

catenates with a traditional inner code and demon-

strates continued improvements in reliability as the

block length increases (Section IV).

4) Our interpretation and analysis of Deepcode pro-

vide a guidance on the fundamantal understanding

of how the feedback can be used and some

information theoretic insights into designing codes

for channels with feedback (Section V).

5) We discuss design decisions and demonstrate

practical gains of Deepcode in practical cellular

communication systems (Section VI).

II. PROBLEM FORMULATION

The most canonical channel studied in the literature

(example: textbook material [28]) and also used in model-

ing practical scenarios (example: 5G LTE standards) is the
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Additive White Gaussian Noise (AWGN) channel without

feedback. Concretely, the encoder takes in K information

bits jointly, b = (b1, · · · , bK) ∈ {0, 1}K , and outputs

n real valued signals to be transmitted over a noisy

channel (sequentially). At the i-th transmission for each

i ∈ {1, . . . , n}, a transmitted symbol xi ∈ R is corrupted

by an independent Gaussian noise ni ∼ N (0, σ2), and

the decoder receives yi = xi + ni ∈ R. After receiving

the n received symbols, the decoder makes a decision on

which information bit sequence b was sent, out of 2K

possible choices. The goal is to maximize the probability

of correctly decoding the received symbols and recover

b.

Both the encoder and the decoder are functions, map-

ping b ∈ {0, 1}K to x ∈ R
n and y ∈ R

n to b̂ ∈ {0, 1}K ,

respectively. The design of a good code (an encoder and

a corresponding decoder) addresses both (i) the statistical

challenge of achieving a small error rate; and (ii) the

computational challenge of achieving the desired error

rate with efficient encoder and decoder. Almost a century

of progress in this domain of coding theory has produced

several innovative codes that efficiently achieve small

error rate, including convolutional codes, Turbo codes,

LDPC codes, and polar codes. These codes are known

to perform close to the fundamental limits of reliable

communication [29].

Fig. 1: AWGN channel with noisy output feedback

In a canonical AWGN channel with noisy feedback,

the received symbol yi is transmitted back to the encoder

after one unit time of delay and via another additive

white Gaussian noise feedback channel (Figure 1). The

encoder can use this feedback symbol to sequentially

and adaptively decide what symbol to transmit next. At

time i the encoder receives a noisy view of what was

received at the receiver (in the past by one unit time),

ỹi−1 = yi−1+wi−1 ∈ R, where the noise is independent

and distributed as wi−1 ∼ N (0, σ2
F ). Formally, an

encoder is now a function that sequentially maps the

information bit vector b and the feedback symbols

ỹi−1
1 = (ỹ1, · · · , ỹi−1) received thus far to a transmit

symbol xi: fi : (b, ỹi−1
1 ) 7→ xi, i ∈ {1, · · · , n}

and a decoder is a function that maps the received

sequence yn1 = (y1, · · · , yn) into estimated information

bits: g : yn1 7→ b̂ ∈ {0, 1}K .

The standard measures of performance are the

average bit error rate (BER) defined as BER ≡
(1/K)

∑K

i=1
P(bi 6= b̂i) and the block error rate (BLER)

defined as BLER ≡ P(b 6= b̂), where the random-

ness comes from the forward and feedback channels

and any other sources of randomness that might be

used in the encoding and decoding processes. It is

standard (both theoretically and practically) to have

an average power constraint, i.e., (1/n)E[‖x‖2] ≤ 1,

where x = (x1, · · · , xn) and the expectation is over the

randomness in choosing the information bits b uniformly

at random, the randomness in the noisy feedback symbols

(ỹ1, · · · , ỹn) and any other randomness used in the

encoder.

A. Results preview

While the capacity of the channel remains the same

in the presence of feedback [3], the reliability can increase

significantly as demonstrated by the celebrated result of

Schalkwijk and Kailath (S-K) [4]. Although the optimal

theoretical performance is met by the S-K scheme, critical

drawbacks make it fragile. Theoretically, the scheme crit-

ically relies on exactly noiseless feedback (i.e. σ2
F = 0),

and does not extend to channels with even arbitrarily

small amount of noise in the feedback (i.e. σ2
F > 0). The

scheme is also very sensitive to numerical precisions; we

see this in Figure 2, where the numerical errors dominate

the performance of the S-K scheme, with a practical

choice of MATLAB implementation with a precision of

64 bits to represent floating-point numbers.

Even with a noiseless feedback channel with σ2
F = 0,

which the S-K scheme is designed for, it is outperformed

significantly by our proposed Deepcode (described in

detail in Section III). At moderate SNR of 2 dB, Deepcode

can outperform S-K scheme by three orders of magnitude

in BER. In Figure 2 (top), the resulting BER is shown

as a function of the Signal-to-Noise Ratio (SNR) defined

as −10 log10 σ
2, where we consider the setting of rate

1/3 and information block length of K = 50 (hence,

n = 150). Also shown as a baseline is an LTE turbo

code which does not use any feedback. Deepcode exploits

the feedback symbols to achieve a significant gain of two

orders of magnitude consistently over the Turbo code

for all SNR. In Figure 2 (bottom), BLER of Deepcode

is shown as a function of the Signal-to-Noise Ratio

(SNR), together with state-of-the art polar, LDPC, and

convolutional codes in a 3GPP document for 5G [30]

(we refer to Appendix VIII for the details of these

codes). Deepcode significantly improves over all state-

of-the-art codes of the similar block-length and the same

rate. Also plotted as a baseline are the theoretically

estimated performance of the best code with no efficient
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decoding schemes. This impractical baseline lies between

approximate achievable BLER (labelled Normapx in the

figure) and a converse to the BLER (labelled Converse

in the figure) from [29], [31]. We note that there

are schemes proposed more recently that address the

sensitivity to noise in the output feedback, a major

drawback of the S-K scheme (e.g., [32] and [8]). However,

these schemes either still suffer from similar sensitivity

to numerical precisions at the decoder due to the uniform

message constellation as in the S-K scheme [32], or are

often incapable of exploiting the feedback information

[8] as we illustrate in Figure 12 in experiments with

noisy feedback.

