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Abstract—In this paper, we propose a novel deep learning
and blockchain-based energy framework for Smart Grids, en-
titled DeepCoin. The DeepCoin framework uses two schemes,
a blockchain-based scheme and a deep learning-based scheme.
The blockchain-based scheme consists of five phases; setup phase,
agreement phase, creating a block phase and consensus-making
phase, and view change phase. It incorporates a novel reliable
peer-to-peer energy system that is based on the practical Byzan-
tine fault tolerance algorithm and it achieves high throughput.
In order to prevent smart grid attacks, the proposed framework
makes the generation of blocks using short signatures and
hash functions. The proposed deep learning-based scheme is an
intrusion detection system (IDS), which employs recurrent neural
networks (RNNs) for detecting network attacks and fraudulent
transactions in the blockchain-based energy network. We study
the performance of the proposed IDS on three different sources
the CICIDS2017 dataset, a Power System dataset, and a Bot-IoT
dataset.

Index Terms—Blockchain, Smart Grid, Machine Learning,
Security, IDS.

I. INTRODUCTION

The world’s electricity consumption is increased every

year, reflecting the growth in the number of electric devices.

According to a report published in 2018 [1] about energy

consumption in the UK provides that electricity consumption

in the UK increased by 33% to 15 ktoe. The renewable

energy sources provide nearly 20% of U.S. electricity (e.g., hy-

dropower, biomass, biofuels, wind geothermal, solar) in 2017

[2]. In order to modernize public electricity infrastructures,

many electric power companies are interested in deploying

smart grids using communication networks and renewable

energies.

The smart grid consists of a set of computers, controllers,

automation, and standard communication protocols, which are

connected on the Internet, all of which are used in order to

manage the generation and distribution of electricity to con-

sumers through these digital technologies [3]. A community

solar panels network in the smart grid could consolidate to

the overall energy infrastructure of the smart city by creating

additional energy storage. The main issue in the development

of a smart grid is not located at the physical support but mainly
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in ensuring both security and privacy, which has become

a major concern for the cyber security research community

[4]. An adversary can launch internal and external attacks

(e.g., false data injection and denial of service attacks) in

order to disrupt the operation of the smart grid [5]. Examples

include modification operations on the electricity data via

eavesdropping attack and distributed denial of service attacks

on the network communication protocols (i.e., TCP/IP, HTTP,

UDP)[6].

Blockchain is an emerging technology that can lever-

age enterprise data using secure transactions among parties.

Blockchain technology-enabled business and technological

systems is a new trend rising fast in the area of engineering

management [7]. Managers are expected to use Blockchain

technology in the near future in order to solve problems

and create new opportunities across industries (e.g., supply

chain management, logistics, and product origin tracking) [8].

Recent studies have utilized blockchain technology to establish

secure data sharing for the management of Smart Grid [9],

[10], [11], [12]. Although blockchain is one of the promising

technologies for securing the management of technology and

innovation, it suffers from some vulnerabilities related to

data privacy, along with a number of personal identity risks

as discussed in [13]. In order to deal with these issues,

novel technologies and approaches such as intrusion detection

systems and machine learning techniques should be adopted.

In this paper, we propose a novel deep learning and

blockchain-based energy framework, named DeepCoin, for

protecting the smart grid from cyber attacks. Specifically, the

main contributions of this paper are as follows.:

• We propose a new blockchain-based scheme for facili-

tating the exchange of excess energy among neighbor-

ing nodes. To achieve privacy-preservation, the proposed

scheme employs bi-linear pairing, short signatures, and

hash functions.

• We introduce how the practical Byzantine fault toler-

ance (PBFT) algorithm can achieve consensus inside

blockchain-based energy network.

• We propose a novel Deep learning-based scheme using

a recurrent neural network (RNN) for detecting net-

work attacks and fraudulent transactions. For training an

RNN, we use the truncated backpropagation through time

(BPTT) algorithm. To the best of our knowledge, this is

the first study that combines blockchain technology with

deep learning using a truncated BPTT algorithm into one

architecturally secure framework for the smart grid.
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• We provide various experimental results using Tensor-

Flow on three datasets, the CICIDS2017 dataset, a Power

System dataset, and a Bot-IoT dataset.

The remainder of this paper is organized as follows. We

review related work in section I and provide the preliminaries

in Section II. Section III presents our DeepCoin framework,

followed by performance evaluation in Section IV. Finally, we

conclude this paper in Section V.

II. RELATED WORK

In this section, we mainly describe the relevant work in

three different areas of a smart grid, blockchain, IDS, and

combinations blockchain technology with deep learning.

1) Blockchain for Smart Grid: In the work by Pop et al.

[9], an architecture based on the blockchain is proposed for

distributed management in low/medium voltage smart grids.

The blockchain distributed consensus is used for demand

response verification. The Ethereum coin is used as the coin to

pay for energy while Solidity is used for implementing smart

contracts. In addition, energy traces of UK buildings were used

to validate and test the proposed model.

For privacy preserving of energy trading, Aitzhan and

Svetinovic [10] combined blockchain with multi-signatures

and anonymous messaging streams for decentralized energy

trading network. The study implemented a proof-of-concept,

entitled PriWatt, which was inspired from the Bitcoin. The

PriWatt system is efficient against double-spending attacks

using hashes of blocks, which are computationally difficult. Li

et al. [11] introduced a credit-based payment scheme for IIoT.

The study proposed three ideas, including, 1) a unified energy

blockchain, 2) a credit-based payment, and 3) an optimal

pricing strategy. The unified energy blockchain consists of

three entities, energy nodes, energy aggregators, and smart

meters. Li et al.’s scheme is efficient against double-spending

attacks.

Guan et al. [12] proposed a privacy-preserving and data

aggregation scheme for power grid communications. The study

divided users into different groups and each group has a private

blockchain. To hide user’s identity, the study applies the idea

of multiple pseudonyms. Compared with the conventional

authentication framework, the study shows some significant

advantage in term of computational cost. To provide trans-

parency and provenance, Gao et al. [14] presented a secured

sovereign blockchain framework, named GridMonitoring, for

the smart grid. The GridMonitoring framework uses smart con-

tracts between consumers and utility companies for protecting

consumer data recorded and transferred. In addition, Grid-

Monitoring adopts three cryptographic primitives, including,

consumer private key, consumer public key, and authenticator

contract key. Fan and Zhang [15] proposed a data aggregation

and regulation mechanism for the smart grid. Based on a con-

sortium blockchain and the hybrid signcryption scheme, the

proposed mechanism can be applied to multidimensional data

acquisition and multiple receivers. The performance evaluation

shows that the proposed mechanism significant advantages

in terms of computation and communication overhead for

multidimensional data compared to multidimensional data

aggregation schemes in the multilevel network.

