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Abstract 
Deep learning algorithms have revolutionized data science in many fields by greatly improving prediction performances in                
comparison to conventional approaches. Recently, explainable artificial intelligence (XAI) has emerged as a novel area of                
research that goes beyond pure prediction improvement. Knowledge embodied in deep learning methodologies is extracted by                
interpreting their results. We investigate such explanations to explore the genetic architectures of phenotypes in genome-wide                
association studies. Instead of testing each position in the genome individually, the novel three-step algorithm, called                
DeepCOMBI, first trains a neural network for the classification of subjects into their respective phenotypes. Second, it explains                  
the classifiers’ decisions by applying layerwise relevance propagation as one example from the pool of XAI techniques. The                  
resulting importance scores are eventually used to determine a subset of most relevant locations for multiple hypothesis testing in                   
the third step. The performance of DeepCOMBI in terms of power and precision is investigated on generated datasets and a 2007                     
WTCCC study. Verification of the latter is achieved by validating all findings with independent studies published up until 2020.                   
DeepCOMBI is shown to outperform ordinary raw p-value thresholding as well as other baseline methods. Moreover, two novel                  
disease associations (rs10889923 for hypertension and rs4769283 for type 1 diabetes) were identified. 
 

 
Introduction 
Genome-wide association studies (GWAS) investigate the phenotypic       
effects of small genetic variations called Single Nucleotide        
Polymorphism (SNPs). While some methods for the analysis of GWAS          
focus on phenotypic risk prediction based on the given genetic          
information​1,2,3,4,5​, others try to explain these risk effects by highlighting          
which SNPs are having an effect on a given trait​6,7,8,9,10​. This work aims             
at a combination of both of these goals and uses a deep learning based              
prediction method in combination with statistical testing to identify         
SNPs associated with the phenotype under investigation.  
Following developments in biotechnology, the first GWAS was        
published in 2002​11,12,13​. Several years later, a landmark study - the           
largest GWAS ever conducted at the time of its publication in 2007 -             
was presented by the Wellcome Trust Case Control Consortium         
(WTCCC)​14 including 14,000 cases of seven common diseases and         
3,000 shared controls. Ever since then, sample sizes, rates of discovery           
and numbers of traits studied have been rising continuously​15​.         
According to the GWAS catalog accessed on September 15th 2020  

 
 
>4,700 studies have investigated more than 3,500 phenotypes and         
identified >200,000 SNP phenotype associations with ​p​-values below        
1*10​-5​. Especially for common human diseases such as diabetes,         
autoimmune disorders or psychiatric illnesses GWAS have provided        
valuable insight into the corresponding genetic inheritance processes ​16​.        
A few studies have included over 1 million subjects enabling the           
identification of SNPs with lower risks and frequencies​17,18​.  
However, the vast amount of available data on SNP phenotype          
associations still only accounts for a small fraction of heritability. The           
genetic architectures and variances of most traits and diseases remain          
largely unexplained. This effect, often referred to as “the missing          
heritability”, is assumed to - at least partially - be caused by the way              
GWAS datasets are traditionally analyzed​19,20​. The classic approach -         
which we refer to as raw ​p ​-value thresholding (RPVT) - consists of            
carrying out a statistical association test to assign a ​p ​-value to each SNP             
under investigation and subsequently assessing its statistical       
significance via a comparison to a predefined threshold .​16 This        t*   
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standard approach to analysing GWAS is therefore based on testing          
SNPs individually and in parallel, which intrinsically ignores any         
potential interactions​20,21 between or correlation structures among the set         
of SNPs under investigation​22,23,​. Studies fail to identify multi-locus         
effects by using the traditional RPVT approaches and a large amount of            
potentially available information is lost​24​. Only very few diseases rely          
on single genetic defects with large effects. Most complex diseases are           
caused by epistatic interactions of multiple genetic factors with small          
effect sizes, which are further influenced by correlation structures due          
to both population genetics and biological relations​15​. Brute force         
multivariate approaches to identify such dependencies are oftentimes        
computationally too expensive for large GWAS datasets and are limited          
by low statistical power due to excessive multiple testing. A few           
attempts have been made to identify genetic interactions, but most of           
them were not able to find strong, statistically significant         
associations​21,25,26,27​. 
To overcome these limitations of traditional approaches and following         
the rise of machine learning in data science and an increasing amount of             
available large-scale GWAS datasets, a number of methods have been          
proposed to introduce machine learning tools for the analysis of such           
studies. Linear approaches such as multivariate logistic regression and         
sparse penalized methods including Lasso have been applied to GWAS          
datasets. In general, penalized models achieve better performances than         
non-penalized methods​4,28,29,30​. Some of the top-performing models       
combine statistical testing and machine learning for the identification of          
SNP disease associations​6,7,31​. While most of these methods do not          
provide validation on real data comparing to the GWAS database, very           
few provide a full evaluation of identified genetic variants in terms of            
comparison to previously published GWAS. Other proposed nonlinear        
models, such as random forests, gradient boosted trees and bayesian          
models​4,28,32,33 investigate interactions and correlations in the genetic        
architecture of traits, but were mostly found to be outperformed by           
linear penalized methods​4,25,28,33​.  
To harness even more sophisticated nonlinear machine learning        
methods for the analysis of GWAS, attention has recently been drawn to            
deep neural networks (DNN). This powerful tool for learning nonlinear          
relationships between an input and an output variable by transferring          
information through ​“a computing system made up of a number of           
simple, highly interconnected processing elements”​34 has seen an        
unprecedented rise in data science​35 and created enormous progress in          
numerous fields, e.g. image classification​36,37​, natural language       
processing​38​, speech recognition​39 and quantum chemistry​40​. DNNs       
have been applied to the analysis of GWAS datasets​41,42​, but most of the             
corresponding publications focus on risk prediction​28,43,44,45 and only        
very few methods have been proposed for the identification of SNP           
disease associations​28,46​.  
Romagnoni et al.​28 present a thorough comparison of conventional         
statistical approaches, traditional machine learning based techniques       
and state-of-the-art deep learning based methods in terms of both          
prediction rates and the identification of SNP associations on a Crohn's           
Disease immunochip dataset. Classification performances of numerous       
methods (Lasso as reference, penalized logistic regression, gradient        
boosted trees, DNNs) were compared and found to be similar for most            
methods (linear and nonlinear) implicating potentially “limited epistatic        

