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Abstract—Network slicing is a new paradigm for future 5G
networks where the network infrastructure is divided into slices
devoted to different services and customized to their needs.
With this paradigm, it is essential to allocate to each slice the
needed resources, which requires the ability to forecast their
respective demands. To this end, we present DeepCog, a novel
data analytics tool for the cognitive management of resources
in 5G systems. DeepCog forecasts the capacity needed to ac-
commodate future traffic demands within individual network
slices while accounting for the operator’s desired balance between
resource overprovisioning (i.e., allocating resources exceeding
the demand) and service request violations (i.e., allocating less
resources than required). To achieve its objective, DeepCog hinges
on a deep learning architecture that is explicitly designed for
capacity forecasting. Comparative evaluations with real-world
measurement data prove that DeepCog’s tight integration of
machine learning into resource orchestration allows for sub-
stantial (50% or above) reduction of operating expenses with
respect to resource allocation solutions based on state-of-the-
art mobile traffic predictors. Moreover, we leverage DeepCog
to carry out an extensive first analysis of the trade-off between
capacity overdimensioning and unserviced demands in adaptive,
sliced networks and in presence of real-world traffic.

I. INTRODUCTION

The next generation of mobile networks will enable an

unprecedented heterogeneity of applications with very diverse

Quality of Service (QoS) requirements [1]. Network slicing,

allowing operators to customize Virtualized Network Func-

tions (VNFs) for individual mobile services [2], will be key

in accommodating such a diversified demand. However, the

emergence of sliced networks also promises to skyrocket

the complexity of resource management, moving from the

rather limited reconfiguration possibilities offered by current

Operations and Business Support System (OSS/BSS) to a rich,

software-defined layer that manages thousands of slices be-

longing to hundreds of tenants on the same infrastructure [3].

Network management and capacity forecast. To cope

with the new milieu, network operators are striving to make

resource management and orchestration (MANO) processes

highly automated. To realize the 5G principle of cognitive

network management [4], two complementary technologies are

needed: (i) technical solutions that enable end-to-end Network

Function Virtualization (NFV), and provide the flexibility

necessary for resource reallocation; and, (ii) data analytics

that operate on mobile traffic measurement data, automatically

identify demand patterns, and anticipate their future evolution.
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Fig. 1: Top: actual and predicted weekly demands for Youtube

at a datacenter controlling 470 4G eNodeBs. Bottom: levels

of overprovisioning (blue) and capacity violations (red) over

time. (a) Output of a recent deep learning predictor [7] of

mobile traffic. (b) Output of DeepCog, tailored to anticipatory

network resource allocation. Figure best viewed in colors.

From a technical standpoint, solutions that implement NFV

at different network levels are well established, and start to be

tested and deployed. Examples include current MANO plat-

forms architectures like ETSI NFV [5], and implementations

such as OSM [6], which allow to reconfigure and reassign

resources to VNFs on the fly.

By contrast, the integration of data analytics in cogni-

tive mobile networks is still at an early stage. Nowadays,

resource assignment to VNFs is a reactive process, mostly

based on hysteresis thresholding and aimed at self-healing

or fault tolerance. There is a need for proactive, data-driven,

automated solutions that enable cost-efficient network resource

utilization, by anticipating future needs for capacity and timely

reallocating resources just where and when they are required.

The focus of our work is precisely on the design of

data analytics for the anticipatory allocation of resources in

cognitive mobile networks. Specifically, we seek a machine

learning solution that runs on traffic measurements and pro-

vides operators with information about the capacity needed to

accommodate future demands at each network slice – a critical

knowledge for data-driven resource orchestration.

Related works on mobile traffic prediction. Our problem

is tightly linked to mobile traffic prediction, which is the

object of a vast literature [8], [9]. Solutions to anticipate future

offered loads in mobile networks have employed a variety of

tools, from autoregressive models [10]–[12] to information

theory [13], and from Markovian models [14] to machine



learning [7], [15]–[17]. However, we identify the following

major limitations of current predictors when it comes to

supporting resource orchestration in mobile networks.

(i) Predictors of mobile traffic invariably focus on providing

forecasts of the future demands that minimize some

absolute error [8], [9]. This approach leads to predicted

time series that deviate as little as possible from the actual

traffic time series, as exemplified in Fig. 1a for a real-

world case study. While reasonable for many applications,

such an output is not sufficient for network resource

orchestration. In this context, the operator aims at ac-

commodating the offered load at all times, since resource

underprovisioning implies high costs in terms of high

subscribers’ churn rates, as well as of significant fees for

violating Service-Level Agreements (SLAs) with tenants.

Yet, if an operator decided to allocate resources based on

a legacy prediction like that in Fig. 1a, it would incur into

capacity violations most of the time (as illustrated in the

bottom subplot). Overdimensioning with respect to the

forecast is just a rough fix, as traffic predictors do not

provide insights on the required excess capacity.