Gai et al. [16] introduced a privacy-preserving energy

trading framework using consortium blockchain. The Gai et

al.’s framework implemented B-Box on the smart contract of

consortium blockchain. For detecting fixed bounds, the study

uses a dynamic-style bound, which can detect data mining-

based attacks. To achieving a parallel trading growth, the study

introduced a parameter, called an Approximate Maximum

Estimate (AME). The AME parameter can estimate value

for an individual seller’s trading volume. The performance

evaluation in Hyperledger Fabric 1.0 shows that the proposed

model can find many sellers whose energy sale were noticeably

different from other sellers. In order to address the privacy

protections and energy security, Gai et al. [17] proposed a

model permissioned blockchain edge model, named PBEM,

which it combines blockchain and edge computing technolo-

gies. Specifically, the PBEM model uses group two techniques,

including, signatures and covert channel authorization, to

guarantee users’ validity. The experiment results show that

the execution time range of the proposed PBEM model was

from 1ms to 14ms, for task allocations in edge computing.

2) IDS for Smart Grid: To protect advanced metering

infrastructure (AMI) from malicious attacks in smart grids,

Faisal et al. [18] proposed an IDS based on the evolving

classification algorithms. The study uses an open source data

stream mining framework, named MOA. The approach was

tested on the KDD CUP 1999 dataset and was proven to

perform well in terms of memory and time consumption. The

KDD dataset that was used is outdated and of very limited

practical value for a modern IDS since it doesn’t consider

threats of a smart grid. Jokar and Leung [19] presented

an intrusion detection system, entitled HANIDPS, for smart

grids using ZigBee. The HANIDPS system considers three

categories of three models against advanced metering infras-

tructure, including, 1) Illegitimate remote turn-on/off com-

mands, when an adversary passively eavesdrops the network

traffic, 2) Stealing customer information, when an adversary

impersonates ID of the energy management system, and 3)

Denial of service against network nodes, when an adversary

tries to gain control of a specific device. The HANIDPS system

combines a model-based intrusion detection method and a

machine learning-based prevention technique. The HANIDPS

system was tested on an IEEE 802.15.4 network (it contained

six nodes, including 4 air monitors, an adversary, and a

genuine node) and was proven to be efficient against IEEE

802.15.4 attacks, i.e., radio Jamming, replay-attacks, back-off

manipulation, DoS against GTS requests, etc.

Zhou et al. [20] proposed a deep neural network model in or-

der to classify cyber-attacks in the smart grid. To detect smart

grid attacks, the study follows three steps, a data acquisition

step, a data pre-processing step, and a deep neural network

classification step. The data acquisition step collected 4559799

samples, 1064720 being positive samples and 3495079 neg-

ative samples (R2L attack, U2R attack, DOS attack, and

PROBING attack). The study showed good accuracy with

96,31% compared to traditional machine learning algorithms,

including, K-Nearest Neighborhood, Linear Regression, and

Random Forest.
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3) Combining blockchain with machine learning: Liu et

al. [21] proposed a data collection sharing framework for

IIoT applications. They proposed the combination of Ethereum

blockchain and deep reinforcement learning (DRL). For stor-

ing and sharing data, they used Ethereum nodes, which were

classified into two categories: 1) Mining nodes and 2) Non-

mining nodes. The DRL algorithm used three basic compo-

nents, states, actions and rewards. A state is a description

of the environment for IIoT applications. An action is the

moving direction and distance of mobile terminals. A reward

is based on the collection amount achieved, geographical

fairness and energy consumption. According to the study, the

DRL algorithm can increase the geographical fairness ratio by

34.5% compared to a random solution.

Blockchain-based energy network

IDS
IDS

Home area network

Building area network

Full battery

Medium battery

Low battery

Energy

Energy coin

Data

Block of energy

IDS Intrustion detection

system

Local solar production

network
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HANx

BANx

NANx

(2) (3)
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network

Fig. 1: Conceptual architecture of a smart grid. 1) HANs sell

the surplus production to the electricity grid. 2) HANs have

solar panels installed on their roofs which are connected to

the local solar production network. 3) Electric vehicles act as

energy storage devices.

III. PRELIMINARIES

A. System model

As presented in Fig. 1, the smart grid architecture consists of

three types of network architecture, including, home area net-

work (HAN), building area network (BAN), and neighborhood

area network (NAN) [3]. In order to facilitate communication

among devices in each home, the HAN network uses two types

of digital networks, namely, wireless Local Area Network

(WLAN) and Wide Area Network (WAN), which operate at

a frequency of 2.4 GHz under 802.11 wireless standards. The

BAN network and the NAN network connect various depart-

mental networks within a single building. In each network

type, there are smart meters that measure a building’s energy

production and the quantities consumed at different times.

Both BAN and NAN networks contain mining GPUs with a lot

of graphics memory in order to manage high hash rates as well

as low power draw (e.g., Nvidia GeForce GTX 1070, AMD

Radeon RX580, Nvidia GeForce GTX 1060...etc). All entities

of the smart grid use solar panels or wind generators, which

consolidates the energy infrastructure by creating additional

energy storage. This smart grid architecture provides a peer-to-

peer (P2P) energy trading mechanism, which each consumer

can use in order to sell or buy energy from neighboring nodes.

B. Short signatures

The short signatures scheme [22] is based on the following

algorithms: Setup (1λ): This algorithm generates a bilinear

environment (p,G1,G2,GT , g1, g2, e, ψ) based on the q-Strong

Diffie-Hellman (q-SDH) problem. G1 and G2 are two groups

of prime order p with g1 is a generator of G1 and g2 is a

generator of G2, and ψ is an isomorphism where g1 = ψ(g2).

The system settings is defined as follows:

Sign_param = (λ, p,G1,G2,GT , g1, g2, e, ψ) (1)

Key generation: Using the Sign_param, This algorithm

chooses randomly x and y in Z∗
p and computes u = g

x
2
∈ G2

and v = g
y

2
∈ G2. The secret key is sk = (x, y) and the

corresponding public key is pk = (Sign_param, u, v, z) which

z = e(g1, g2) ∈ GT .

Sign phase: Using the secret key sk, the corresponding pub-

lic key pk, and the bloc B. This algorithm chooses randomly r

in Z∗
p , which x+B+ yr , 0 mod p and computes the signature

as follows:

S = g

1
x+B+yt

1
(2)

Sending phase: Given the signature Sig = (S, r) of the bloc

B, the algorithm sends Sig.

Reception phase: The receiver checks the following formula

e
(

S, u, gB2 · vr
)

=? z (3)

C. Complexity assumptions

The q-Strong Diffie-Hellman Problem (q-SDH) is defined

by Boneh and Boyen [23] as follows: given a (q + 2)-tuple

(g1, g2, g
x
2
, g

(x2)

2
, . . . , g

(xq )

2
) as input where as above g1 = ψ(g2),

output a pair (c, g
1/(x+c)

1
) where c ∈ Z∗

p , g1 ∈ G1, and g2 ∈ G2.