effects in the genetic architecture”​28​. However, when investigating the         
associated genetic regions identified by the different methods, machine         
learning and deep learning based methods were indeed found to provide           
new insights into the genetic architecture of the trait. Romagnoni et al.            
achieved this by applying the concept of explainable AI, which is an            
emerging field of AI that has been gaining importance recently​47​. It           
refers to techniques, which open the so-called “black box” of machine           
learning methods and reveal the processes underlying their decisions so          
that the results can be better understood. The explanation method used           
by Romagnoni et al. - permutation feature importance (PFI) - is a            
generalized, model-agnostic approach and more sophisticated methods       
specifically tailored to DNNs are available. To the best of our           
knowledge, deep Taylor based explanation techniques​48 have not yet         
been applied in the field of GWAS and we propose to adopt layerwise             
relevance propagation (LRP)​49,50 for the analysis of such data. LRP is a            
direct way to compute feature importance scores and has been applied           
very successfully in numerous data science problems to explain         
decisions of DNNs ​51,52​. Instead of basing the importance score of a SNP            
on the data of that SNP alone, correlation structures and possible           
interactions are automatically taken into account. 
To make LRP applicable as an explanation method for GWAS data, we            
use a very promising, well performing machine learning based method,          
called COMBI ​31​, as a starting point for our deep learning based           
approach. COMBI is a two-step method, which first calculates a          
relevance score for each SNP by training a support vector machine           
(SVM) ​53 for the classification of subjects based on their genetic profile.           
Using the learned SVM weights as an indicator of importance, COMBI           
selects the highest scoring SNPs as a subset to put into multiple            
hypothesis testing. This approach was shown to outperform other         
combinatorial approaches and a number of purely statistical analysis         
tools. The method we propose here can be viewed as an extension of the              
COMBI method​31 replacing the rather simple prediction step of an SVM           
with a more sophisticated deep learning method and using the concept           
of explainability to extract SNP relevance scores via LRP.  
We propose a deep learning based approach for the identification of           
SNP phenotype associations and call the novel method DeepCOMBI         
(See ​Figure 1​). The three step algorithm consists of  
 

1. a deep learning step where we train a DNN for classifying           
individuals based on their SNP data; 

2. an explanation step where we calculate SNP relevance scores         
by applying LRP and reduce the number of SNPs by selecting           
only the most explanatory SNPs; and 

3. a statistical testing step where only the SNPs selected in step           
2 are tested for statistically significant association with the         
trait under investigation. 

 
The main motivation behind DeepCOMBI is to harness the immense          
potential of sophisticated, state-of-the-art artificial intelligence (AI)       
methods to examine complex and potentially nonlinear structures in         
high-dimensional data by applying the concept of DNNs to GWAS in           
the first step of the algorithm. Subsequently, in step 2, DeepCOMBI           
identifies a set of SNPs that have high effects on the classification result             
of the DNN (either individually or in combination with other SNPs and            
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not due to correlation structures) by calculating an explanation score for           
each SNP which reflects its contribution to the final classification          
decision. The third and last step assigns individual ​p​-values to all           
selected SNPs and quantifies its relevance with a permutation based          
significance threshold. 
 