We argue that a more effective anticipatory resource allocation

can be achieved by designing machine learning solutions

that anticipate the minimum provisioned capacity needed to

cut down SLA violations. This would close the present gap

between simple traffic prediction and practical orchestration:

for instance, it would provide the operator with the explicit

capacity forecast that mitigates underprovisioning in Fig. 1b.

In addition to the fundamental issue above, two other

important shortfalls also affect state-of-the-art mobile traffic

prediction, when applied to cognitive network management.

(ii) With the adoption of network slicing, forecasts must

occur at the slice level, i.e., for specific mobile services in

isolation. However, most traffic predictors are evaluated

with demands aggregated over all services – an easier

problem, since aggregate traffic yields smoother and more

regular dynamics – and may not handle well the bursty,

diversified traffic exhibited by each service.

(iii) Existing machine learning predictors for mobile traffic

typically operate at base station level [7], [16]. However,

NFV operations mainly occur at datacenters controlling

tens (e.g., at the mobile edge) to thousands (e.g., in the

network core) of base stations. Here, prediction should

be more efficient if performed on traffic at each datacen-

ter, where orchestration decisions are taken, rather than

combined from independent forecasts at base stations.

Contribution. In this paper, we present DeepCog, a new

mobile traffic data analytics tool that is explicitly tailored to

solve the capacity forecast problem exposed above. The design

of DeepCog yields multiple novelties, summarized as follows:

• it hinges on a deep learning architecture inspired by

recent advances in image processing, which exploits

space-independent correlations typical of mobile traffic

and computes outputs at a datacenter level;
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Fig. 2: Outline and interaction of the DeepCog components.

• it leverages a customized loss function that targets ca-

pacity forecast rather than plain mobile traffic prediction,

and that lets the operator tune the balance between

overprovisioning and demand violations;

• it operates on a per-service basis in accordance with

network slicing requirements, and at datacenters located

at different points of the mobile network.

Overall, these design principles jointly solve the different

problems discussed before: in fact, Fig. 1b is an example of

the required capacity forecast by DeepCog in a real-world

case study. We remark that DeepCog is one of the very

first examples of rigorous integration of machine learning

into a cognitive network management process, and marks a

difference from the common practice of embedding vanilla

deep learning structures into network operation [9]. Extensive

performance evaluations with substantial measurement data

collected in an operational metropolitan-scale mobile network

demonstrate the superiority of our approach over a wide range

of benchmarks based on traditional and state-of-the-art mobile

traffic predictors. In addition, DeepCog lets us investigate the

fundamental trade-off between overprovisioning of resources

and denied service demands, in practical case studies where

network slicing and a sensible capacity forecast are in place.

II. DEEPCOG OVERVIEW

The design of DeepCog is outlined in Fig. 2. Its organization

is that typical of deep learning systems, and it stems from

(i) properly formatted input data used to build the forecast,

which is fed to (ii) a deep neural network architecture that

extrapolates and processes input features to provide (iii) an

output value, i.e., the capacity forecast. During the training

phase, the output is used to evaluate (iv) a loss function that

quantifies the error with respect to the ground truth, and,

in DeepCog, accounts for the costs associated to resource

overprovisioning and service request denial. Below, we present

each component, and discuss its mapping to the elements of a

5G network architecture with cognitive resource management.

Input. The input is composed by measurement data gen-

erated in a specific network slice, and recorded by dedicated

probes deployed within the network infrastructure. Depending

on the type and location of the probe, the nature of the

measurement data may vary, describing the demands in terms

of, e.g., signal quality, occupied resource blocks, bytes of

traffic, or computational load on VNFs. DeepCog leverages

a set of transformations to map any type of slice traffic



measurements into a tensor format that can be processed by

the learning algorithm. Details are provided in Section III-C.

Neural network. DeepCog leverages a deep neural net-

work structure composed of suitably designed encoding and

decoding phases, and that performs a next-step prediction. The

structure is general enough that it can be trained to solve the

capacity forecast problem for different network slices dedi-

cated to services with significantly diverse demand patterns.

The neural network structure is described in Section III-B.

Output. The learning algorithm returns a forecast of the

capacity required to accommodate the future demands for

services associated to a specific network slice. This generic

definition of output can be specialized to distinct orchestration

use cases, which typically differ by the traffic aggregation level

at which the resource configuration takes place. DeepCog is

designed for flexibility, and can serve heterogeneous orches-

tration scenarios. This is achieved by tailoring the very last

layer of the deep neural network to the layout of datacenters

at which the prediction must occur. Details are in Section III-B.