An algorithm A has advantage ǫ in solving q-SDH in (G1,G2)

if the probability

Pr

[

A

(

g1, g2, g
x
2 , g

(x2)
2

, . . . , g
(xq )

2

)

= (c, g
1/(x+c)

1
)

]

≥ ǫ (4)

IV. DEEPCOIN FRAMEWORK

This section overviews the architecture of the proposed

DeepCoin framework. It is composed of a blockchain-based

scheme and a Deep learning-based scheme. DeepCoin frame-

work consists of four network entities: Energy buyer, Energy

vendor, Blockchain, and IDS, which are described below.

• Energy buyer: We assume three types of energy buyers,

including, EBHAN , EBBAN , EBNAN , which are energy

network entities located in the HAN network, the BAN

network, and the NAN network, respectively. These enti-

ties plan to trade with energy vendors. An energy buyer

entity proves that he has enough energy money, named

CoinEnergy, that satisfy the energy vendor’s minimum

asset requirement.

• Energy vendor: We assume four types of energy vendors,

including, EVHAN , EVBAN , EVNAN , EVCOM which

are energy network entities located in the HAN network,
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Fig. 2: The data structures of Blocks used by the DeepCoin

framework.

BAN network, NAN network, and energy company, re-

spectively. These entities prove that they have enough

energy to sell to energy buyers entities (i.e., EBHAN ,

EBBAN , EBNAN ). Note that the energy company is an

entity that produces energy from renewable sources (e.g.,

solar energy, wind energy, and biomass).

• Blockchain: An entity which is a distributed digital ledger

containing all energy transactions in the smart grid. This

distributed ledger is replicated and stored in different

nodes of the smart grid, including, H ANx , BANx , N ANx ,

and COMx . The data structures of Blocks used by the

DeepCoin framework are presented in Fig. 2. Specifically,

the structure of each block includes nine fields. (1) Block

index field is a number that is unique for each block. (2)

Hash field is the hash value of the block content. (3)

Previous block field is the hash value of the previous

T0 T1 T2 T3 T4 T5 T6

Energy buyer

node

Energy vendor

node

Primary node

Neighbor node

Neighbor node

Neighbor node

Energy buyer node wants to buy energy from an energy vendor

Both clients send their request to the primary node

Primary node creates a message, named PRE-PREPARE, in order to propose to all nodes

the scheduling of the bloc

Neighbor nodes and primary node reply to PRE-PREPARE with a message named PREPARE,

which is sent to all honest nodes

Neighbor nodes and primary node are agreed on the order of the clientOs request. Then,

they send to all neighbor nodes and primary node, a message named VALIDATION.

All neighboring nodes and the primary node respond to both clients in order to reach

a consensus and publishes a full block

Fig. 3: The consensus process for blockchain-based energy

exchange framework.

block. (4) Transactions field containing the details of

the purchases made between energy buyers and energy

vendors. (5) Timestamp field is date and time of the

creation of the block. (6) CoinEnergy field is the money

of energy. (7) Size field is the size of the block. (8)

Merkle root field is the descendant of all the hashed

pairs in the tree. (9) Nonce field is the number that

blockchain miners are solving for. To add a block to the

blockchain, we assume that the BANx , N ANx , and COMx

nodes mining new blocks, which is hard work, have to be

properly rewarded. Note that the data structures of Blocks

used by DeepCoin framework are inspired from Bitcoin’s

structure.

• Intrusion Detection System (IDS): An entity installed at

the BAN and N AN nodes, which is responsible for ver-

ifying that the frames running on the energy transaction

network comply with a set of rules. Specifically, this

entity detects the network attacks (e.g., brute force attack,

botnet, DoS attack, DDoS attack, web attack, infiltration

attack, ...etc) as well as fraudulent transactions to prevent

future illegal actions.

A. Blockchain-based scheme

In order to secure this energy environment, we propose a

blockchain based-energy scheme, where the nodes of the smart

grid network can exploit their excess energy and sell it to other

neighboring nodes (e.g., HAN) or neighbors on the other side

of the street (e.g., BAN, NAN). This scheme aims to strengthen

the local energy network and reduce the disruption caused by

dangerous situations such as natural disasters. In addition, this

scheme allows creating a secure and stable energy environment

at the grid edge.

Generally, there are two types of network consensus,

namely, 1) public network consensus and 2) private network

consensus [13]. To achieve consensus in a blockchain network,

there are five approaches, including, the practical Byzantine

fault tolerance (PBFT) algorithm, proof of work (proposed

by Nakamoto in the bitcoin network), proof of stake (used

by Ethereum), Proof of Authority (PoA), and RAFT. The

proposed DeepCoin framework uses the PBFT algorithm [24]

for achieving consensus in the smart grid. The overall message

complexity of PBFT’s normal operation is (O(N2)) [25].

Figure 3 shows the consensus process for blockchain-

based energy exchange framework. We assume that the smart

grid is composed of a set of four types of nodes N =

{H ANx, BANx, N ANx COMx}, where x = {1 . . . n}, con-

nected by a reliable peer-to-peer energy network. Therefore,

we propose that the total ledger is maintained by BANx ,

COMx , and N ANx nodes while H ANx nodes do not par-

ticipate in the consensus making. Our concrete DeepCoin

framework is outlined below:

• Setup phase: Based on the q-Strong Diffie-Hellman (q-

SDH) problem, let (G1,G2,GT ) be bilinear groups where

|G1 | = |G2 | = p for some prime p. Two different hash

functions are given: H1 : Θ × {0, 1}∗ → {0, 1} and :

H2 : {0, 1} × {0, 1}∗ → Ω, which we assume that the

proposed scheme signs blocks in some finite set Ω and
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Algorithm 1 Consensus-making phase

Input: Px , EV , EB, σi , PKi , Bloci
Initialization: Set the time intervals of the block genera-

tion as t

Output: Success or Failure

1: Px checks the validity of the block using the following

formula: e
(

σi, u · g
Bloci
2

, v
ri

)

=?z. If the equality is

true then Validity_Bloc = valid otherwise the result is

Validity_Bloc = invalid;

2: Px checks if the EV node has enough energy to sell. If the

equality is true then Validity_Energy = valid otherwise

the result is Validity_Energy = invalid;

3: Px checks if the EB node has enough CoinEnergy to

buy. If the equality is true then Validity_Coin = valid

otherwise the result is Validity_Coin = invalid;

4: if Validity_Bloc = invalid then

5: Px sends a penalty to the EB node;

6: return Failure;

7: else

8: if Validity_Energy = invalid then

9: Px sends a penalty to the EV node;

10: return Failure;

11: else

12: if Validity_Coin = invalid then

13: Px sends a penalty to the EB node;

14: return Failure;

15: else

16: Run the algorithm 2;

17: return Success;

18: end if

19: end if

20: end if

the secret keys are in some set Θ. The public key is

pk = (g1, g2, u, v, z). The corresponding secret key

is sk(x, y), and z = e(g1, g2) ∈ GT . The address set is

Si(pk i, sk i) [26].

• Agreement phase: When an energy buyer node EB

wants to buy energy from an energy vendor EV , they

negotiate the price, quantity, and period of validity. All

this information is contained in a file and embedded in

the blockchain block, as presented in Fig. 2.