BER

SNR (dB)

BLER

SNR (dB)

Fig. 2: Deepcode significantly outperforms the baseline

of S-K and Turbo code when information block length is

50 and noiseless feedback is available in BER (top) and

BLER (bottom). Deepcode also outperforms all state-of-

the art codes (without feedback) in BLER (bottom).

III. DEEPCODE: NEURAL ENCODER AND DECODER

A natural strategy to create a feedback code is to

utilize a recurrent neural network (RNN) as an encoder

since (i) communication with feedback is naturally a

sequential process and (ii) we can exploit the sequential

structure for an efficient decoding. We propose represent-

ing the encoder and the decoder as RNNs, training them

jointly under AWGN channels with noisy feedback, and

minimizing the error in decoding the information bits.

However, in our experiments, we find that this strategy

by itself is insufficient to achieve any performance

improvement with feedback; there are several design

elements that need to be carefully chosen in constructing

and training a RNN based code.

We exploit information theoretic insights to enable

improved performance, by considering the coding scheme

for erasure channels with feedback: here transmitted bits

are either received perfectly or erased, and whether the

previous bit was erased or received perfectly is fed back

to the transmitter. In such a channel, the following two-

phase scheme can be used: transmit a block of symbols,

and then transmit whichever symbols were erased in

the first block (and ad infinitum). This motivates a two-

phase scheme, where uncoded bits are sent in the first

phase, and then based on the feedback in the first phase,

coded bits are sent in the second phase; thus the code

only needs to be designed for the second phase. We

show in this section that these intuitions can be critically

employed to innovate neural network architectures for

coding on AWGN channels with feedback. Even within

this two-phase paradigm, several architectural choices

need to be made. In the following, we show the baseline

neural network architectures (Scheme A) and a series

of improvements (Schemes B,C,D) made based on the

typical error analysis.

Our experiments focus on the setting of rate 1/3 and

information block length of 50 for concreteness1. That is,

the encoder maps K = 50 message bits to a codeword

of length n = 150. We discuss generalizations to longer

block lengths in Section IV.

Scheme A. RNN based feedback encoder/decoder (RNN

(linear) and RNN (tanh)).

We propose a baseline encoding scheme that pro-

gresses in two phases. In the first phase, the K raw

information bits are sent (uncoded) over the AWGN

channel. In the second phase, 2K coded bits are generated

based on the information bits b and (delayed) output

feedback and sequentially transmitted (so that the total

rate is fixed as 1/3).

Encoding. The architecture of the encoder is shown

in Figure 3. The architectures for RNN (tanh) and

RNN (linear) feedback codes are equivalent except the

activation function in RNN; RNN (tanh) encoder uses a

tanh activation while RNN (linear) encoder uses a linear

activation (for both the recurrent and output activation).

In the first phase of the encoding process, the encoder

simply transmits the K raw message bits via binary

1Source codes are available under https://github.com/hyejikim1/
feedback_code (Keras) and https://github.com/yihanjiang/feedback_code
(PyTorch)

https://github.com/hyejikim1/feedback_code
https://github.com/hyejikim1/feedback_code
https://github.com/yihanjiang/feedback_code
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phase shift keying (BPSK). That is, the encoder maps

bk to ck = 2bk − 1 for k ∈ {1, · · · ,K}, and stores the

feedback ỹ1, · · · , ỹK for later use. In the second phase,

the encoder generates a coded sequence of length 2K
(length (1/r − 1)K for general rate r code) through a

single directional RNN. In particular, each k-th RNN cell

generates two coded bits ck,1, ck,2 for k ∈ {1, . . . ,K},

which uses both the information bits and (delayed)

output feedback from the earlier raw information bit

transmissions. The input to the k-th RNN cell is of

size four: bk, ỹk − ck (the estimated noise added to

the k-th message bit in phase 1) and the most recent

two noisy feedbacks from phase 2: ỹk−1,1 − ck−1,1 and

ỹk−1,2−ck−1,2. Note that we use ỹk,j = ck,j+nk,j+wk,j

to denote the feedback received from the transmission of

ck,j for k ∈ {1, · · · ,K} and j ∈ {1, 2}, and nk,j and

wk,j are corresponding forward and feedback channel

noises, respectively.

Layer Output dimension

Input (K, 4)

RNN (linear or tanh) (K, 50)

Dense (sigmoid) (K, 2)

Normalization (K, 2)

Fig. 3: RNN encoder for Scheme A.

To generate codewords that satisfy the power con-

straint, we put a normalization layer to the RNN outputs

so that each coded bit has a mean 0 and a variance 1.

During training, the normalization layer subtracts the

batch mean from the output of RNN and divide by

the standard deviation of the batch. After training, we

compute the mean and the variance of the RNN outputs

over 106 examples. In testing, we use the precomputed

means and variances.

Decoding. We propose a decoding scheme using

two layers of bidirectional Gated Recurrent Units

(GRU). The architecture of the decoder is shown

in Figure 4. Based on the received sequence

y = (y1, · · · , yk, y1,1, y1,2, y2,1, y2,2, · · · , yK,1, yK,2) of

length 3K, the decoder estimates K information bits. For

the decoder, we use a two-layered bidirectional Gated

Recurrent Unit (GRU), where the input to the k-th GRU

cell is a tuple of three received symbols, (yk, yk,1, yk,2).

Training. As illustrated in Figure 5, both the encoder

Layer Output dim.

Input (K, 3)

bi-GRU (K, 100)

Batch Norm. (K, 100)

bi-GRU (K, 100)

Batch Norm. (K, 100)

Dense (K, 1)

(sigmoid)

Fig. 4: RNN decoder for Scheme A.

and decoder are trained jointly as in the autoencoder

training. We model the whole communication system

including the encoder and the channels and the decoder

as a large neural network, where the input is a random

sequence of message bits and the output is the estimate

of the message bit sequence. (We refer to Figure 18 in

Appendix IX for a detailed illustration of the encoder

and the decoder.)