Loss function. Legacy deep learning solutions assess the

quality of the output by means of standard loss functions,

such as Mean Absolute Error (MAE) or Mean Square Error

(MSE). However, these are not well suited metrics in the case

of network capacity forecast. Here, prediction errors determine

a certain (e.g., economic) cost for the mobile network provider,

whose nature depends on whether the capacity is overestimated

or underestimated by the system. Overestimation leads to re-

serving unnecessary resources that will remain unused, hence

reducing the efficiency. Underestimation means that not all of

the network slice demand will be served, which reduces the

QoS offered to the end users, and possibly incurs violations of

SLAs with tenants providing the services in the network slice.

DeepCog implements a novel loss function that captures the

actual cost incurred by an operator in presence of errors in the

capacity forecast. This allows training the learning algorithm

so that it anticipates the amount of resources that achieve a

minimum-cost balance of (high) end-user QoS and (low) over-

provisioning. Our loss function can be configured to reflect a

variety of economic cost strategies via a single parameter that

has a clear interpretation. Details are in Section IV.

III. NEURAL NETWORK ARCHITECTURE

In this paper, we deal with the capacity forecast problem,

which lies in choosing the amount of resources allocated to

a specific network slice in order to meet the demand for the

services of that slice. This must occur within a target set of

datacenter nodes, in a way that the economic cost incurred by

the operator to accommodate the slice traffic is minimized.

A. System model

In our network model, we consider that time is divided in

slots, which we denote by t. Let δis(t) be the traffic associated

with slice s that is observed at base station i ∈ N and time t.
A snapshot of the demand of slice s at time t is given by a set

δs(t) = {δ1s(t), . . . , δ
N
s (t)}, and provides a global view of the

traffic for that slice at time t across the whole network. We let

t
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Fig. 3: DeepCog neural network encoder-decoder structure.

N denote the set of N base stations in the network, and M
the set of M < N datacenters. Base stations are associated

to datacenters via a surjective mapping f : N → M, such

that a datacenter j ∈ M serves the aggregated load of all

of the associated bases stations, i.e., djs(t) =
∑

i|f(i)=j δ
i
s(t)

for slice s at time t. The set of demands across all data-

centers is then given by ds(t) = {d1s(t), . . . , d
M
s (t)}. Let

us denote the capacity forecast for slice s at datacenter j
and time t as cjs(t), and the set of capacities at all j ∈ M
as cs(t) = {c1s(t), . . . , c

M
s (t)}. Then, the capacity forecast

problem is that of computing cs(t) based on knowledge of

the T previous traffic snapshots δs(t− 1), . . . , δs(t−T ). The

quality of the forecast cs(t) with respect to the ground truth

ds(t) is measured by a loss function ℓ (cs(t),ds(t)).
DeepCog solves the capacity forecast problem by means

of a deep neural network architecture, and by accounting

for a suitably designed loss function ℓ(·). The design of the

neural network entails: (i) selecting and composing layers

that efficiently solve the problem; (ii) transforming the traffic

snapshots δs(t) for a specific network slice into a format that

is consistent with that accepted by the first layer chosen for

the neural network. Next, we separately discuss these aspects.

B. Deep Neural Network Structure

The design of the neural network structure in DeepCog is

inspired by recent breakthroughs [18] in deep learning for

image processing. As summarized in Fig. 3, the network is

composed of an encoder, which receives an input representing

the mobile traffic data δs(t − 1), . . . , δs(t − T ), and maps

important spatial and temporal patterns in such data onto a

low-dimensional representation. Then, a decoder processes this

rendering to generate the final capacity forecast cs(t) at the

desired set of datacenters M. Below, we detail the encoder and

decoder implementations, and discuss the training procedure.

Encoder. The encoder is composed by a stack of three

three-dimensional Convolutional Neural Network (3D-CNN)

layers [19]. Generic Convolutional Neural Networks (CNNs)

are a specialized kind of deep learning structure that can infer

local patterns in the feature space of a matrix input.

Since mobile network traffic exhibits correlated patterns in

both space and time, we employ 3D-CNNs as the features

to be learned are spatiotemporal in nature. Our choice is

motivated by their excellent performance with fairly limited

training: by exploiting the fact that our input data yields high



local correlation (as discussed in Section III-C) each neuron

layer explores it through a limited receptive field (i.e., a small

portion of the input, fixed by the kernel size). These layers

receive thus a tensor input T (δs(t− 1)) , . . . , T (δs(t− T )),
where T (·) is a transformation of the argument snapshot into

a matrix. Each neuron of the 3D-CNN layers runs a filter

H (
∑

t I(t) ∗K(t) + b) where I(t) is the input matrix for time

t (i.e., T (δs(t)) at the very first layer, for slice s, ∗ denotes

the 3D convolution operator, K(t) is the kernel of filters, H(·)
is a non-linear activation function, and b is a bias vector.

The receptive field is set by K(t): as depicted in Fig. 3,

there are two different kernel configurations. We used a

3×3×3 kernel configuration for the first 3D-CNN layer, and a

6×6×6 for the second and the third. Many different activation

functions have been proposed in the literature, spanning from

linear functions to tanh, sigmoid or Rectified Linear Unit

(ReLU). Among these, we select ReLU as H(·), expressed as

max (0,x), which is known to provide advantages in terms of

discriminating performance and faster learning [20]. Finally,

b is randomly set at the beginning of each training phase.