• Creating a block: Given a secret key xi, yi∈ Z∗
p and

a bloc Bloci∈ {0, 1}∗ , an energy buyer node EBi

picks a random number ri∈ Z∗
p and compute σi =

H1

(

g

1

(xi+Bloci+yi+ri )

1

)

∈ {0, 1}. Then, the EBi compute

bi = H2 (σi, Bloci) ∈ Ω and set the time intervals of

block generation as T . The signature of bloc Bloci is

SigBloc(σi, bi, ri). At the end, the EBi broadcasts trans-

action data attached with SigBloc to the entire network.

• Consensus-making phase : This algorithm is an active

replication protocol and uses a special replica, named the

primary node (leader) P, that proposes a query execution

order. Generally, this algorithm requires N = 3 f + 1

replicas to tolerate f simultaneous Byzantine faults. In

Algorithm 2 Scheduling a bloc

Input: t, N = {H ANx, BANx, N ANx, COMx}, where

x = {1 . . . n}

Initialization: Set the time of the view as V IEW

Output: Reached or Not reached

1: Set V IEW = 0;

2: Px creates a message <PRE-PREPARE,Bloci, σi, Sec>,

with a unique sequence number Sec;

3: After the time t, the Px node sends <PRE-

PREPARE,Bloci, σi, Sec> to N;

4: After receiving the proposal, each node ∈ N replies with

a message <PREPARE, Bloci , Sec> to all N ⊲ the Px

and EB node do not participate in sending replies phase;

5: Each node ∈ N, upon receiving at least 2 f <PRE-

PREPARE,Bloci, σi, Sec> and <PREPARE, Bloci , Sec>,

sends a message <COMMIT, Bloci , Sec> to all N ⊲ the

EB node does not participate in this step;

6: Each node ∈ N, upon receiving at least 2 f +1 <COMMIT,

Bloci , Sec>, reaches a consensus and publishes a full

block and return Reached;

7: if the EB node does not receive a response after 2VIEW · t

then

8: run the algorithm 3 and return Not reached;

9: end if

Algorithm 3 View change phase

Input: t,V IEW , N = {H ANx, BANx, N ANx, COMx},

where x = {1 . . . n}

Initialization: Set the counter of the view as Counter = 1

1: V IEW=V IEW + Counter;

2: The EB node creates a message <CHANGE-

VIEW,Bloci, σi, Sec,V IEW>, with a unique sequence

number Sec;

3: The EB node sends <CHANGE-

VIEW,Bloci, σi, Sec,V IEW> to all N;

4: Choose a new Px node;

5: Run Algorithm 2;

6: if the EB node does not receive a response after 2VIEW · t

then

7: Counter = Counter + 1;

8: Back to Step 1;

9: end if

this phase, we propose that only the BANx , N ANx , and

COMx can be one of the primary nodes Px in each

transaction. The choice of Px is based on the distance

of the transmission range. Once the primary node Px

receives a transaction from the EB node, Px run the

algorithm 1. After verifying the block, the primary node

Px creates a message, named PRE-PREPARE, in order

to propose to all nodes the scheduling of the bloc. The

honest nodes reply to PRE-PREPARE with a message,

named PREPARE, which is sent to all honest nodes.

When each node ∈ N, upon receiving at least 2 f PRE-

PREPARE and PREPARE, he sends a message, named

COMMIT, to all honest nodes. Then, when each node ∈
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N, upon receiving at least 2 f + 1 COMMIT, he reaches

a consensus and publishes a full block.

• View change phase : If the EB node does not receive a

response after a predefined period of time, it re-transmits

its request to all honest nodes by running the algorithm 3.

During the view change phase, from V IEW to V IEW+1,

the primary node of V IEW leaves its role of leader, and a

new primary node is elected as leader. The honest nodes

in this phase store the messages that they receive and send

to a log file. This allows to retransmit them if needed

(e.g., if a message is lost on the blockchain network).

Since the honest nodes can not store an infinite amount

of message, we propose that they truncate these messages

periodically.

In Figure 4, we compare the throughput of DeepCoin

framework with the state of the art of Byzantine fault tolerance

protocols in term of the different number of energy nodes.

Specifically, we have implemented six approaches, including,

Q/U, HQ, Zyzzyva, Aliph, WPN, and NFT. The Q/U protocol

was presented in 2005 by Abd-El-Malek et al. in [27] where

it involves a subset of replicas, called quorum, to order to

perform queries. The HQ protocol is proposed by Cowling et

al. in [28] which is based on a BFT protocol that requires 3 f+1

replicas. The Zyzzyva protocol [29] presented in 2009 by Kotla

et al., which is a BFT protocol and based on speculation (i.e.,

in the case without fault, the replicas do not need to agree

on the order of execution of the queries). The Aliph protocol

[30] combines three BFT protocols, namely, Quorum, Chain,

Backup. The WPN protocol uses the same consensus-making

phase of DeepCoin but the primary node is selected randomly.

The NFT protocol does not use a fault tolerance strategy for

transaction execution in the consensus protocol. From Figure

4, we can observe that the DeepCoin framework can validate

more transactions per minute than five approaches, including,

Q/U, HQ, Zyzzyva, Aliph, and WPN. The reason is that the

DeepCoin framework chooses BAN and N AN nodes with low

failure probabilities as primary nodes and the H AN nodes

cannot be selected as primary nodes.

Inputs

Hidden

units

Outputs

layer

Inputs

Hidden

units

Inputs

Hidden

units

Inputs

Hidden

units

t

t-3

t-2

t-1

Whh

Whh

Whh

Wvh

Wvh

Wvh

Wvh

Whh

Who

Fig. 5: RNN using the backpropagation through time algo-

rithm.

B. Deep learning-based scheme

In order to detect network attacks and fraudulent transac-

tions, we propose an intrusion detection system (IDS) based

on a deep learning approach. This approach is inspired by

recurrent neural networks. Note that the proposed IDS is

executed only by the BAN and N AN nodes in the blockchain-

based energy network.

There are many recurrent neural network (RNN) algorithms

proposed in the literature, such as, Real-Time Recurrent Learn-

ing (RTRL), Long Short-Term Memory (LSTM), Echo-State

Networks (ESN), and Truncated Backpropagation Through

Time (TBTT) [31]. The RNN can extended deeper based on

three points defined by Pascanu et al. in [32], including, input-

to-hidden function, hidden-to-hidden transition, and hidden-to-

output function.