 
Figure 1. Overview of the DeepCOMBI method.​ Receiving genotypes 

and phenotypes of a GWAS as input, the DeepCOMBI method first 
applies a deep learning step to train a DNN for the classification of 

subjects. Afterwards, in the explanation step, it selects the most relevant 
SNPs by applying LRP to calculate relevance scores for each SNP. 
Finally, for this set of most relevant SNPs, DeepCOMBI calculates 

p​-values and corresponding significance thresholds in a statistical testing 
step. This figure is an adjusted version of Figure 1 in Mieth et al.​31 

 
 
Figure 1 gives an overview of the overall workflow of the           
DeepCOMBI method, which is described in detail in the ​Methods          
Section​. DeepCOMBIs performance on both controlled generated       
datasets as well as on a 2007 GWAS dataset of seven common            
diseases​14 is presented in the ​Results Section. We show that          
DeepCOMBI compares favorably to a number of competitor methods in          
terms of both classification accuracy as well as SNP association          
prediction when validated with all associations reported within the         
GWAS catalog accessed in 2020. A thorough discussion of the results           
and all related machine learning work is given in the Discussion           
Section. ​An implementation of the DeepCOMBI method in Python is          
available on github at https://github.com/AlexandreRozier/DeepCombi. 

Methods 
The proposed method applies deep learning and the concept of          
explainable AI to GWAS data and enables the identification of SNPs           
that are associated with a given trait with statistical significance. A           
graphical representation of the method is given in ​Figure 1 ​. The method            
is based on a deep learning step that trains a DNN for the classification              
of GWAS subjects into their respective phenotype class. Using LRP as           
a post-hoc explanation method, we access the relevances of all SNPs           
regarding each individual classification result. The obtained SNP        
relevance scores are used to select the subset of most important SNPs to             
test for association in the final multiple testing step. 
 
In the following sections we describe the statistical problem, which is           
investigated in a GWAS, present the proposed method in detail and           
specify the experimental setup of performance assessments on        
generated synthetic data and a real-world application of a known          
GWAS dataset. 
 
Problem setting 
A GWAS investigates the observed genotypes      

of ​d SNPs and ​n subjects labelled with the  x = x( ij)1≤i≤n,1≤j≤d
∈ ℜ

n×3d           

corresponding phenotypes . Both the genotypic  y = (y , , )1 … yn     
information in SNP of subject ​i and the phenotypes are encoded in a   j            
binary way, where represents the   xij ∈ {(1, , ) }0 0 , (0, , )1 0 , (0, , )0 1    
number of minor alleles and is the binary label separating     yi ∈ {0, }1      
controls from cases. The null hypothesis of a conventional single locus           
test is that there is no difference between the trait means of any             
genotype group, which would indicate that the genotype at SNP ​j ​is            
independent of the phenotype under investigation​54​. Via a chi-square         
test RPVT calculates a ​p​-value for each SNP ​j and declares it    p j        
significantly associated with the phenotype if . The threshold     p j ≤ t*    t*

has to be chosen carefully as the significance level α in the case of a               
single test and adjusted if multiple tests are being conducted to bound            
the family-wise error rate (FWER), i.e. the probability of at least one            
false positive test result, to α. Bonferroni correction is the most           
straightforward way to take multiplicity into account by setting         

.​61t* = d
α  

The individual RPVT ​p​-value for association of the ​j​-th SNP only           
depends on and thus disregards any possible correlations and  x j*         

interactions with other SNPs. Additional information can be yielded by          
applying machine learning based prediction methods which use the         
information of the whole genotype and calculating ​p ​-values only for the           
SNPs that were of importance in the decision process of such machines. 
 
DeepCOMBI 
Combining the concepts of DNNs, explanation methods and statistical         
testing, we propose a novel algorithm consisting of the following three           
steps: 

1. Deep learning: ​Given the genotypes and the      x = x( ij)   

corresponding phenotypes of a GWAS - a DNN is  y = (y )i        
trained for phenotype prediction. 
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2. Explanation and SNP selection: A subset of SNPs is         
selected by applying LRP as an explanation method for each          
individual prediction and averaging the absolute values of the         
resulting explanations to compute global prediction relevance       
scores . The relevance scores are processed through , ,r1 … rd        
a moving average filter with window size ​l ​and given a           
predefined upper bound for the number of   ∈k {1, , }… d      
informative SNPs, we select the ​k most relevant SNPs based          
on ​r ​. 

3. Statistical testing: ​A hypothesis test is performed for all         
SNPs selected in the previous step to compute ​p ​-values of          
those SNPs, while the ​p​-values of all other SNPs are set to            
one. Via a permutation based threshold calibration and given         
a FWER level , we decide that SNP ​j ​is associated with the   α           
trait if , where is chosen as the α-quantile  pj < t*   t* ≡ t* (k, )α       
of the permutation distribution of the ​k ​smallest ​p​-values. 

 
The proposed algorithm can be viewed as an extension of the COMBI            
method​31​, a two-step method including an SVM step and a statistical           
testing step. We replace the former with state-of-the-art deep learning          
methods and explanation techniques.  
The above steps are presented in detail in the following sections. 
 