The second and third 3D-CNN layers are interleaved with

Dropout layers: they regularize the neural network and reduce

overfitting [20] by randomly set to zero a number of output

features from the preceding layer during the training phase.

The dropout rate defines the probability with which output

features undergo this effect. During training, we employ two

Dropout layers with dropout rate equal to 0.3.

Decoder. The decoder uses Multi-Layer Perceptrons

(MLPs), a kind of fully-connected neural layers, i.e., they

interconnect every neuron of one layer with every neuron

of the next layer. This provides the ability to solve complex

function approximation problems. In particular, MLPs are able

to learn global patterns in their input feature space [21]. In our

structure, each layer performs an operation H′(x · W + b),
where x is the MLP layer input vector, W a weight matrix

related to the neurons of each layer, and b the bias vector.

W plays a similar role to K(t) in the encoder part: its values

drive the prediction through the layers of the decoding part.

As for the activation functions H, we employ ReLU for

all MLP layers except the last one, where a linear activation

function is used since the desired output takes real values.

We highlight that the last linear layer can be configured to

produce multiple predictions in parallel, each matching the

aggregate capacity required by a subset of base stations. This

is performed by training the network against a ground-truth

ds(t) that reflects the desired traffic aggregations. Ultimately,

this lets us configure the DeepCog neural network to predict

capacity at a datacenter level, for any configuration of M.

Training procedure. We leverage the Adam optimizer,

which is a Stochastic Gradient Descent (SGD) method that

provides faster convergence compared to other techniques [22].

SGD trains the neural network model, evaluating at each

iteration the loss function ℓ(·) between the forecast and the

ground truth, and tuning the model parameters in order to

minimize ℓ(·). We use the default Adam optimizer config-

uration, with a learning rate of 5 × 10−4. We stress that,
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Fig. 4: Scatterplots of the actual correlation between traffic (x

axis) and distance in the tensor input (y axis) for each pair of

base station in our reference scenario. Left: legacy approach

of [7], [9]. Right: novel approach adopted in DeepCog.

although a separate training is required for each network slice

s, the neural network structure in Fig. 3 yields equally good

performance with any service we could experiment with.

C. Tensor Input

The 3D-CNN layer adopted as the first stage of the decoder

requires a multidimensional tensor input. We thus need to

define the transformation T (·) of each traffic snapshot into

a matrix. Note that 3D-CNN layers best perform in presence

of a tensor input that features a high level of local correlation,

so that neurons operate on similar values. In image processing,

where close-by pixels typically have high correlation, this is

easily solved by treating the pixel grid as a matrix. In line

with this strategy, the current common practice in mobile

network traffic prediction is to leverage the geographical

locations of the base stations, and assign them to the matrix

elements so that their spatial proximity is preserved as much

as possible [7], [9]. However, this approach does not consider

that correlations in mobile service demands at a base station

level do not to depend on space, rather on land use [23]: base

stations exhibiting strongly correlated network slice traffic may

be far apart, e.g., covering the different train stations within

a same large city. Thus, we aim at creating a tensor input

whose neighboring elements correspond to base stations with

strongly correlated mobile service demands. We construct the

mapping of base stations into a matrix structure as follows.

• We define, for each base station i, its historical time

series of total traffic as τ i = {δi(1), . . . , δi(t − 1)},

where δi(t) =
∑

s δ
i
s(t). Then, for each pair i and j,

we determine the similarity of their recorded demands

by computing SBD
ij = fSBD(τ

i, τ j), where fSBD(·) is the

shape-based distance, a state-of-the-art similarity measure

for time series [24]. All pairwise distances are then stored

in a distance matrix D = (SBD
ij) ∈ R

M×M .

• We compute virtual bidimensional coordinates pi for

each base station i so that the values in the distance

matrix D are respected as much as possible. Formally,

this maps to an optimization problem whose objective is

minx1,...,xM

∑

i<j(‖pi−pj‖−SBD
ij)2, efficiently solved

via Multi-Dimensional Scaling (MDS) [25].

• We match each point pi to an element e of the input

matrix I, again minimizing the total displacement. To this

end, we: (i) quantize the virtual surface encompassing all

points pi so that it results into a regular grid of N cells;



(ii) assume that each cell is an element of the input ma-

trix; (iii) compute the cost kie of assigning a point pi to

element e as the Euclidean distance between the point and

the cell corresponding to e. We then formalize an assign-

ment problem with objective mina
∑

i∈N

∑

e∈I
kiexie,

where xie ∈ [0, 1] is a decision variable that takes value

1 if point pi is assigned to element e, and must fulfill
∑

i∈N xie = 1 and
∑

e∈I
xie = 1. The problem is solved

in polynomial time by the Hungarian algorithm [26].