The standard RNN is a neural network that simulates

a discrete-time dynamical system, which is formalized as

follows: Given a sequence of input vectors x (t), a sequence

of output vectors is z (t), which t ∈
[

1, t f
]

and internal state

vectors are as follow: h0 (t) = x (t) , ∀ t ∈
[

1, t f
]

and h j (0) =

x (t) , ∀ j ∈ [1, N]. By applying the affine transformation aj to

the output vector of the previous layer and adding the linear

transformation Vj ∈ Rn j×n j , the parameters of an RNN can be

estimated by the following cost functions:

Aj (t) = Wj × h j−1 (t) + Vj × h j (t − 1) + bj (5)

h j(t) = δj(Aj(t)) (6)
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Algorithm 4 RNN using truncated BPTT algorithm

Input: x (t)

Initialization: h0 (t) = x (t) , ∀ t ∈
[

1, t f
]

Output: ∂C
∂θ

1: for j = 1 to N do

2: for t = 1 to t f do

3: Aj(t) = Wvhx (t) +Whhht−1 + bj ;

4: h j(t) = e(Aj(t)) ⊲ e(·) is the hidden nonlinearities;

5: oj(t) = Whoh j(t) + bo;

6: z(t) = δ(oj(t)) ⊲ δ(·) is the output nonlinearities;

7: end for

8: Compute the loss of the RNN: L(z, y) =
∑t f

t=1
L(zt ; yt )

⊲ L is loss function when predict y as z

9: end for

10: for N to j = 1 do

11: for t f to t = 1 do

12:
∂C
∂o j

(t) = δ′(oj(t)).
∂C

∂L(z(t);y(t))
/ ∂C
∂z(t)

;

13:
∂C
∂bo
=

∂C
∂bo
+ oj(t);

14:
∂C

∂Who
=

∂C
∂Who

+ oj (t) hT
j
(t);

15:
∂C
∂h j

(t) = ∂C
∂h j

(t) +WT
ho

∂C
∂o j

(t);

16:
∂C
∂z

(t) = e′ (z(t)) · ∂C
∂h j

(t);

17:
∂C

∂Wvh
=

∂C
∂Wvh

+
∂C
∂z

(t)x (t)T;

18:
∂C
∂bh
=

∂C
∂bh
+

∂C
∂z

(t);

19:
∂C

∂Whh
=

∂C
∂Whh

+
∂C
∂z

(t)hT
j
(t − 1);

20:
∂C
∂h j

(t − 1) = WT
hh

∂C
∂z

(t)

21: end for

22: end for

23:
∂C
∂θ
=

(

∂C
∂Whv

, ∂C
∂Whh

, ∂C
∂Who

, ∂C
∂bh

, ∂C
∂bo

, ∂C
∂ho

)

;

24: return ∂C
∂θ

;

Where h j (t), Aj (t) ∈ Rn j , and z (t)=h j(t).

The details of the proposed IDS methodology are illustrated

in Fig. 6. Specifically, the proposed method consists of four

stages: 1) datasets stage, 2) pre-processing stage, 3) training

stage and 4) testing stage. The detailed design of each stage

is further discussed in the following sub-sections.

1) Datasets stage: We use three different sources for the

experiments, the CICIDS2017 dataset [33], a Power System

dataset [34] and a Bot-IoT dataset [35].

The CICIDS2017 dataset is developed by Sharafaldin et al.

[33] at Canadian Institute for Cybersecurity (CIC). Compared

to the previous datasets (e.g., DARPA98, KDD99, and NSL-

KDD), the CICIDS2017 dataset contains benign and seven

common attack network flows, including, brute force attack,

heartbleed attack, botnet, DoS attack, DDoS attack, web

attack, infiltration attack.

The Power System dataset [34] is developed by Missis-

sippi State University and Oak Ridge National Laboratory.

Compared to the CICIDS2017 dataset, the Power System

dataset contains 37 scenarios, which are divided into 8 natural

events, 1 no events, and 28 attack events. Three categories

of attacks in power system are considered, including, 1) data

injection, 2) remote tripping command injection, and 3) relay

setting change. This dataset has been used for power system

cyber-attack classification (e.g., common path mining [36],

Fig. 6: Flowchart of the proposed IDS methodology.

sequential pattern mining approach [37])

The CICDS2017 and the Power System dataset lack the

inclusion of IoT-generated traffic. In order to evaluate the

performance of DeepCoin framework in IoT-generated traffic

(e.g., the Internet of Energy (IoE)), we use another dataset,

named Bot-IoT dataset. The Bot-IoT dataset is developed by

Koroniotis et al. [35] at the University of New South Wales

Canberra. The attacks in the Bot-IoT dataset are categorized

into three attack types: information gathering, DoS, and infor-

mation theft.

We assume that the smart grid is divided into two com-

pletely separated networks, namely, victim-smart grid and

attack-smart grid. The victim-smart grid contains the necessary

equipment for building a smart grid communication, including,

smart meters, routers, firewalls, switches...etc. To launch a

brute force attack, an adversary uses a Python script, named

Patator, which contains 30 modules (e.g., SMTP raw force,

Raw force to HTTP, SSH raw force...etc). The DoS attack can

be launched in the smart grid by four tools, namely, Hulk,

GoldenEye, Slowloris, and Slowhttptest, in order to target the

blockchain web hosting. A web attack can be launched using a

PHP/MySQL web application, entitled Damn Vulnerable Web

Application (DVWA), in order to hack a neighbor’s smart

meter. The infiltration attack can be launched by the Metasploit

tool to develop and execute exploits against the victim-smart

grid. Specifically, the attack-smart grid uses three modules,

namely, 1) Exploit module, which is used to exploit a vulner-

ability on the victim-smart grid, 2) Payload module, which is

used for opening a port on the victim-smart grid connected

to a shell or opening a virtual network computing session,

and 3) Auxiliary modules, which are used for various tasks

(e.g., execute the Nmap and portscan). To change power flows

on the lines in the victim-smart grid, an adversary’s botnet
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disrupt the power grid’s normal operation using different tools

for Botnet attacks, such as Ares. In addition, an adversary

can launch a DDoS attack and PortScan in the AMI network

environment using the LOIC tool (e.g., sending the UDP, TCP,

or HTTP requests to the victim-smart grid), in order to deplete

the resources, deteriorate the performance of packet delivery,

and drop an amount of the legitimate packets of the victim-

smart grid. For detail explanation of other attacks in Smart

Grid, we refer the readers to [3].

2) Pre-processing stage: The CSV version of CICIDS 2017

contains 2,830,743 rows devised on 8 files, containing 79

features for every traffic record. The CSV version of Power

System dataset contains 78404 rows devised on 15 files with

128 features for every traffic record. The CSV version of Bot-

IoT dataset contains 73,360,900 rows with 32 features for

every traffic record. For each dataset, we concatenate the files

in one same table that contains all benign and attacks rows.

Then, we create a training and test subset for each data set.

3) Normalization stage: In order to help the DeepCoin

framework to converge and achieve its objectives we per-

formed scaling of the data into a specific range [0,1] using

the Min-Max transformation :

xi( j) =
xi( j) − Min(x( j))

Max(x( j)) − Min(x( j))
(7)

Where Max denotes the maximum value and Min denotes

minimum value from the original set for each value xi of the

feature j.

4) Training stage: For training an RNN, we use the trun-

cated BPTT algorithm. Refer to Fig. 5, BPTT defined by

Werbos [38] and Learning representations by back-propagating

errors defined by Rumelhart et al. [39], the RNN using

truncated BPTT algorithm is described in an Algorithmic way

in 4.