Fig. 5: Autoencoder framework for the joint training of

encoder–decoder (illustrated for information block length

3, rate 1/3)

For training examples, we generate a random mes-

sage bit sequence b = (b1, · · · , bK) and a random noise

sequence for the forward channel (and a random noise

sequence for the feedback channel if we consider an

AWGN feedback channel). We train the encoder and the

decoder jointly via backpropagation through time (on

the entire input sequence), where the goal of training

is to minimize the binary cross-entropy loss function

L(b, b̂) =
∑K

i=1
(−bi log b̂i−(1−bi) log(1−b̂i)). We do

the backpropagation through time over a 4×106 examples

via an Adam optimizer (β1=0.9, β2=0.999). We fix the

batch size as 200. We randomly initialize weights of the

encoder and the decoder. We observe that training with a

random initialization of the encoder and the decoder gives

a better code compared to initializing with a pre-trained
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encoder/decoder by sequential channel codes for non-

feedback AWGN channels (e.g. convolutional codes). We

also use a decaying learning rate and gradient clipping;

we reduce the learning rate by 10 times after training with

106 examples, starting from 0.02. Gradients are clipped

to 1 if L2 norm of the gradient exceeds 1 so that we

prevent the gradients from getting too large. We do not

use any dropout. We find that the choices of training

examples are important. Empirically we find that if the

length of the training input sequence is too small (e.g.,

50), we cannot learn a good structured code. As we use

the RNN based encoder and decoder, the learned code

generalizes to arbitrary block lengths (e.g., as opposed

to a feedforward neural network which only applies to a

fixed input length). We set the length of the training input

sequence to 100 (and test with input sequence length 50).

In generating two sets of noise sequence for the AWGN

channels used during the training, we find that it works

best to set the SNRs equal to the SNRs to be used in

testing. For example, if we would like to learn a code

to be used under the 1dB forward channel with 1dB

feedback channel, it is best to train with noise sequences

generated under those SNRs.

Result. When jointly trained, as shown in Figure 6, a

linear RNN encoder (- -) achieves performance close to

Turbo code that does not use the feedback information

at all (-▽-). (To generate plots in Figure 6, we take

an average bit error rate over 108 bits for SNR =

−1, 0dB and 109 bits for SNR= 1, 2dB.) With a non-

linear activation function of tanh(·), the performance

improves, achieving BER close to the existing S-K

scheme. Such a gain of non-linear codes over linear ones

is in-line with theory [32]. In order to further improve

the reliability, we perform typical error analysis and

propose modifications to the RNN encoder and decoder

architectures (Schemes B,C,D). The improved reliabilities

of modified architectures are also shown in Figure 6.

Typical error analysis. Due to the recurrent structure in

generating coded bits (ck,1, ck,2), the coded bit stream

carries more information on the first few bits than last

few bits (e.g. b1 than bK ). This results in more errors in

the last information bits, as shown in Figure 7, where

we plot the average BER of bk for k = {1, · · · ,K}. In

the following, we propose modifications to resolve this

issue.

Scheme B. RNN feedback code with zero padding (RNN

(tanh) + ZP).

In order to reduce high errors in the last information

bits, as shown in Figure 7, we apply the zero padding

(ZP) technique; we pad a zero in the end of information

bits, and transmit a codeword for the padded information

bits.

BER

SNR (dB)

Fig. 6: Building upon a simple linear RNN encoder (Fig-

ure 3), we progressively improve the architecture. Even-

tually with RNN(tanh)+ZP+W+A architecture formally

described in Section III, we significantly outperform the

baseline of S-K scheme and Turbo code, by several orders

of magnitude in the bit error rate, when information block

length is 50 and noiseless feedback is available (σ2
F = 0

and forward channel is AWGN).

Encoding and decoding. The encoder and decoder

structures with zero padding are shown in Figure 8

and Figure 9, respectively. We maintain the encoder and

decoder architecture same as Scheme A (RNN (tanh)) and

simply replace the input information bits by information

bits padded by a zero; hence, we use K + 1 RNN cells

in Phase 2 instead of K.

Fig. 8: Encoder for Scheme B.

Fig. 9: Decoder for Schemes B,C,D.
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BER of bk

Position (k)

σ2

Position (k)

Fig. 7: (Left) A naive RNN(tanh) code gives a high BER in the last few information bits. With the idea of zero

padding and power allocation, the RNN(tanh)+ZP+W+A architecture gives a BER that varies less across the bit

position, and overall BER is significantly improved over the naive RNN(tanh) code. (Middle) Noise variances across

bit position which result in a block error: high noise variance on the second parity bit stream (c1,2, · · · , cK,2) causes

a block error. (Right) Noise covariance: Noise sequence which results in a block error does not have a significant

correlation across position.

Training. As in training Scheme A, we use back-

propagation with binary cross entropy loss. We measure

binary crossentropy loss on the information bits of length

K only (i.e., ignore the loss on the last bit which

corresponds to a zero padding).

Result. By applying zero padding, the BER of the last

information bits, as well as other bits, drops significantly,

as shown in Figure 7. Zero padding requires a few extra

channel usages (e.g. with one zero padding, we map 50

information bits to a codeword of length 153. Actual

transmission requires 152 channel usages because the

padded zero itself does not need to be transmitted.).

However, due to the significant improvement in BER,

it is widely used in sequential codes (e.g. convolutional

codes and turbo codes).

Typical error analysis. To see if there is a pattern in

the noise sequence which makes the decoder fail, we

simulate instances of the code and the channel (noise

sequence) and collect the corresponding decoding results

(whether each instance is decoded correct or wrong). We

then look at the first and second order noise statistics

which result in the decoding error. In Figure 7 (Middle),

we plot the average variance of noise added to bk in first

phase and ck,1 and ck,2 in the second phase, as a function

of k, which results in the (block) error in decoding. From

the figure, we make two observations; (i) large noise

in the last bits causes an error, and (ii) large noise in

ck,2 is likely to cause an error, which implies that the

raw bit stream and the coded bit streams are not equally

robust to the noise – an observation that will be exploited

next. In Figure 7 (Right), we plot noise covariances that

result in a decoding error. From Figure 7 (Right), we see

that there is no particular correlation within the noise

sequence that makes the decoder fail.

Scheme C. RNN feedback code with power allocation

(RNN(tanh) + ZP + W).