The first step of DeepCOMBI - Deep learning 
The first step of the proposed method consists of constructing and           
training a well-performing DNN for the prediction of the phenotypes          

of a GWAS given the corresponding genotypes .y = (y )i         x = x( ij)  

Selecting a DNN architecture is often critical for achieving good          
performance for a specific - in this case SNP-based - classification task.            
Montaez et al.​43 developed a 2-class DNN for the classification of           
polygenic obesity and have successfully shown its performance to be          
superior to numerous competitor methods. Romagnoni et al.​28 have         
compared the performance of similar architectures and have presented a          
detailed review of the best design choices for a DNN on a Crohn's             
Disease dataset. Taking inspiration from the conclusions of both of          
these works and having checked performances on synthetic datasets, we          
use an architecture of two fully connected layers with 64 neurons and            
ReLU activations and a dense softmax output layer with two output           
nodes. To improve validation accuracy by reducing overfitting, each         
hidden layer is followed by a dropout layer with a dropout probability            
of . ϕ  
The loss function to be optimized in the training process is based on the              
classic cross entropy loss. To guarantee good generalization to unseen          
samples and avoid overfitting despite the large number of model          
parameters, the binary cross entropy loss is coupled with an L1-L2           
mixed regularization term: 

oss og(y ) 1 ) og(1 ))l = ∑
 

i
(yi * l i

︿ + ( − yi * l − yi
︿ + τ * ∑

 

j
w|

|
|
| j

|
|
|
|1 + υ * ∑

 

k
w|

|
|
| k

|
|
|
|2  

with being the ground truth label, the predicted class which yi      yi
︿      

depends on the learned parameters ​w of the DNN and the          ,τ υ > 0   
regularization parameters. This loss function guarantees that the        
network avoids overfitting by minimizing the trade-off between small         
errors on the data on the one hand and small L1 and L2 norms of the                

vector ​w on the other hand. Adam​55 is used as an adaptive learning rate              
optimizer to minimize the given loss function. 
To overcome limitations due to imbalanced datasets, class weights were          
calculated according to the class frequencies and used to direct the           
DNN to balance the impact of controls and cases. 
 
Once the parameters ​w ​of the DNN ​have been trained by optimizing the             
above learning problem the network is able to predict the phenotype of            
any unseen genotype ​x​. Regarding this binary classification problem,         
the output node with the highest score represents the predicted          
phenotype.  
 
In a preprocessing step the data is centered and scaled by subtracting the             
global mean and dividing by the global standard deviation. To minimize           
computational effort and limit the number of model parameters in the           
DNN a ​p​-value threshold can be applied in order to only select SNPs    κ           

with ​p​-values smaller than  to be used for training.κ   
 
The second step of DeepCOMBI - Explanation and SNP selection 
To harness the potential of DNNs in the identification of SNP disease            
associations in GWAS we now apply the concept of explainable AI.           
Once the DNN is fully trained, the aim is to define an importance             
measure that determines which loci play an important role in the           
determination of a phenotype. Generating relevance scores from trained         
DNNs can be achieved by using LRP ​48,49,50 , which consists of the            
following two steps: After a DNN ​f is trained on a prediction task, the              
prediction scores of a datapoint are computed by , a     xi     (x )f i = yi   
forward pass through the network. Afterwards, following a specific         
propagation rule, a single output score, i.e. the highest output score,           yi  
is backpropagated successively layer-by-layer through the network until        
reaching the input layer. In this work, we use the - LRP rule, where          βα     
the relevance of neuron ​s in layer ​q depends on the relevance of  Rs

(q,i)             
all of its successors ​t ​ in layer ​q+1​ in the following way: 

,(α )Rs
(q,i) = ∑

 

t
 (a w )s st

+

∑
 

s
(a w )s st

+
− β (a w )s st

−

∑
 

s
(a w )s st

−
× Rt

(q+1,i)   

where ​denotes the activation of neuron ​s ​, and is the weight as         wst     
between the two neurons ​s and ​t​. This rule allows us to weigh the              
positive and negative contributions of neurons ​t to their predecessor ​s           
differently by  and .α β  
Once the input layer is reached, a relevance score of    R(0,i)

∈ ℜ
3 d*       ρij   

SNP ​j in subject ​i is attributed to each dimension of with           xi  

. Since the original relevance vector contains3  ρij = (∑
 

u
Ru

(0,i)) /       R(0,i)   

three values for each one hot encoded location, it is converted back to             
size ​d by averaging over the three nodes        

corresponding to SNP j in the(j ) , (j ) , (j )}u∈ { × 3 − 2  × 3 − 1  * 3        
input layer.  
Note, that all relevance scores will be positive, since a softmax     ρji        

output layer with two output nodes for the binary classification problem           
was used and only the highest of the two output activations was            
backpropagated. 
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now demonstrates to which extent the dimension ​j ​of plays a ρij           xi    

role in the classification decision and can be used to uncover the     (x )f i         
most relevant SNPs for prediction. Note however, that LRP is applied           
individually to each datapoint ​i​. By averaging the values of all           
individual LRP explanations of SNP j we propose to generate a   ρij          

global explanation , which is independent of data  n  rj = (∑
n

i=1
ρij) /        

points. The relevance scores of one sample sum up to the activation            
value of the output prediction, which means that data points classified           
with low certainty will also have a small impact on the global            
explanation. Intuitively, the global LRP score ​r ​j of each SNP ​j can now             
be interpreted as a measure of relevance regarding the prediction. The           
higher ​r ​j​, the greater the influence of locus ​j on the decision process of              
the DNN.  
To achieve better performance, Mieth et al.​31 suggested that SNP          
relevance scores should be filtered before using them to select the           
highest scoring locations. Hence, the LRP relevance score vector ​r ​is           
post-processed through a ​p-​th-order moving average filter, that is: 