5) Testing stage: In order to test the proposed RNN-IDS

model, we process each row of the test data set by the training

RNN using truncated backpropagation. Then, we classify the

result rows as Benign or a specific type of attack, as presented

in Fig 6.

V. PERFORMANCE EVALUATION AND ANALYSIS

A. Evaluation settings

Table I summarizes the statistics of attacks in Training and

Test datasets, including, CICIDS2017 dataset [33], Bot-IoT

dataset [35], and Power System dataset [34]. The experiment

is performed on Google Colaboratory1 under python 3 using

TensorFlow library and three types of hardware accelerators,

including, Central Processing Unit (CPU), Graphics Process-

ing Unit (GPU), and Tensor Processing Unit (TPU). We used

four packages, NumPy, Pandas, Scikit-learn and Keras. The

NumPy is used for manipulating multidimensional arrays as

well as mathematical functions operating. The Pandas library

is used for manipulating and analyzing data. The Scikit-learn

library and Keras library are used for deep neural network

algorithms and machine learning. Finally, we compare the

1https://colab.research.google.com

TABLE I: Statistics of attacks in Training and Test datasets

Dataset Attack Flow Count Training Test

CICIDS

dataset

BENIGN BENIGN 2273097 30000 30000

DoS

DDoS 128027 3700 4300

Heartbleed 11 5 5

DoS

slowloris
5796 2350 2650

DoS

GoldenEye
10293 2300 1700

DoS Hulk 231073 5500 6500

DoS

Slowhttptest
5499 2161 1159

Web Attack

Web Attack

Sql Injection
21 15 5

Web Attack

Brute Force
1507 920 480

Web Attack

XSS
652 480 160

Infiltration Infiltration 36 20 10

PortScan PortScan 158930 3800 4200

Brute-Force
FTP-Patator 7938 910 1090

SSH-Patator 5897 910 1090

Bot Bot 1966 930 630

Bot-IoT

dataset

BENIGN BENIGN 9543 4000 4000

Information

gathering

Service

scanning
1463364 36700 36468

OS

Fingerprinting
358275 9002 8911

DoS

DDoS TCP 19547603 498602 478778

DDoS UDP 18965106 484127 464128

DDoS HTTP 19771 594 394

DoS TCP 12315997 317899 297900

DoS UDP 20659491 526487 506487

DoS HTTP 29706 942 543

Information

theft

Keylogging 1469 106 98

Data theft 118 102 96

Power

System

dataset

Natural

Events

Natural

Events
1221 500 500

Attack Attack 3711 2010 890

No event No event 294 208 92

TABLE II: Accuracy of the proposed IDS using the CI-

CDS2017 dataset with different hardware accelerators and

hidden nodes.

Accuracy
Training time (s) Test time (s)

CPU GPU TPU CPU GPU TPU

HN = 10 96.776% 110.4 15.2 13.1 2.15 1.21 1.20

HN = 20 97.116% 313.1 30.3 27.6 7.33 3.82 3.22

HN = 30 98.349% 824.2 55.7 51.6 15.45 6.57 6.52

HN = 40 98.444% 921.3 78.1 62.2 33.22 16.22 16.13

HN = 50 98.941% 1002.4 95.2 73.3 41.61 31.27 29.31

HN = 60 99.811% 1772.9 155.9 102.2 123.98 72.35 71.39
HN: Hidden nodes. Number of epochs = 5. The batch size=100.

TABLE III: Accuracy of the proposed IDS using the Bot-IoT

dataset with different hardware accelerators and hidden nodes.

Accuracy
Training time (s) Test time (s)

CPU GPU TPU CPU GPU TPU

HN = 10 97.177% 300.1 60.3 55.2 14.32 8.24 7.88

HN = 20 97.336% 500.4 79.1 71.6 21.87 12.77 11.83

HN = 30 97.809% 991.2 92.7 85.9 34.24 18.23 17.82

HN = 40 98.114% 1010.2 103.2 92.5 67.23 21.13 20.12

HN = 50 98.881% 1200.8 140.4 133.8 70.65 27.14 26.18

HN = 60 99.912% 2012.9 201.7 191.6 90.11 44.23 43.12
HN: Hidden nodes. Number of epochs = 5. The batch size=100.

TABLE IV: Accuracy of the proposed IDS using the Power

System dataset with different hardware accelerators and hidden

nodes.

Accuracy
Training time (s) Test time (s)

CPU GPU TPU CPU GPU TPU

HN = 10 96.127% 20.2 2.3 2.1 21.31 1.13 1.01

HN = 20 96.341% 33.6 4.1 4.3 18.02 2.12 2.03

HN = 30 96.451% 54.2 6.7 6.3 15.24 2.22 2.11

HN = 40 96.684% 87.2 13.4 13.1 22.14 2.88 2.56

HN = 50 96.742% 94.6 16.5 16.2 25.77 4.14 4.03

HN = 60 96.822% 132.2 20.7 21.4 30.16 7.21 7.22
HN: Hidden nodes. Number of epochs = 5. The batch size=100.
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TABLE V: Performance comparison with other models in

terms of detection rate under multi-class classification.

Proposed IDS SVM RF NB

DDoS 99.899% 98.988% 98.719% 65.656%

Heartbleed 100% 100% 100% 85.000%

DoS slowloris 98.111% 91.258% 92.647% 81.556%

DoS GoldenEye 77.122% 69.252% 65.462% 63.255%

DoS Hulk 97.793% 96.275% 94.043% 72.661%

DoS Slowhttptes 94.104% 88.229% 80.041% 71.172%

Sql Injection 80.000% 70.000% 100% 100%

Brute Force 82.376% 81.487% 81.517% 59.512%

XSS 91.715% 87.612% 38.687% 90.875%

Infiltration 100% 84.296% 82.129% 82.429%

PortScan 98.995% 97.884% 99.763% 98.388%

FTP-Patator 99.747% 97.249% 98.616% 98.344%

SSH-Patator 99.923% 96.643% 97.128% 98.291%

Bot 97.585% 69.699% 98.567% 30.987%

Service scanning 87.912% 72.823% 69.823% 65.212%

OS Fingerprinting 92.218% 70.139% 82.198% 68.675%

DDoS TCP 100% 89.564% 88.281% 78.669%

DDoS UDP 100% 98.138% 55.258% 78.500%

DDoS HTTP 100% 62.239% 82.257% 50.775%

DoS TCP 100% 71.255% 81.771% 65.555%

DoS UDP 100% 100% 82.988% 100%

DoS HTTP 100% 70.139% 82.198% 68.675%

Keylogging 77.909% 65.123% 70.119% 65.618%

Data theft 99.749% 89.668% 86.551% 66.546%

Power Attack 98.876% 82.366% 81.556% 82.277%
SVM: Support Vector Machine. RF: Random Forest. NB: Naive Bayes.
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Fig. 7: Performance comparison with other models in terms

of false alarm rate.

performance of the IDS model with three machine learning

methods, including, Support Vector Machine, Random Forest,

and Naive Bayes.