Based on the observation that the raw bit ck and

coded bits ck,1, ck,2 are not equally robust, as shown in

Figure 7 (Middle), we introduce trainable weights which

allow allocating different amount of power to the raw bit

stream and coded bit streams.

Encoding and decoding. The encoder and decoder

architectures for scheme C are shown in Figure 10

and Figure 9, respectively. Specifically, we introduce

three trainable weights (w0, w1, w2) which represent the

power allocated to ck, ck,1, ck,2 for all k ∈ {1, · · · ,K},

respectively. The weights (w0, w1, w2) satisfies w2
0+w2

1+
w2

2 = 3 so that the average power is preserved (c.f. in

Encoder B, we let E[c2k] = E[c2k,1] = E[c2k,2] = 1 and

w1 = w2 = w3 = 1).

Fig. 10: Encoder for Scheme C.
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Training. We initialize wis by 1 and train the encoder

and decoder jointly as we trained Schemes A and B.

The trained weights are (w1, w2, w3) = (1.13, 0.90, 0.96)
(trained at -1dB). This implies that the encoder uses more

power in Phase I, to transmit (raw) information bits. In

Phase II, the encoder uses more power on the second

parity bits than in the first parity bits.

Result and typical error analysis. By introducing and

training these weights, we achieve the improvement in

BER as shown in Figures 6 and 7. While the average

BER is improved by about an order of magnitude for

most bit positions as shown in Figure 7 (Left), the BER

of the last bit remains about the same. On the other hand,

the BER of first few bits are now smaller, suggesting the

following bit-specific power allocation method.

Scheme D. Deepcode: RNN feedback code with bit power

allocation (RNN(tanh) + ZP + W + A).

One way to resolve the unbalanced error according

to bit position is to use power allocation. Ideally, we

would like to reduce the power for the first information

bits and increase the power for the last information bits

so that we help transmission of last few information bits

more than first information bits. However, it is not clear

how much power to allow for the first few information

bits and the last few information bits. Hence, we introduce

a weight vector allowing the power of bits in different

position to be different.

Encoding and decoding. The encoder and decoder

architectures for scheme D are shown in Figure 11 and

Figure 9, respectively. We introduce trainable weights

a1, a2, · · · , aK , aK+1 for power allocation in each trans-

mission. To the full generality, we can train all these

K + 1 weights. However, we let a5, · · · , aK−4 = 1
and only train first 4 weights and the last 5 weights,

a1, a2, a3, a4 and aK−3, aK−2, aK−1, aK , aK+1, for two

reasons. Firstly, this way we can generalize the encoder to

longer block lengths by maintaining the weights for first

four and last five weights and fixing the rest of weights

as 1s, no matter how many rest weights we have. For

example, if we test our code for length 1000 information

bits, we can let a5, · · · , c996 = 1. Secondly, the BERs

of middle bits do not depend much on the bit position;

hence, power control is not as much needed as the first

and last few bits.

Fig. 11: Encoder for Scheme D: Deepcode.

Training. In training scheme D, we initialize the

encoder and decoder as the ones in Scheme C,

and then additionally train the weight vectors a

on top of the trained model, while allowing all

weights in the encoder and decoder to change

as well. After training, we see that the trained

weights are (a1, a2, a3, a4) = (0.87, 0.93, 0.96, 0.98)
and (aK−3, aK−2, aK−1, aK , aK+1) =
(1.009, 1.013, 1.056, 1.199, 0.935) (for −1dB trained

model). As we expected, the trained weights in the

later bits are larger. Also, the weight at the K + 1th bit

position is small because last bit is always zero and does

not convey any information. On the other hand, trained

weights in the beginning positions are small because

these bits are naturally more robust to noise due to the

sequential structure in Phase 2.

Result. The resulting BER curve is shown in Figure 6(-

o-). We can see that the BER is noticeably decreased. In

Figure 7(-o-), we can see that the BER in the last bits are

reduced, and we can also see that the BER in the first

bits are increased, as expected. Our use of unequal power

allocation across information bits is in-line with other

approaches from information/coding theory [33], [34].

We call this neural code Deepcode.

Complexity. Complexity and latency, as well as reliabil-

ity, are important metrics in practice, as the encoder and

the decoder need to run in real time on mobile devices.

Deepcode has linear encoding and decoding complexity

O(K), where K denotes the information block length.

S-K scheme and sequential forward error correcting

codes, such as turbo codes and convolutional codes, also

have linear encoding and decoding complexity. On the

other hand, polar codes have encoding and decoding

complexity O(K logK) [35]. General LDPC codes have

encoding complexity O(K2) and decoding complexity

O(K), where as some optimized LDPC codes have

encoding time complexity O(K) [36].

Actual latencies are very hard to compare because

the latency critically depends on how operations are

implemented in the hardware. Turbo decoder, for example,

is a belief-propagation decoder with multiple (e.g., 10 –

20) iterations of a component decoder, and each iteration

is followed by a permutation. On the other hand, the
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decoder for Deepcode is a 2-layered bi-directional GRU

decoder, each with 50 hidden units, all of which are

matrix multiplications that can be parallelized.

Whereas we can not compare the runtimes of

Deepcode decoder and turbo decoder, we can compare

the number of multiplications required per each bit. The

bottleneck in the Deepcode decoder is the update of

the write gate, forget gate, and the hidden state in 4

GRUs (forward GRU and backward GRU in layers 1

and 2); hence, in total, it includes 12 matrix (dimension

50×50) – vector (length 50) multiplications per bit. On

the other hand, turbo decoder is a 10 – 20 iteration of

BCJR algorithms, each of which includes between 10 to

100 multiplications per bit depending on the trellis used

for the turbo code, followed by a permutation. We can

similarly compare the encoder complexity. The bottleneck

in the Deepcode encoder is an update of the hidden state

in the RNN; which requires a matrix (dimension 50×50)

– vector (length 50) multiplication per bit. Turbo encoder

generates two recursive systematic convolutional codes,

each requires 10s of boolean XORs per bit depending

on the trellis, and a permutation of the message bit

sequence. In the current form, Deepcode requires more

computation than turbo code. Ideas such as knowledge

distillation [37] and network binarization [38] can be

used to potentially further reduce the complexity of the

network. The optimization of Deepcode is beyond the

scope of this paper and is left as a future work. We

again note that the runtime comparison is open (e.g.,

matrix-vector multiplications can be highly parallelized).