 . ∶  rj
new =  √p ∑

min(d,j+(l−1)/2)

h=max(1,j−(l−1)/2)
(r )h

p   

where denotes the window size ​l and . We have ∈1, ,l … d        ∈]0, [p ∞    
now generated relevance scores showing which SNPs played an         
important role in the classification decision and can use them for the            
selection of promising locations. For the next step of DeepCOMBI we           
choose to test all SNPs with the ​k largest values of the scores and             rj

new   

eliminate all SNPs with lower relevance. 
 
The third step of DeepCOMBI - Statistical testing 
The Statistical testing step of the DeepCOMBI method is directly          
derived from the second step of the COMBI method​31​. A hypothesis          χ2  
test is performed for each of the ​k SNPs selected in the LRP explanation              
step and the ​p ​-values for all other SNPs are set to one. To identify              
statistically significant associations, a ​p​-value threshold is calibrated      t*    
to control the ​FWER for multiplicity by applying the permutation          
procedure proposed by Mieth et al.​31 ​. They developed an extension of            
the Westfall and Young procedure​56​. A thorough discussion and         
derivation of the method, its assumptions and validity generally and in           
this specific application can be found here​56,57,58 and here​31​, respectively.          
We estimate the distribution of p​-values under the global null          
hypothesis of no informative SNPs by repeatedly assigning a random          
permutation of the phenotypes to the observed genotypes and applying          
the complete workflow of the DeepCOMBI method to save the resulting           
p​-values of the ​B Monte Carlo repetitions​31​. “The empirical lower          α
-quantile of the smallest of these p ​-values is then a valid choice for             t*  
in the sense that the ​FWER for the entire procedure is bounded by ”​31​.             α  
In contrast to the Bonferroni threshold calibration this procedure takes          
all dependencies in GWAS datasets caused by strong linkage         
disequilibrium (LD) into account. 
 
Baselines 
In order to evaluate the performance of the proposed DeepCOMBI          
method in comparison to competitor approaches, we select a set of           

representative baseline methods. RPVT is chosen as the most widely          
used traditional, purely statistical testing approach. As a machine         
learning based method and the methodological background of        
DeepCOMBI we select COMBI as the main competitor method we aim           
to succeed in terms of performance. Since the COMBI method was           
shown to outperform other combinatorial machine learning based        
approaches (Roshan et al.​6​, Meinshausen et al.​58 ​and Wasserman and          
Roeder​59​) and a number of purely statistical analysis tools (Lippert et           
al.​21,27​) on the same datasets evaluation methods used here, there is no            
need to compare to those methods again. 
 
RPVT as  baseline 
Raw ​p​-value thresholding (RPVT) is a statistical framework        
traditionally used in GWAS for identifying significant associations        
between SNPs and traits. The single locus null hypothesis to be tested            
states that the SNP at locus j is independent of the binary trait of              
interest, i.e. that there is no correlation between this particular SNP and            
the development of the disease under investigation. A standard         
statistical test for this hypothesis is the -test​60​, which tests for       χ2     
independence of the two multi-level variables genotype (three different         
levels: 0, 1 or 2 minor alleles) and phenotype (two different levels: case             

or control) by calculating the test statistic where       χ︿2 = ∑
 

ζ,π
Eζ,π

(O −E )ζ,π ζ,π
2

 Oζ,π  

and are the observed and expected frequencies of genotype in Eζ,π          ζ   

combination with phenotype . To compute a ​p​-value is then   π      χ︿2   
compared to a distribution with two degrees of freedom and   χ2        
represents the probability of observing a sample statistic as extreme as           

under the assumption of no association between genotype andχ︿2          
phenotype. If the ​p ​-value is smaller than a predefined threshold the          t*   
null hypothesis is rejected and we declare the SNP under investigation           
to be significantly associated with the phenotype. If there was a single            
test to perform would usually be equal to the significance level   t*          