The solution of the assignment problem is the transformation

T (·) of the original base stations into elements of the matrix I.

The mapping function T (·) allows translating a traffic snapshot

δs(t) into matricial form, hence δs(t− 1), . . . , δs(t−T ) into

the tensor required by the entry decoder layer in Fig. 3.

Fig. 4 provides an intuition of the improved representation

granted by the DeepCog tensor input presented above. Each

point in the scatterplots matches a pair of base stations i and

j in the reference scenario that we use for our experiments

(see Section V). The coordinates are SBD
ij , i.e., the actual

correlation between their traffic time series (x axis), and the

Manhattan distance between the elements associated to i and j
in I (y axis). The output of our approach is depicted in Fig. 4b;

for such an approach, the measured Pearson’s correlation

coefficient r2 is of 0.51. Instead, Fig. 4a depicts the output

obtained from directly applying the assignment in the last

step to the geographical locations of the base stations. Results

shows that traffic similarity and position in I in this case

are uncorrelated (the Pearson’s correlation coefficient is of

r2 = 0.02), demonstrating that spatial proximity does indeed

not imply traffic correlation. As a consequence, the latter

approach is less suitable for a 3D-CNN.

As an important final remark, our proposed approach is

general. The tensor input generation process presented before

can be used with demands expressed in terms of, e.g., signal

quality, resource blocks, bytes, CPU cycles, or memory.

IV. LOSS FUNCTION

One of the key components of the proposed system is the

loss function, denoted by ℓ(·), which determines the penalty

incurred when making a prediction error. We propose a novel

loss function that is tailored to the specific requirements of

the capacity forecast problem. Our design of ℓ(·) accounts for

the costs resulting from (i) forecasting a lower value than the

actual offered load, which leads to an SLA violation due to the

provisioning of insufficient resources, (ii) predicting a higher

value than the actual one, which leads to overprovisioning,

i.e., allocating more resources than those needed to meet the

demand. Then, ℓ(·) must account for the penalty inflicted in

each case to ensure that we drive the system towards an opti-

mal trade-off between overprovisioning and SLA violations.

Recall that we denote by cjs(t) the forecast for time t, i.e.,

the provisioned capacity at datacenter j ∈ M and for network

slice s, and by djs(t) the corresponding actual offered load. The

cost incurred by the operator due to a discrepancy between

cjs(t) and djs(t) is quantified as follows.
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Fig. 5: Cost model ℓ′(cjs(t)− djs(t)). Left: ideal model in (1).

Right: actual implementation in (2).

• If the actual load is larger than the predicted one, i.e.,

cjs(t) < djs(t), then we have an SLA violation for

the target network slice. We assume that this yields a

fixed cost β. Such cost may represent, for instance, the

monetary compensation that the operator has to pay to a

tenant whose SLA is not satisfied.

• If the actual load is smaller than the predicted one, i.e.,

cjs(t) > djs(t), the operator has instead overprovisioned

the network slice. If the (monetary) cost of one unit of

capacity is γ, this yields a surcharge of γ ·(cjs(t)−djs(t)).

If we define x = cjs(t) − djs(t), the above cost model can be

expressed as follows:

ℓ′(x) =

{

β if x ≤ 0

γ · x if x > 0,
(1)

which is illustrated in Fig. 5a. Note that a perfect prediction

that allows to exactly anticipate the required capacity, i.e.,

cjs(t) = djs(t), maps to x = 0 in (1), and avoids any penalty.

As the loss function must steer capacity allocation to an

optimal balance of the two costs above, the only factor that

matters in its definition is the ratio between the costs of SLA

violation and overprovisioning. Hence, a simpler equivalent

expression is obtained by defining α
.
= β/γ, and multiplying

the two components by 1/γ. The parameter α can be inter-

preted as the amount of overprovisioned capacity units that

determine a penalty equivalent to one SLA violation: a larger

α implies higher SLA violation fees for the operator.

However, the SGD method used to train the neural network

does not work with constant or step functions, which forces

us to introduce minimum slopes for x < 0 and at x = 0. The

cost model implementation is:

ℓ′(x) =











α− ǫ · x if x ≤ 0

α− 1
ǫ
x if 0 < x ≤ ǫα

x− αǫ if x > ǫα,

(2)

where ǫ is a very low value that does not affect the shape of

the cost, as per Fig. 5b, but allows SGD to operate correctly.

The loss function used to assess the quality of the solution

to the capacity forecast problem at time t for slice s is then

ℓ (cs(t),ds(t)) =
∑

j∈M

ℓ′
(

cjs(t)− djs(t)
)

. (3)

The cost model in (2), hence the loss function in (3), depend

on a single parameter, α. The setting of α can be obtained
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(a) Facebook, core datacenter
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(b) Snapchat, MEC datacenter
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(c) Youtube, C-RAN datacenter

Fig. 6: Monetary cost (aggregated over time and normalized by the cost of one capacity unit) incurred when the overprovisioning

level is shifted from that selected by DeepCog (at the abscissa origin). DeepCog accounts for unavoidable prediction errors,

and balances overprovisioning and SLA violations so as to minimize the economic cost for the network operator. Each plot

refers to one case study, i.e., a combination of (i) mobile service associated to a dedicated slice and (ii) datacenter type.