In order to evaluate the performance of our energy

blockchain network, we have created a private blockchain us-

ing MultiChain2, which is an open source blockchain platform.

We consider that the energy blockchain network contains three

types of nodes, H AN = {30, 40, 60}, BAN = {5, 10, 15} and

N AN = {5, 10, 15}. In addition, we assume that an attacker

A uses Sybil attack to launch two types of attacks, a selfish

2https://www.multichain.com/
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Fig. 8: The detection rate of attacks in energy blockchain

network varies with the number of attackers and H AN =

{30, 40, 60}, BAN = {5, 10, 15}, and N AN = {5, 10, 15}.

These attackers launch two types of attacks against the energy

blockchain network, a selfish mining attack and a double

spending attack.

mining attack and a double spending attack. Both honest nodes

and attackers have 30% of the hashing power in the beginning.

B. Evaluation metrics

In order to measure the performance of the proposed IDS

model, we use the most important performance indicators,

accuracy, detection rate (DR), and false alarm rate (FAR),

which are defined below:

Accuracy =
TP+T N

TP+T N+FP+FN
(8)

Detection rate =
TP

TP + FN
(9)

False alarm rate =
FP

FP + T N
(10)

The accuracy measures the proportion of the total number

of correct classifications. The detection rate measures the

proportion of detection of an attack. The false alarm measures

the proportion of benign events incorrectly classified as attacks

[56]. However, these measures are based on four metrics, True

Positive (TP), False Negative (FN), True Negative (TN) and

False Positive (FP). TP is equivalent to attack data that are

correctly classified as an attack. FN is equivalent to attack

data that are incorrectly classified as normal. TN represents

normal data that are correctly classified as normal. The FP

means normal data that are incorrectly classified as an attack.

C. Evaluation results

Accuracy of the proposed IDS using the CICIDS2017

dataset with different hardware accelerators (i.e., CPU, GPU,

TPU) and hidden nodes HN = {10, 20, 30, 40, 60} is shown in

Table II. Due to the high-performance of GPU and TPU with

hundreds of cores, both training time and test time are fast
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TABLE VI: Performance comparison with other Intrusion detection systems that are based on deep learning

Framework Year Data set
Classification

method
Blockchain

Capacity for

feature diversity

Machine learning

library
CPU GPU TPU Accuracy

Gao et al. [40] 2014 KDD Cup 1999 DBN No Low MATLAB 7.0 Yes No No N/A

Alom et al. [41] 2015 NSL-KDD DBN No Low N/A N/A N/A N/A 97.50%

Tang et al. [42] 2016 NSL-KDD DNN No Low N/A N/A N/A N/A 75.75%

Niyaz et al. [43] 2016 NSL-KDD STL No Low N/A N/A N/A N/A 79.10%

Kim et al. [44] 2016 KDD Cup 1999 RNN using LSTM No Low N/A Yes Yes No 96.93%

Yin et al. [45] 2017 NSL-KDD RNN using FPBP No Low Theano Yes No No 81.29%

Shone et al. [46] 2018
KDD Cup 1999

NDAE No
Low

TensorFlow Yes Yes No
97.85%

NSL-KDD Low 89.22%

Tang et al. [47] 2018 NSL-KDD RNN using GRU No Low Keras Yes No No 89%

Diro et al. [48] 2018 NSL-KDD Deep model No Low N/A N/A N/A N/A N/A

Jiang et al. [49] 2018 NSL-KDD RNN using LSTM No Low TensorFlow Yes Yes No 97%

Zhou et al. [20] 2018 N/A DNN No Low TensorFlow N/A N/A N/A 96.31%

Yang et al. [50] 2019
NSL-KDD

MDPCA with DBN No
Low

TensorFlow Yes No No
82.08%

UNSW-NB15 Medium 90.21%

Zhang et al. [51] 2019 KDD Cup 1999 DGNN No Low N/A Yes Yes No 93.93%

Basumallik et al. [52] 2019
IEEE-30 bus

CNN No
Medium

Keras Yes No No
98.67%

IEEE-118 bus Medium 94.53%

DeepCoin /

CICIDS2017

RNN using BPTT Yes

High

TensorFlow Yes Yes Yes

98.23%

Bot-IoT High 98.20%

Power System Medium 96.52%
Abbreviation & Terms. N/A: means no available results, NSL-KDD: Data set contains four attacks (DoS,U2R,R2L,Probe), STL: Self-taught Learning, RNN: Recurrent Neural

Network, FPBP: Forward propagation and back propagation, LSTM: Long short term memory, BPTT: Truncated back propagation through time, GRU: Gated recurrent unit, DBN:

Deep belief neural, KDD Cup 1999: Data set contains four attacks (DoS,U2R,R2L,Probe), CPU: Central processing unit, GPU: Graphics processing unit, TPU: Tensor processing

unit, NDAE: an auto-encoder featuring non-symmetrical multiple hidden layers, DNN: Deep neural network, MDPCA: Modified density peak clustering algorithm. UNSW-NB15:

Data set contains nine attacks (Generic, Exploits, Fuzzers, DoS, Reconnaissance, Analysis, Backdoor, Shellcode, and Worms), DGNN: Deep generative neural network, CNN :

Convolutional neural network, IEEE-30 bus and IEEE-118 bus systems contain six attacks (Bus/Branch faults, Line Trip, Load Changes, Generation Changes, Shunt

Disconnection, and False Data).

TABLE VII: Comparison between DeepCoin and other related

frameworks in the non-blockchain systems

Metric [53] [19] [54] [20] [55] DeepCoin

Ledger distribution N N N N N Y

Fault tolerance N N N N N Y

Participation in consensus N N N N N Y

Smart contracts N N N N N Y

Intrusion detection system N Y N Y N Y

Adaptability P P P P P Y

Security Y P Y P Y Y

Privacy Y N Y N Y Y

Trust P N P N P Y

Reduced maintenance cost N N N N N Y

Internet of Energy (IoE)

e-business model
N N N N N Y

Abbreviation & Terms. Y: Yes; P: Partial; N: No.

TABLE VIII: Comparison between DeepCoin and other re-

lated frameworks in the blockchain systems

Metric [11] [14] [15] [16] [17] DeepCoin

Ledger distribution Y Y Y Y Y Y

Fault tolerance P P Y P P Y

Participation in consensus Y Y Y Y Y Y

Smart contracts Y Y Y Y Y Y

Intrusion detection system N N N N N Y

Adaptability Y Y P Y Y Y

Security Y Y Y Y Y Y

Privacy Y Y Y Y Y Y

Trust Y Y Y Y Y Y

Reduced maintenance cost P P Y Y Y Y

Internet of Energy (IoE)

e-business model
Y Y Y Y Y Y

Abbreviation & Terms. Y: Yes; P: Partial; N: No.

compared to the performance with a CPU. The accuracy of

the proposed IDS increases when the number of hidden nodes

increases; the better accuracy is 99.811% which is achieved

with 60% hidden nodes.