. When performing multiple testing, however, the threshold is.05α = 0          
modified to take the multiplicity of the problem into account. The           
simplest method is the so-called Bonferroni correction​61​, where is        t*   
divided by the number of tests performed, i.e. ​d​, the number of SNPs in              
our case, which guarantees that the FWER, the probability of one or            
more erroneously reported associations, is bounded by α. The         
Bonferroni correction works well under the assumption that all null          
hypotheses are independent of each other, which is not the case here.            
Indeed, since SNPs show high degrees of correlation through LD, the           
Bonferroni correction can become extremely conservative leading to a         
high rate of false rejections, which is why the scientific community           
mostly applies a fixed threshold that remains constant for multiple          
GWAS. Here, based on the original publication of the data we are            
analyzing (WTCCC data, see the ​Methods Section ​on validation         
datasets​14​) and the findings of Mieth et al.​31​, we present not only the             
strong associations at a significance level of but also weak       t* = 5x10−7     
associations at .t* = 1 0× 1 −5   
 
COMBI as baseline 
The COMBI method​31 combines machine learning with multiple        
hypothesis testing to improve the statistical power of GWAS. It is a            
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two-step method including the training of a SVM ​53 and using the           
resulting SVM weights as importance scores to select a subset of           
candidate SNPs for statistical testing. In the first step of COMBI an            
SVM for the prediction of the unknown phenotype based on the        y     
observation of genotype is trained to determine the weight vector ​w.   x          
The following optimization problem is solved: 

, ax )argmin (‖w‖w
2
2 + C ∑

n

i=1
m (0, w x )1 − yi

T
i*  

where ​C is the regularization parameter that controls the trade-off          
between a small norm of ​w and a small prediction error of the machine.              
After training, the weight vector ​w is filtered and interpreted as an            
importance score to determine which loci play an important role in the            
decision process of the SVM. A test is performed only on the SNPs      χ2         
with the highest scores while all other ​p ​-values are set to one. The same              
permutation test procedure as described in the ​Methods Section ​about          
the multiple testing procedure of DeepCOMBI is applied to define a           
significance threshold .t*  
 
Raw SVM weights and LRP scores without statistical testing as baselines 
Instead of interpreting the SVM weights from COMBI and the LRP           
scores from DeepCOMBI as relevance scores to select a subset of SNPs            
to calculate ​p​-values for, this step can be skipped to use the raw SVM              
and LRP scores as a test statistic. For evaluation the vector of raw SVM              
weights and LRP scores can be treated like the vector of ​p​-values of             
RPVT, COMBI and DeepCOMBI to calculate performance curves. We         
compare DeepCOMBI to these baseline methods of raw relevance         
scores and RPVT to show that only the combination of machine           
learning / deep learning and multiple testing show the desired          
performance increase which cannot be achieved individually by one of          
the components. 
 
Validation datasets 
 
Validation on generated datasets 
To create a realistic but controlled environment where the ground truth           
labels of a dataset, i.e. the SNPs that are indeed linked to the disease,              
are known, we generate semi-synthetic data for a first evaluation of           
DeepCOMBI and the baseline methods from above. We follow the          
instructions for the creation of such GWAS datasets proposed by Mieth           
et al.​31 The basic concept is to take an ensemble of real genotypes and              
generate a synthetic phenotype for each subject according to a specific           
rule. With this method, the underlying architecture of the genome,          
including for example genetic LD and correlation structures, is kept          
intact while control over the phenotypic labels is gained at the same            
time.  
We use the WTCCC dataset​14 described in more detail below and           
randomly select 300 subjects of the Crohn's disease dataset. We draw a            
random block of 20 consecutive SNPs from chromosome 1 and a           
random block of 10,000 consecutive SNPs from chromosome 2. The          
former are representing the informative SNPs and are placed in the           
middle of the 10,000 uninformative SNPs. Synthetic phenotypes are         
now generated only based on one of the informative SNPs (at position            
5010) according to the following phenotype probability distribution: 

 P Y |X( i =  + 1 i,* = xi,*) = 1 xp( + e −( γ x edian( i,5010 − m x( ,5010* ))))−1
 

where is an effect size parameter, is the allele sequence in γ       xi,*       

nominal feature encoding (i.e. is the number of minor alleles in SNP    xij          
of subject ) and is the generated phenotype of subject i​. Basingj    i   Y i          

the label of a subject on the SNP at position 5010 alone, will create              
associations to all 20 informative SNPs and typical tower shaped          
p​-value formations in the resulting Manhattan plots, because there are          
real covariance structures and LD within the 20 informative SNPs. At           
the same time the tower structure is limited to those 20 informative            
positions, because there are no correlations of those 20 SNPs with the            
surrounding 10,000 noise SNPs coming from chromosome 2. The         
random generation process will also ensure that the datasets will have           
associations of different strengths to the 20 informative SNPs. The          
complete data generation process is repeated to generate 1,000 datasets.          
DeepCOMBI and all baseline methods are applied to each dataset with           
an 80:20 class balanced split in training and test data. The prediction            
results on the test data are evaluated with the known ground truth of             
only 20 informative SNPs at the positions 5000 to 5020 and the            
corresponding performance can be measured in terms of the number of           
true and false positives for each method.  
 