IV. PRACTICAL CONSIDERATIONS:

NOISE AND DELAY IN FEEDBACK, FINITE PRECISION,

AND BLOCKLENGTH

We considered so far the AWGN channel with

noiseless output feedback with a unit time-step delay. In

this section, we demonstrate the robustness of Deepcode

(and its variants) under two variations on the feedback

channel, noise and delay, as well as finite precision. We

also present a generalization to longer block lengths.

We show that (a) Deepcode and its variant that allows

a K-step delayed feedback are more reliable than the

state-of-the-art schemes in channels with noisy feedback,

and (b) Deepcode concatenated with turbo code achieves

superior error rate decay as block length increases with

noisy feedback.

Noisy feedback. We show that Deepcode, trained on

AWGN channels with noisy output feedback, achieves

a significantly smaller BER than both S-K and C-L

schemes [8]. In Figure 12 (Left), we plot the BER

as a function of the feedback SNR for S-K scheme,

C-L scheme, and Deepcode for a rate 1/3 code with

50 information bits, where we fix the forward channel

SNR to be 0dB. As feedback SNR increases, we expect

the BER to decrease. However, as shown in Figure 12

(Left), both C-L scheme, designed for channels with

noisy feedback, and S-K scheme are sensitive to even a

small amount of noise in the feedback, and reliability is

almost independent of feedback quality. For C-L scheme,

we take the experimental results for rate 1/3 (blocklength

5144) shown in [8].

Deepcode outperforms these two baseline (linear)

codes by a large margin, with decaying error as feedback

SNR increases, showing that Deepcode harnesses noisy

feedback information to make communication more

reliable. This is highly promising as the performance

with noisy feedback is directly related to the practical

communication channels. To achieve the performance

shown in Figure 12, for example the line in red, training

with matched SNR is required. For each datapoint, we

use different neural codes specifically trained at the same

SNR at the test noise. The neural encoder takes the

feedback signal (as well as the message) as an input

and includes power normalization tailored to the SNR of

forward and feedback channels; hence, if trained with a

mismatched SNR, the output of the neural code does not

satisfy the power constraint. In Section V, we discuss

how Deepcode differs depending on what SNR it was

trained on, hence it is not universal.

Noise feedback with delay. We model the practical

constraint of delay in the feedback, by introducing a

variant of Deepcode that works with a K time-step

delayed feedback (we refer to Appendix X for the details);

recall K is the number of information bits and this code

tolerates a large delay in the feedback. We see from

Figure 12 (Left), that these neural codes are robust against

delay in the feedback for noisy feedback channels of SNR

up to 12dB.

Finite precision. We evaluate the sensitivity of Deepcode

to the finite machine precision (without any re-training).

In Figure 13, we plot the BER as a function of SNR for

Deepcode implemented with a finite precision. We notice

that under the 8 bit codeword quantization, Deepcode has

almost no reliability loss. Re-training can potentially bring

down the required precision even further. On the other

hand, S-K scheme is very sensitive to the finite machine

precision. In Figure 13, S-K scheme is implemented with

64-bit precision.

One of the reasons for the sensitivity is that its

first transmission is a M -ary PAM where M represents

the number of total messages (e.g., if information block

length is 50, first transmission has to be done via a 250-

PAM modulation). As a means to overcome this effect,

one can consider using multiple blocks each of which
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BER

SNR of feedback channel (dB)

BER

SNR (dB)

BER

Blocklength

Fig. 12: (Left) Deepcode (introduced in Section III) and its variant code that allows K time-step delay significantly

outperform the two baseline schemes in noisy feedback scenarios. (Middle) By unrolling the RNN cells of Deepcode,

the BER of Deepcode remains unchanged for block lengths 50 to 500. (Right) Concatenation of Deepcode and turbo

code (with and without noise in the feedback) achieves BER that decays exponentially as block length increases,

faster than turbo codes (without feedback) at the same rate.

BER

SNR (dB)

Fig. 13: Performance of Deepcode under the scenarios

where codewords are quantized to 8 bits and 6 bits.

has a smaller block length (e.g., 5 blocks of length-10

codewords all together represent a length-50 codeword.)

In Figure 14, we show the effect of precision (y-axis) and

the length of each coding block (x-axis) on the relative

performance of S-K and Deepcode for noiseless feedback

(Left) and noisy feedback (Right). We let the forward

SNR be 0dB for both cases and feedback SNR be 40dB

(hence, very small noise) for the noisy feedback scenario.

Figure 14 (Left) demonstrates that the S-K scheme can

outperform Deepcode for noiseless feedback by reducing

the coding block length as long as precision value is

large enough; however, for a smaller precision (e.g.,

8 bit), Deepcode always outperforms the S-K scheme.

Figure 14 (Right) demonstrates that regardless of the

precision and the length of each coding block, Deepcode

always outperforms the S-K scheme.

Generalization to longer block lengths. In wireless

Precision

Length of coding block Length of coding block

Fig. 14: Relative performance of S-K and Deepcode as

a function of machine precision (y-axis) and the length

of each coding block (x-axis) for noiseless feedback

(Left) and noisy feedback (Right). When precision is

small (e.g., 8 bit) or feedback is noisy (even a small

amount of noise; e.g., feedback SNR is 40dB), Deepcode

outperforms the S-K scheme. When precision is large

enough and feedback channel is noiseless, S-K can

outperform Deepcode by reducing the coding block

length.

communications, a wide range of blocklengths are of

interest (e.g., 40 to 6144 information bits in LTE

standards). In previous sections, we considered block

length of 50 information bits. Here we show how to

generalize Deepcode to longer block lengths and achieve

an improved reliability as we increase the block length.

A natural generalization of the RNN-based Deep-

code is to unroll the RNN cells. In Figure 12 (Middle),

we plot the BER as a function of the SNR, for 50

information bits and length 500 information bits (with

noiseless feedback) when we unroll the RNN cells.