Accuracy of the proposed IDS using the Bot-IoT dataset

with different hardware accelerators (i.e., CPU, GPU, TPU)

and hidden nodes HN = {10, 20, 30, 40, 60} is depicted in

Table III. For the case of HN = 10, the results show that

for both the number of epochs = 5 and the batch size = 100,

the accuracy is 97.177%.

Accuracy of the proposed IDS using the Power System

dataset with different hardware accelerators (i.e., CPU, GPU,

TPU) and hidden nodes HN = {10, 20, 30, 40, 60} is shown

in Table IV. For the case of HN = 60, the results show that

for both the number of epochs = 5 and the batch size = 100,

the accuracy is 96.822%. In addition, the results show that

the performance does not improve with the number of hidden

nodes. This is because the Power System dataset does not

contain many attacks compared to both the CICIDS2017

dataset and the Bot-IoT dataset. It is concluded that the

proposed IDS is efficient and shows higher performance with

datasets that contain many types of attacks.

Table V demonstrates the performance comparison of the

proposed IDS against other classifiers, including, SVM, RF,

and NB, in terms of detection rate under multi-class classi-

fication. According to the results, the detection rate for each

attack obtained by our proposed IDS is higher compared to the

detection rate obtained by SVM, RF, and NB. In addition, the

proposed IDS reaches a 100% detection rate for eight attacks,

including, Heartbleed, Infiltration, DDoS TCP, DDoS UDP,

DDoS HTTP, DoS TCP, DoS UDP, and DoS HTTP.

Figure 7 shows the performance comparison of proposed

IDS with other models, including, SVM, RF, and NB, in terms

of false alarm rate under three datasets. Mean false alarm

rate of the proposed IDS is 0.986% in CICIDS2017 dataset,

1.281% in Bot-IoT dataset, and 3.986% in Power System

dataset, which are better than those obtained using SVM, RF,

and NB.

Figure 8 shows the detection rate of attacks in energy

blockchain network varies with the number of attackers at

H AN = {30, 40, 60}, BAN = {5, 10, 15}, and N AN =

{5, 10, 15}. The DeepCoin framework gets a higher detection

rate of attacks (i.e., selfish mining attack and double spending
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attack) when there are 5 attackers, H AN = {30}, BAN = {5},

and N AN = {5}. The detection rate decreases when the

number of attackers is greater than 50% of the total computing

power of the entire blockchain (i.e., total number of BAN and

N AN nodes).

D. Comparison between DeepCoin and other related frame-

works

Table VI shows the performance of DeepCoin framework

compared with the Deep learning based intrusion detection

systems, that have been previously proposed. In the machine

learning, there is a parameter, named hyperparameter, which

value is set before the learning process begins. The deep

learning-based IDS systems use two types of hyperparameters,

namely, 1) hyperparameters related to the network structure

and 2) hyperparameters related to training algorithm. The

hyperparameters related to the network structure include the

number of hidden layers and the weight initialization schemes

(i.e., Sigmoid, Softmax). The hyperparameters related to train-

ing algorithm include learning rate, number of epochs, and

batch size. Gao et al. [40] and Alom et al. [41] proposed

IDS systems based on Deep belief networks, which the pre-

training is modeled using the restricted Boltzmann machine.

Niyaz et al. Niyaz et al. [43] used self-taught learning (STL)

as a deep learning approach. The STL technique consists

of two stages for the classification, including, 1) feature

representation is learned from a large collection of unlabeled

data and 2) apply the first stage to labeled data for the

classification task. The recurrent neural network algorithms

are used by IDS models, such as long short-term memory

(LSTM) [44], [49], forward propagation and back propagation

(FPBP) [45], and gated recurrent unit (GRU) [47]. Therefore,

many existing IDS systems utilize three datasets, including,

KDD Cup 1999 dataset, NSL-KDD dataset, and UNSW-NB15

dataset, which are outdated and of very limited practical value

for a modern IDS. The DeepCoin framework is evaluated

in moderns datasets, such as the CICIDS2017 dataset and

the Bot-IoT dataset. In addition, there is only the DeepCoin

framework that combines blockchain technology with the

deep learning approach using a truncated BPTT algorithm for

intrusion detection.

The comparisons between DeepCoin and other related

frameworks in both non-blockchain systems and blockchain

systems are presented in Table VII and Table VIII, respec-

tively. The first metric considered is ledger distribution and

this refers to the ability of replication and saving an iden-

tical copy of the ledger by each energy node in the smart

grid. The next metric considered is fault tolerance and this

refers to the ability to identify failures through distributed

consensus protocols. The proposed DeepCoin framework uses

the practical Byzantine fault tolerance algorithm for achieving

consensus in the smart grid. Intrusion detection was also

considered which refers to the ability to detect network attacks

and fraudulent transactions. DeepCoin provides this property

and makes it infeasible to change or modify energy data in

the smart grid based on a deep learning approach. Security,

privacy, and trust, which are the most important challenges

faced by the smart grid, was also considered. The DeepCoin

framework coupled with short signatures and hash functions

ensures these properties. The blockchain technology enables

trust between transacting energy nodes (i.e., removing the need

for energy nodes to trust centralized entities to handle their

energy data). In addition, DeepCoin provides an Internet of

Energy (IoE) e-business model, by incentivizing users to make

energy available for others to use on demand, in exchange for

cryptocurrency.

E. Privacy analysis

In this subsection, we analyze the security properties of

our proposed DeepCoin framework by focusing on privacy

preservation.

Let A be an adversary attacking the proposed DeepCoin

framework under strong existential unforgeability game. The

result in [22] has shown that the short signatures scheme is

existentially unforgeable under an adaptive chosen message

attack and is data private, based on the q-SDH assumption

holds in (G1,G2). In the proposed DeepCoin framework, on

one hand, the transaction data SigBloc(σi, bi, ri) is protected

by a hash function and a validated certificate. On other

hand, by using σi in SigBloc, both energy buyer node EBi

and energy vendor node EV j can easily check whether two

signatures on the same packet are generated by the same signer

or not. In addition, the blockchain combined with the short

signatures scheme and hash function ensures that an adversary

cannot pose as the energy buyer node or energy vendor node.

Hence, the proposed DeepCoin framework satisfies privacy-

preservation.

VI. CONCLUSION

In this paper, we have proposed a novel deep learning

and blockchain-based energy framework, called DeepCoin, for

Smart Grids. Based on short signatures and hash functions, in

DeepCoin, users can exploit the excess energy and sell it to

other neighboring users while preserving privacy. With the use

of the practical Byzantine fault tolerance algorithm, DeepCoin

can achieve consensus inside the blockchain-based energy

network. DeepCoin includes a novel Deep learning-based

scheme using a recurrent neural network algorithm. Through

performance evaluations using three datasets we demonstrated

the efficiency of the proposed DeepCoin framework.

For future work, we plan to study the performance of the

DeepCoin framework with the integration of edge computing

[57], [58] in the smart grid. We will consider an edge com-

puting enabled blockchain network in the smart grid, where

energy nodes can access and utilize computing services from

an edge computing service provider. This integration may help

the energy nodes achieve optimal energy management policy.
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