Validation on WTCCC data 
For evaluation on real-world genomic data the performance of         
DeepCOMBI was assessed on the Wellcome Trust Case Control         
Consortium phase 1 dataset, released in 2007​14 featuring the genotypic          
information on 500,000 SNPs of 17,000 British subjects. With 3,000          
shared controls and 2,000 case samples for seven major human diseases           
(Crohn’s disease (CD), type 1 diabetes (T1D), type 2 diabetes (T2D),           
coronary artery disease (CAD), hypertension (HT), bipolar disorder        
(BD) and rheumatoid arthritis (RA)) it was a landmark study both in            
terms of sample size and dimensionality at the time of its publication.            
For our analysis a case-control dataset for each disease was created           
removing all SNPs and samples that did not fulfill the quality control            
criteria provided in the original WTCCC paper.  
In agreement with the lack of inter-chromosomal LD and Mieth et al.​31            
who showed no significant performance increase with genome wide         
training, the DeepCOMBI method and all baseline methods were         
applied to each chromosome separately.  
For evaluation purposes the concept of replicability was applied based          
on Mieth et al.​31​. Since the true underlying genetic architecture of the            
given traits, i.e. the sets of informative SNPs for each disease are            
unknown, an approximation of the truth was created by employing the           
GWAS catalog​62 and examining the results of the 13 years of           
independent studies after the WTCCC dataset was published. To         
evaluate the reported finding of a method (DeepCOMBI or competitor)          
the GWAS catalog (accessed on July 30, 2020) is inquired for that SNP             
and all SNPs in LD ((R​2​>0.2) according to PLINK LD calculations​63​)           
within a 200kb window around that SNP. If an association with the            
disease with ​p ​-value <10​-5 of the SNP itself or the SNPs in LD ​was               
reported by at least one independent GWAS published after the          
WTCCC study, the reported SNP is counted as a true positive finding.            
In contrast, all SNPs that were not replicated count as false negatives. 
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Parameter selection 
The application of DeepCOMBI requires the determination of a number          
of free parameters. In the following sections we present the selected           
optimal parameter values and describe the process of finding them for           
the different datasets under investigation. 
 
Parameter selection on generated datasets 
For the generation process of semi-synthetic datasets all parameters         
were selected according to the information given in Mieth et al.​31​. Most            
importantly, the effect size parameter was set to .γ = 6   
When applying the DeepCOMBI method to the generated datasets, we          
studied the effect of all hyperparameters on the performance of the           
DNN. An accuracy based random grid search with a stratified split in            
90% training and 10% testing data was conducted. Here, we present the            
selected most successful values and the investigated parameter intervals         
in parentheses: 
 

● number of neurons per dense hidden layer nn = 64 [2, 4, 8, 16,              
64], 

● L1 regularization coefficient [0, 1e-6, 1e-5, 1e-4,   .0001τ = 0      
1e-3,1e-2, 1e-1], 

● L2 regularization coefficient [0, 1e-6, 1e-5,   .000001υ = 0     
1e-4, 1e-3,1e-2, 1e-1], 

● dropout rate [0.3, 0.5],.3  ϕ = 0  
● learning rate with learning rate reduction on plateau  .01η = 0        

with factor 0.7125 after 50 epochs of no improvement, 
● number of epochs e = 500 [100, 500, 1000]. 

 
A few different parameter values of the - backpropagation rule were      βα     
manually investigated on exemplary datasets. By visually inspecting the         
resulting LRP vectors and their corresponding DeepCOMBI ​p ​-values        
the combination of [0, 1, 2] and [0, 1, 2] was found to be   α = 1      β = 0         
best. 
For post processing the global relevance scores and selecting the most           
relevant SNPs, we assumed that the most successful values found by           
Mieth et al.​31 would also be a good choice for our method. Hence, we              
set the window size of the moving average filter to ​l = 35, the norm               
parameter of the moving average filter to ​p = 2 and the SNP selection              
parameter to ​k = 30. These values were found to be in agreement with              
the biological background of the data, e.g. ​l = 35 reflects the reach of              
LD along a genetic sequence.​31 

 

Parameter selection on WTCCC data 
To choose hyperparameters for the DNN trained on WTCCC data in the            
first step of DeepCOMBI, a parameter search was run on a single            
dataset. The Crohn's disease chromosome 3 dataset was selected as a           
good representative and an accuracy based parameter search with a          
stratified split in 90% training and 10% testing data was conducted. We            
studied the effect of the hyperparameters on the performance of the           
DNN and the best performing hyperparameters were as follows (tested          
intervals in parentheses): 

● number of neurons per dense hidden layer nn = 64 [2, 4, 8, 16,              
64], 

● L1 regularization coefficient [0, 1e-6, 1e-5, 1e-4,   .001τ = 0      
1e-3,1e-2, 1e-1], 

● L2 regularization coefficient [0, 1e-6, 1e-5, 1e-4,   .0001υ = 0      
1e-3,1e-2, 1e-1], 

● dropout rate [0.3, 0.5],.3  ϕ = 0  
● p ​-value threshold = 1e-2 [1e-4, 1e-2, 1],κ   
● learning rate [1e-7, 1e-6, 1e-5, 1e-4, 1e-3,1e-2,  .00001η = 0       

1e-1], 
● number of epochs ​e​ = 500 [100, 500, 1000]. 