We can see that the BER remains the same as we

increase block lengths. This is not an entirely satisfying

generalization because, typically, it is possible to design

a code for which error rate decays faster as block length



SUBMITTED PAPER 11

increases. For example, turbo codes have error rate

decaying exponentially (log BER decays linearly) in

the block length as shown in Figure 12 (Right). This

critically relies on the interleaver, which creates long

range dependencies between information bits that are far

apart in the block. Given that Deepcode is a sequential

code, there is no strong long range dependence. Each

transmitted bit depends on only a few past information

bits and their feedback (we refer to Section V for a

detailed discussion).

To resolve this problem, we propose a new concate-

nated code which concatenates Deepcode (as inner code)

and turbo code as an outer code. The outer code is not

restricted to a turbo code, and we refer to Appendix XI

for a detailed discussion. In Figure 12 (Right), we plot

the BERs of the concatenated code, in channels with

both noiseless and noisy feedback (of feedback SNR

10dB), and turbo code, both at rate 1/9 at (forward)

SNR −6.5dB. From the figure, we see that even with

noisy feedback, BER drops almost exponentially (log
BER drops linearly) as block length increases, and the

slope is sharper than the one for turbo codes. We also

note that in this setting, C-L scheme suggests not using

the feedback.

V. INTERPRETATION

Thus far we have used information theoretic insights

in driving our deep learning designs. Here, we ask if the

deep learning architectures we have learnt can provide

an insight to the information theory of communications

with feedback. We aim to understand the behavior of

Deepcode (i.e., how coded bits are generated via RNN

in Phase 2). We show that in the second phase, (a) the

encoder focuses on refining information bits that were

corrupted by large noise in the first phase; and (b) the

coded bit depends on past as well as current information

bits, i.e., coupling in the coding process.

Correcting noise from previous phase. The main

motivation behind the proposed two-phase encoding

scheme is to use the Phase 2 to clean the noise added

in Phase 1. The encoder at Phase 2 knows how much

noise was added in Phase 1 (exactly if noiseless feedback

and approximately if noisy). Potentially, it could learn to

send this information in the Phase 2, so that the decoder

can refine the corrupted information bits sent in Phase

1. Interpreting the parity bits confirms this conjecture as

shown in Figure 15. We show as a scatter plot multiple

instances of the pairs of random variables (nk, ck,1) (left)

and (nk, ck,2) (right), where nk denotes the noise added

to the transmission of bk in the first phase. We are plotting

1,000 sample points: 20 samples for each k and for

k ∈ {1, . . . , 50}. This illustrates how the encoder has

learned to send rectified linear unit (ReLU(x)=max{0, x}

) functional of the noise nk to send the noise information

while efficiently using the power. Precisely, the dominant

term in the parity bit can be closely approximated

by ck,1 ≃ −(2bk − 1) × ReLU(−nk(2bk − 1)), and

ck,2 ≃ (2bk − 1)× ReLU(−nk(2bk − 1)).
Consider the case when bk = 1. If the noise added

to bit bk in Phase 1 is positive, then the bit is likely to

have been correctly decoded, and the parity chooses not

to send any information about nk. The encoder generates

coded bits close to zero (i.e., does not further refine bk).

Otherwise, the encoder generates coded bits proportional

to the noise nk, i.e., uses more power to refine bk.

ck,1 ck,2

nk nk

Fig. 15: Noise in first phase nk vs. first parity bit ck,1
(left) and second parity bit ck,2 (right) under noiseless

feedback channel and forward AWGN channel of SNR

0dB. Blue ‘x’ data points correspond to those samples

conditioned on bk = 1 and red ‘o’ points correspond to

those samples conditioned on bk = 0.

Ideally, for practical use, we want to use the same

code for a broad range of varying SNR, as we might

be uncertain about the condition of the channel we

are operating on. This is particularly true for code

for non-feedback channels. For channels with output

feedback, however, all known encoding schemes adapt

to the channel. For instance, in S-K scheme, in order to

achieve the optimal error rate, it is critical to choose the

optimal power allocation across transmission symbols

depending on the (forward) channel SNR. Similarly, C-L

scheme also requires pre-computation of optimal power

allocation across transmission depending on the forward

and feedback SNRs. In the case of AWGN channels with

feedback, it is not even clear how one could meet the

power constraints, if not adapting to the channel SNR.

In Figure 16, we show how the trained Deepcode

has learned to adapt to the channel conditions. For

various choices of forward channel SNRf and feedback

channel SNRfb, each scatter plot is showing 5,000 sample

points: 100 samples for each k and for k ∈ {1, . . . , 50}.

On the top row, as forward signal power decreases,

the parity gradually changes from ck,1 ≃ −(2bk −
1) × ReLU(−nk(2bk − 1)) to ck,1 ≃ (2bk − 1) − nk.

On the bottom row, as feedback noise increases (i.e.,

feedback SNR decreases), the parity gradually becomes

less correlated with the sum of forward and feedback
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noises nk+wk. Note that under noisy feedback, nk is not

available to the encoder, but nk +wk is what is available

to the encoder (nk + wk = ỹk − ck).

ck,1

nk

SNRf=0 dB

SNRfb=noiseless

ck,1

nk + wk

SNRf=0 dB

SNRfb=23 dB

ck,1

nk

SNRf=1 dB

SNRfb=noiseless

ck,1

nk + wk

SNRf=0 dB

SNRfb=13 dB

ck,1

nk

SNRf=2 dB

SNRfb=noiseless

ck,1

nk + wk

SNRf=0 dB

SNRfb=6 dB

Fig. 16: Noise in first phase nk vs. first parity bit ck,1
as forward SNR increases for noiseless feedback (left

column) and sum of forward and feedback noises in first

phase nk + wk vs. first parity bit ck,1 as feedback SNR

decreases for fixed forward SNR 0dB (right column). Blue

‘x’ data points correspond to those samples conditioned

on bk = 1 and red ‘o’ points correspond to those samples

conditioned on bk = 0.