TABLE I: Mobile services retained for dedicate network slices.

Service name Service class Traffic % Service name Service class Traffic %

YouTube streaming 27.3 iTunes streaming 20.0

Netflix streaming 1.8 Facebook social media 20.4

Instagram social media 3.4 Twitter social media 3.2

Snapchat messaging 8.9 Google Play online store 4.3

Apple Store online store 10.5 Pokemon Go mobile gaming 0.1

from the monetary cost of violating an SLA (i.e., β) and that

of provisioning additional resources (i.e., γ), and allows tuning

DeepCog to any market strategy adopted by the operator.

Specifically, predicting future demands with complete ac-

curacy is impossible due to unforeseeable fluctuations in the

activity of the users. Then, in order to avoid frequent SLA

violations, the operator needs to account for some level of

overprovisioning. The level of overprovisioning should be

chosen such that the resulting monetary cost is minimized.

This is precisely what DeepCog does by hinging on (3). In

order to show the quality of our solution, in Fig. 6 we run

DeepCog in several representative case studies from our refer-

ence scenario (see Section V). For each case study, DeepCog

advocates a level of overprovisioning (x-axis origin), which

entails a given monetary cost (corresponding y value); we then

vary the overprovisioned capacity by adding to or subtracting

from the forecast capacity a fixed offset on (x axis) and observe

how this affects the monetary cost (on the y axis). The curves

confirm that DeepCog always identifies the overprovisioning

level that minimizes the monetary cost for the operator, under

inherently inaccurate prediction.

V. PERFORMANCE EVALUATION

In order to evaluate DeepCog, we consider a real-world

scenario, consisting of a mobile network deployed in a large

metropolitan region of around 100 km2. We leverage measure-

ment data about the demands for individual mobile services

in the target region, collected by the network operator and

generated by several millions of users. In our experiments, we

use demands expressed in bytes, and collected at the gateway

of an operational mobile network by monitoring the GPRS

Tunneling Protocol (GTP).

Independent network slices are then assigned to a repre-

sentative set of services, listed in Tab. I. Our selection covers

popular applications with diverse requirements in terms of

bandwidth and latency: this lets us provide an adequate picture

of the performance of DeepCog under the heterogeneous net-

work traffic that characterizes current mobile service demands.

In order to assess the flexibility of DeepCog in serving

heterogeneous NFV scenarios, we consider three different

classes of datacenters where cognitive network management

is run: (i) a core network datacenter that controls all 470

4G eNodeBs in the target metropolitan area; (ii) Mobile

Edge Computing (MEC) datacenters that handle the traffic of

around 70 eNodeBs each; (iii) C-RAN datacenters located

in proximity of the radio access, which perform baseband

processing and scheduling for 11 eNodeBs each. The network

is partitioned according to the methodology proposed in [27].

Capacity is predicted in terms of bytes of traffic that will

have to be accommodated, which is a reasonable metric to

capture for resource utilization in actual virtual network func-

tions [28]. DeepCog can be configured to anticipate capacity

over any time interval; in our experiments, we operate it on 5-

minute time steps, by using the previous 30 minutes of traffic

(i.e., T = 6) arranged in a 47× 10 matrix as an input1. Thus,

the next-step forecast occurs over an horizon of 5 minutes.

The rationale for this choice roots in practicality: resource

reallocation updates in the order of minutes are typical for

computational and memory resources in architectures imple-

menting NFV [29], and are in line with those supported by any

state-of-the-art Virtual Infrastructure Manager (VIM) [30].

We leverage the reference scenario described above to

evaluate the performance of DeepCog. We employ two months

of mobile traffic data for training and another two weeks of

data for actual experiments. This setting is also used for all

benchmark approaches. All results are derived with a high

level of confidence and low standard deviation.

A. Comparison with state-of-the-art traffic predictors

DeepCog is designed as a building block within a network

resource orchestration framework. A fundamental advantage

over existing solutions in the literature is that it targets capacity

forecast, avoiding SLA violations, rather than a mere predic-

tion of traffic load which may incur into frequent violations.

1We tested a number of different configurations of input snapshots, without
significant differences in terms of results.
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Fig. 7: Comparative evaluation of DeepCog with four bench-

marks in three representative case studies. The monetary cost

(normalized by the cost of one capacity unit) incurred by the

operator is split into costs due to overprovisioning (dark) and

SLA violations (light). Top: α = 2. Bottom: α = 0.5.