Coupling. A natural question is whether our feedback

code is exploiting the memory of RNN and coding

information bits jointly. To answer this question, we

look at the correlation between information bits and

the coded bits. If the memory of RNN were not used,

we would expect the coded bits (ck,1, ck,2) depend only

on bk. We find that E[ck,1bk] = −0.42,E[ck,1bk−1] =
−0.24,E[ck,1bk−2] = −0.1,E[ck,1bk−3] = −0.05, and

E[ck,2bk] = 0.57,E[ck,2bk−1] = −0.11,E[ck,2bk−2] =
−0.05, E[ck,2bk−3] = −0.02 (for the encoder for forward

SNR 0dB and noiseless feedback). This result implies

that the RNN encoder does make use of the memory, of

length two to three.

Overall, our analysis suggests that Deepcode exploits

memory and selectively enhances bits that were subject

to larger noise - properties reminiscent of any good

code. We also observe that the relationship between the

transmitted bit and previous feedback demonstrates a

non-linear relationship as expected. Thus our code has

features requisite of a strong feedback code. Furthermore,

improvements can be obtained if instead of transmitting

two coded symbols per bit during Phase 2, an attention-

type mechanism can be used to zoom in on bits that were

prone to high noise in Phase 1. These insights suggest

the following generic feedback code: it is a sequential

code with long cumulative memory but the importance

of a given bit in the memory is dynamically weighted

based on the feedback.

VI. SYSTEM AND IMPLEMENTATION ISSUES

We began with the idealized Shannon model of

feedback and have progressively considered practical

variants (delay, noise and active feedback). In this

section we extend this progression by studying design

decisions in real-world implementations of Deepcode

(our neural-network feedback-enabled codes). We do this

in the context of cellular wireless systems, with specific

relevance to the upcoming 5G LTE standard.

LTE cellular standards prescribe separate uplink and

downlink transmissions (usually in frequency division

duplex mode). Further, these transmissions are scheduled

in a centralized manner by the base station associated

with the cell. In many scenarios, the traffic flowing across

uplink and downlink could be asymmetric (example: more

“downloads” than “uploads” leads to higher downlink

traffic than the combined uplink ones). In such cases,

there could be more channel resources in the uplink than

the traffic demand. Given the sharp inflexible division

among uplink and downlink, these resources go unused.

We propose to link, opportunistically, unused resources in

one direction to aid the reliability of transmission in the

opposite direction – this is done via using the feedback

codes developed in this paper. Note that the availability

of such unused channel resources is known in advance

to the base station which makes scheduling decisions on

both directions of uplink and downlink – thus such a

synchronized cross uplink-downlink scheduling is readily

possible.

The availability of the feedback traffic channel

enables the usage of the codes designed in this paper –

leading to much stronger reliability than the feedforward

codes alone. Combined with automatic repeat request

(ARQ), this leads to fewer retransmissions and smaller

average transmission time than the traditional scheme of

feedforward codes combined with ARQ would achieve.

In order to numerically evaluate the expected benefits of

such a system design, in Figure 17, we plot BLER as
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a function of number of (re)transmissions for Deepcode

under noiseless and noisy feedback and feedforward codes

(for a rate 1/3 code with 50 information bits). From

this figure, we can see that combining Deepcode with

ARQ allows fewer block transmissions to achieve the

target BLER compared to the state-of-the-art codes. The

performance of Deepcode depends on the quality of the

feedback channel. As feedback channel becomes less

noisy, Deepcode requires fewer retransmissions. We note

that in measuring the BLER of neural code under noisy

feedback (10dB), we used a variant of Deepcode, shown

as Act-Deepcode, which allows an active feedback of rate

3/4; in Phase 1, the decoder sends back RNN encoded

bits at rate 1/2. Phase 2 works as in Deepcode. Hence,

for a rate 1/3 code with 50 information bits, the decoder

makes 200 usages of the feedback channel (204 with zero

padding). Improving further the performance of (active)

Deepcode at realistic feedback SNRs (such as 10dB or

lower) is an important open problem. The improvements

could come from architectural or learning methodology

innovations or a combination of both.

We propose using Deepcode when the feedback

SNR is high. Practically, a user may not always have a

high SNR feedback channel, but when there are multiple

users, it is possible that some of the users have high

SNR feedback channels. For example, in scenarios where

a base station communicates with multiple users, we

propose scheduling users based on their feedback as well

as forward channel qualities, utilizing multiuser diversity.

In Internet-of-Things (IoT) applications, feedback channel

SNR can be much higher than forward SNR; e.g., a small

device with limited power communicates a message to

the router connected to the power source.

BLER

Number of transmissions

Fig. 17: BLER as a function of number of transmissions

for a rate 1/3 code with 50 information bits where forward

SNR is 0dB. Deepcode allows fewer transmissions than

feedforward codes to achieve the target BLER.

VII. CONCLUSION

In this paper we have shown that appropriately

designed and trained RNN codes (encoder and decoder),

which we call Deepcode, outperform the state-of-the-

art codes by a significant margin on the challenging

problem of communicating over AWGN channels with

noisy output feedback, both on the theoretical model

and with practical considerations taken into account. By

concatenating Deepcode with a traditional outer code,

the BER curve drops significantly with increasing block

lengths, allowing generalizations of the learned neural

network architectures. The encoding and decoding capa-

bilities of the RNN architectures suggest that new codes

could be found in other open problems in information

theory (e.g., network settings), where practical codes are

sorely missing. Our work suggests several immediate

avenues continue the research program begun by this

paper, solutions to which will have significant practical

impacts.

Learning to take advantage of the block lengths. The

first one is an interesting new challenge for machine

learning, that has not been posed before to the best of

our knowledge. We proposed concatenation in Section

IV to achieve the block-length gain. By concatenating

Deepcode with a traditional inner code, the BER curve

drops significantly with increasing block lengths, al-

lowing generalizations of the learned neural network

architectures. However, concatenation comes at the cost

of reduced rate.

A more natural way to achieve the block-length

gain is to incorporate structures of the modern codes,

in particular turbo codes. Turbo codes use interleavers

to introduce long range dependency on top of standard

convolutional codes, achieving error rate that exponen-

tially decays in block-lengths as desired. In the encoder,

we can easily include an inter-leaver with two neural

encoders we proposed. However, the major challenge

is in decoding. Turbo decoder critically relies on BCJR

decoder’s accurate estimate of the posterior probability of

each information bit. This is in turn fed into the next phase

of turbo decoder, which refines the likelihood iteratively.