In order to show this, we compare DeepCog against four

benchmarks: (i) a naive technique that forecasts the future

offered load by replicating the demand recorded at the same

time during the previous week; (ii) the first approach proposed

to predict mobile traffic based on a deep learning structure,

referred to as Infocom17 [7]; (iii) a recent solution for mobile

network demand prediction that leverages a more complex

deep neural network, referred to as MobiHoc18 [16]; (iv) a

reduced version of DeepCog, which uses the input, deep neural

network structure and output described in Sections II-III, but

replaces the loss function of Section IV with a legacy Mean

Absolute Error (MAE) loss function2, which results in a deep

learning mobile traffic predictor, referred to as MAE.

The analysis considers three representative case studies

for orchestration of resources: (i) a network slice dedicated

to a video streaming service, i.e., YouTube, at a C-RAN

datacenter; (ii) a network slice reserved for a messaging

service, i.e., Snapchat, at a MEC datacenter; (iii) a network

slice chartering traffic for a social network, i.e., Facebook, at a

core datacenter. Fig. 7 shows the results achieved by DeepCog

and the four benchmarks above in these case studies. The plots

show the normalized monetary cost for the operator, breaking

down the cost due to allocating unnecessary resources (i.e.,

overprovisioning) and to unserviced demands (i.e., violations).

We observe that DeepCog yields substantially lower costs

than all other solutions. The gain with respect to the best com-

petitor for α = 2 ranges between 273% and 381%, depending

on the case study. The reason is shown in Fig. 1 at the begin-

ning of this paper, which compares the output of Infocom17

and DeepCog for one of the case studies. Infocom17, as all

other benchmarks, targets mobile network traffic prediction,

whereas DeepCog aims at forecasting capacity. As a result,

2We also experimented with other popular loss functions, e.g., Mean
Squared Error (MSE), with comparable results, omitted for space reasons.
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Fig. 8: Relative performance with respect to DeepCog of

schemes that leverage legacy traffic prediction with additional

overprovisioning offsets. Top: relative overprovisioning and

SLA violations. Bottom: relative monetary cost.

DeepCog balances overprovisioning and SLA violations so as

to minimize operation expenses; while Infocom17 is oblivi-

ous to such practical resource management considerations. In

other words, legacy predictors follow as closely as possible the

general trend of the time series and allocate resources based

on their output, which leads to systematic SLA violations that

are not acceptable from a market viewpoint and incur huge

fees for the operator. Instead, DeepCog selects an appropriate

level of overprovisioning which minimizes monetary penalties

(see Fig. 6). Indeed, even when choosing a low value such

as α = 0.5, which inflicts a small penalty for an SLA

violation, DeepCog still provides gains up to 87% over the

best performing benchmark by granting a suitable level of

overprovisioning.

B. Comparison against predictors with overprovisioning

In the light of the above results, a more reasonable approach

to resource allocation could be to consider a traditional mobile

traffic prediction as a basis, and adding some overprovisioning

offset on top of it. In order to explore the effectiveness of such

an approach, we implement the following variants of MAE.

A first approach consists in adding an a-posteriori con-

stant overprovisioning offset to the MAE output. This strategy,

referred to as MAE-post, requires selecting a value of the

static offset, which is then added to the predicted traffic.

Based on the peak traffic activity observed in all historical

data, we choose an offset 5%, which we deem a reasonable

value. Alternatively, we also consider a best-case version of

this solution, named MAE-post-best, where the a-posteriori

overprovisioning is chosen by performing an exhaustive search

over all possible offset values and selecting the one that

minimizes the loss function ℓ(·).
A second strategy is to account for some level of overpro-

visioning in a preemptive fashion, by introducing the offset

during the deep neural network training. To this end, the
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Fig. 9: Tradeoff between resource overprovisioning (expressed as a percentage of the actual demand) and SLA violation

(expressed as a percentage of time slots), across 15 different scenarios, and in presence of α parameter.
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Fig. 10: Resource orchestration cost under network slicing and

DeepCog capacity forecast, at three levels of the network.

MAE-pre solution replaces the MAE loss function with a new

loss function O +
∑

j∈M cjs(t)− djs(t), where O denotes the

a-priori overprovisioning offset. We set O equal to 5% of the

peak traffic, which is a reasonable value also in this case. To

compare against the best possible operation of this scheme,

we also consider the MAE-pre-best technique, where O is

set equal to the overprovisioning level selected by DeepCog.

We remark that the MAE-post-best and MAE-pre-best

approaches are not feasible in practice, since they need to

know the future (in an oracle-like fashion) in order to de-

termine the best a-posteriori values for the offset and O,

respectively. Yet, they provide a benchmark for comparing the

performance of DeepCog against the best possible solutions

based on traditional mobile network traffic prediction.