For the proposed neural feedback code, there exists no

decoder that can output accurate posterior likelihood.

Further, there exists no decoder that can take as part

of the input the side information from the previous

phase on the prior likelihood of the information bit.

This poses an interesting challenge for deep learning.

As a means to overcome this challenge, [39] proposes

a novel architecture which harmoniously combines the

interleaving idea of turbo code and iterative decoding

together with CNN architectures. It is demonstrated that

the neural code in [39] exhibits the blocklength gain (i.e.,

the error rate decays as block length increases).
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Interpreting Deepcode. The second challenge is in

using the lessons learned from the trained Deepcode

to contribute back to the communication theory. We

identified in Section V some parts of the parity symbols of

the trained Deepcode. However, how Deepcode is able to

exploit the feedback symbols remains mysterious, despite

our efforts to interpret the trained neural network. It is an

interesting challenge to disentangle the neural encoder,

and provide a guideline for designing simple feedback

encoders that enjoy some of the benefits of the complex

neural encoder. Manually designing such simple encoders

without training can provide a new family of feedback

encoders that are simple enough to be mathematically

analyzed.

Rate beyond 1/3. The third challenge is to generalize

Deepcode to rates beyond 1/3. Our neural code struc-

ture can be immediately generalized to rates 1/r for

r = 2, 3, 4, · · · . For example, we have preliminary results

showing that a rate-1/2 RNN based feedback code beats

the state-of-the-art codes for short block lengths (e.g., 64)

under low SNRs (e.g., below 2dB). Extensive experiments

and simulations over various rates and comparison to

state-of-the-art codes are yet to be explored. On the other

hand, generalization to rates higher than 1/2 requires

a new architecture of encoders. In this direction, we

propose two potential approaches. One is to use a higher-

order modulation (e.g., pulse amplitude modulation)

and generate parity bits for super symbols which are

functions of multiple information bits. The other is to

use puncturing, a widely used technique to design high

rate codes from low rate codes (e.g., convolutional codes);

the encoder first generates a low rate code and then throws

away some of the coded bits and sends only a fraction

of the coded bits. Generalization to higher rate codes via

these two approaches is of great practical interest.
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APPENDIX

VIII. STATE-OF-THE ART CODES USED IN

COMPARISON

In this section, we provide details on how to compute

the BER and BLER of state-of-the art feedforward

codes. LTE turbo code used in the simulation uses

trellis-([13, 15], 13) convolutional code (octal notation)

as a component code, and uses quadratic permutation

polynomial (QPP) interleaver. Decoding is done by 8

iterations of Belief Propagation (BP) decoder that uses a

posteriori probability (APP) decoder as the constituent

decoder. Tail-bitting convolutional codes (TBCC) used

in the simulation has a constraint length 7 and trellis

([123,135,157]) (in octal notation), and uses Viterbi

decoder. Polar code used in the simulation uses successive

cancellation list decoding (SCL) with list size 8. LDPC

code used in the simulation (Rate 1/3, maps 64 bits to a

length-196 codeword with sub-matrix dimension 16) uses

the parity check matrix shown below, and layered offset

min-sum decoder is used with offset parameter 0.22 and

(max) iteration 25.























10 11 2 3 0 −1 −1 −1 −1 −1 −1 −1

−1 15 9 9 14 0 −1 −1 −1 −1 −1 −1

6 −1 5 13 −1 11 0 −1 −1 −1 −1 −1

−1 5 −1 8 12 −1 6 0 −1 −1 −1 −1

−1 11 −1 −1 1 −1 −1 11 0 −1 −1 −1

−1 2 −1 −1 14 12 −1 7 −1 0 −1 −1

−1 15 10 −1 −1 −1 −1 −1 11 −1 0 −1

−1 −1 −1 7 −1 11 −1 3 −1 −1 −1 0























IX. IMPLEMENTATION DETAILS

In this section, we provide implementation details

on the neural encoders and decoders introduced in

Section III together with an illustration of the end-to-end

communication system in Figure 18.

Fig. 18: Illustration of communications system with

Deepcode

X. ILLUSTRATION ON SCHEME FOR DELAYED

FEEDBACK.

Practical feedback typically is delayed for a random

time, thus the encoder cannot use immediate feedback to

encode. The feedback is randomly delayed up to block

length K, we are restricted not to use feedback till K
bits are transmitted.

We propose a delayed feedback scheme to overcome

noisy feedback and delaying effect; the 1/3 code rate

encoder is shown in Figure 19. In the first phase, the K
information bits can be encoded by Bi-GRU, while the

feedback is delayed and can only be used in the next

phase. The second and third phases use uni-directional

GRU to encode with K-delayed feedback. For example,

at index m of phase 2, the encoder can only use the

feedback before index m of phase 1. The decoder is a

Bi-GRU which waits to decode until all transmissions

are received, same as in Deepcode.

Fig. 19: Encoder for delayed feedback

XI. CONCATENATION OF DEEPCODE WITH EXISTING

CODES

Concatenated codes are constructed from two or

more codes, originally proposed by Forney [40]. We

concatenate forward error correcting codes (that does

not use a feedback) with our Deepcode that makes

use of feedback. Encoding is performed in two steps;

we first map information bits into a turbo code, and

then encode the turbo code via an encoder for channels

with feedback. Decoding is also performed in two steps.

In the first step, decoder recovers the estimates of

turbo codes. In the second step, the decoder recovers

information bits based on the estimates of turbo codes.

For the experiment in Section IV, for which results

are shown in Figure 12 (Right), we use the rate 1/3

LTE turbo code as an outer code; LTE turbo code uses

([13, 15], 13) convolutional code (octal notation) as a

component code. We compare the performance of the

concatenated code with a rate 1/9 turbo code, which uses

([13,17,16,15,11],13) convolutional code as a component

code (introduced in [41]). Besides turbo codes, any

existing codes (e.g., LDPC, polar, convolutional codes)

can be used as an outer code. We also note that C-L

scheme is based on the concatenation idea [8].
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