Fig. 8 compares the performance of all the above solutions

against DeepCog. The figure shows the oveprovisioned capac-

ity, unserviced traffic, and total economic cost incurred by the

operator in relative terms with respect to DeepCog. Results

confirm that using a static overprovisioning in combination

with mobile traffic prediction is largely suboptimal, both when

the additional offset is considered preemptively or a-posteriori.

Indeed, the two practical solutions considered, i.e., MAE-post

and MAE-pre, cause SLA violations that are two- to three-fold

more frequent, resulting in an economic cost that is 140% to

400% higher than that granted by DeepCog.

Interestingly, even when parametrized with the best possible

offsets, the approaches based on legacy traffic prediction

cannot match the performance of DeepCog: MAE-post-best

and MAE-pre-best dramatically reduce the penalties of their

viable counterparts, yet lead to monetary costs that are up

to 60% higher than those of DeepCog. We conclude that

traffic predictors – no matter how they are enhanced – are not

appropriate for the capacity forecast problem, for the simple

reason that they are designed for a different purpose. Indeed,

they ignore the economic penalties incurred by SLA violations,

which drastically limits their ability to address this problem.

C. Overprovisioning and SLA violation trade-off analysis

As discussed in Section II, DeepCog can accommodate ca-

pacity prediction at different traffic aggregation levels, for di-

verse slices, and under varied monetary cost strategies adopted

by the operator. In the following, we capitalize upon this

flexibility to carry out an extensive analysis of the fundamental

trade-off between overprovisioning of resources and failing to

meet service demands, in several practical scenarios. Specif-

ically, our analysis considers five different network slices,

dedicated to some popular services, i.e., Youtube, iTunes,

Facebook, Instagram, and Snapchat, and deployed at the three

types of datacenters, i.e., C-RAN, MEC, and network core.

Fig. 9 shows results for the above 15 scenarios under differ-

ent economic strategies that are reflected by the α parameter

of the loss function ℓ(·), ranging from policies that prioritize

minimizing overprovisioning over avoiding SLA violations

(α = 0.5) to others that strictly enforce the SLAs at the

price of allocating additional resources (α = 5). The plots

show the two components that contribute to the total monetary

cost: overprovisioning (given as a percentage of the actual

demand) and SLA violations (given as a percentage of time

slots). We observe that, as expected, higher α values reduce

the number SLA violations (which become increasingly ex-

pensive) at the cost of provisioning additional capacity (which

becomes cheaper). This tendency is consistent in all scenarios,

which confirms that α effectively drives resource orchestration

towards the desired operation point.

Our analysis also reveals that the level of overprovisioning

grows as one moves from datacenters in the network core out-

wards. This is observed for all studied slices, and is due to the

fact that more centralized datacenters work with increasingly

aggregate traffic that is less noisy and easier to predict. Under

such conditions, DeepCog needs a lower level of additional

capacity to limit unserviced demands; indeed, the amount of

SLA violations is typically lower at core datacenters.



D. Orchestration results

We conclude our analysis by investigating the overall cost

of resource orchestration in a sliced network. We consider

an operational mobile network where an independent slice

is dedicated to each of the services listed in Table I, and

study three practical case studies, where DeepCog is used to

drive the orchestration at C-RAN, MEC and core datacenters,

respectively. We choose the operator policy as follows, based

on the nature of each case study. SLA violations affect a large

user population and shall be more expensive at the network

core, where overprovisioning resources is cheaper; hence, we

set a high α = 3 in this case. Conversely, violations of SLAs

at C-RAN datacenters concern a limited set of subscribers in

a geographically constrained area, and are thus less costly; at

the same time, deploying resources in proximity of the radio

access is typically expensive; accordingly, we opt for α = 0.5
in the C-RAN case study. Finally, we select an intermediate

value, α = 1.5, for the MEC case study. The results, given in

Fig. 10, expose the monetary cost incurred by the operator in

each case study. The cost is expressed in terms of Gbps and

is a total over the reference metropolitan network scenario; it

can easily translated into monetary units, based on the actual

cost of provisioning one Gbps at each datacenter type. The

cost values reflect that anticipatory resource orchestration is

more efficient at the network core, and becomes increasingly

complex as we move towards the edge: we quantify in 3:1 the

ratio between the operational expenses at C-RAN with respect

to the core.

VI. CONCLUSIONS

In this paper we presented DeepCog, a novel data an-

alytics tool for the cognitive management of resources in

sliced 5G networks. Inspired by recent advances in deep

learning for image and video processing, DeepCog leverages

a deep neural network structure, which is trained using a

customized loss function aiming at capacity forecast rather

than legacy mobile traffic prediction. Ours is, to the best of

our knowledge, the only work to date where a deep learning

architecture is explicitly tailored to the problem of anticipatory

resource orchestration in mobile networks. Thorough empirical

evaluations with real-world metropolitan-scale data show the

substantial advantages granted by DeepCog over state-of-the-

art predictors, and provide a first analysis of resource orches-

tration costs at heterogeneous network slices and datacenters.
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