 
Detailed results on the classification performance of the final training          
parameter settings can be found in the ​Results Section ​. 
As before, we visually investigated a few different parameter values of           
the - backpropagation rule and their influence on both the resulting βα           
relevance scores and ​p​-values. On the Crohn’s disease chromosome 3          
dataset the combination of [0, 1, 2] and [0, 1, 2] was found    α = 2      β = 1       
to be optimal. 
After manually investigating the global LRP scores and the         
corresponding DeepCOMBI ​p-​values of the exemplary dataset (Crohn’s        
disease chromosome 3), we found that slightly different settings than          
for the analysis of the generated datasets should be applied for post            
processing the relevance vectors and selecting the most relevant SNPs.          
Namely, the window size of the moving average filter should be set to ​l              
= 21 and the SNP selection parameter should be increased to ​k = 200.              
The need for a decreased filter size and an increased number of selected             
SNPs might be caused by the application of the p​-value based           
pre-selection step for limiting the number of model parameters, which is           
only applied to the real dataset and not the generated datasets.  
To determine the value of the significance level to be used in the        α       
permutation test procedure of the last steps DeepCOMBI, we follow the           
recommendations of Mieth et al.​31 who calculated the empirical         
distribution of ​p​-values using the Westfall-Young​56 procedure and        
determined the error level that the RPVT threshold of         t* = 1 0× 1 −5

corresponds to. For a valid comparison to both the original WTCCC           
study as well as the COMBI publication we employ the same           
significance levels.  
All free parameters of the COMBI method, e.g. the SVM optimization           
parameter ​C ​, were set according to the original COMBI publication​31​.  
 
Performance metrics 
To assess the performance of DeepCOMBI and the baseline methods a           
number of statistical metrics were evaluated. The performances of both          
the intermediate step of classification (of SVMs and DNNs) and the           
final result of predicted informative SNPs need to be explored.  
Assuming we know the ground truth, the metrics are defined as follows:  
  

● TP = True positive; FP = False positive; TN = True negative;            
FN = False negative 

● Accuracy = (TP + TN)/(TP + TN + FP + FN) 
● Balanced accuracy = (TPR + TNR )/2 
● Precision = TP/(TP + FP) 
● True positive rate TPR = TP / (TP + FN) 
● False positive rate FPR = FP / (TP + FN) 
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● Family-wise error rate FWER = P(FP >=1) 
The following performance curves and the area under these curves          
(AUC) will be investigated: 
 

● Receiver operating characteristic curve (ROC) ​: TPR vs. FPR        
or TP vs. FP or ​TPR vs. FWER  

● Precision-recall curve (PR): Precision vs. TPR or Precision        
vs. TP 

 
Implementation details 
The DeepCOMBI method was implemented in Python and the source          
code is available at https://github.com/AlexandreRozier/DeepCombi.     
The implementation uses the DNN development library Keras ​64 in         
combination with the LRP library iNNvestigate​65​. 
 
Results 
In the following section we present the results of the proposed           
DeepCOMBI method evaluated on generated as well as on real world           
data. Performance in terms of both classification accuracy and SNP          
prediction is examined in comparison to a number of baseline methods,           
which are presented in full detail in the ​Methods Section​. As evaluation            
criteria, we report prediction accuracy for the classification step and          
FWER​, precision and ​TPR ​for the SNP selection step. See the ​Methods            
Section ​above for a detailed description of the evaluated performance          
metrics. 
 
Results on generated datasets 
Here, we report our results averaged over the 1,000 data sets generated            
in the simulation process described in the ​Methods Section         
(“Validation on generated datasets”). We show that on these data sets           
DeepCOMBI performs better than the traditionally used method for         
analyzing GWAS, RPVT, and its main competitor, the COMBI method.  
 
Prediction performance on generated datasets 
The first steps of both DeepCOMBI and COMBI consist of training a            
learning algorithm for the classification of all subjects into their          
respective phenotypic group given their genotypic information. Since        
all following steps depend on the performance of these classifiers, high           
prediction accuracy is crucial. On the generated datasets the SVM (as           

part of the COMBI method) achieves 59% accuracy on average and           
54% balanced accuracy. In comparison, the DNN (as part of the           
DeepCOMBI method) performs significantly better with an average of         
74% classification accuracy and also avoids negative effects of         
unbalanced datasets more effectively by applying class weights in the          
DNN training (74% balanced accuracy). Accuracy scores and additional         
information are given in ​Table 1​. Following these promising         
intermediate results, in the next section we investigate whether the          
entire workflow of the DeepCOMBI method can also outperform the          
baselines methods. 
 
SNP selection performance on generated datasets 
To compare the relevance scores and ​p​-values obtained with the novel           
LRP-based method to those derived from the SVM weights in the           
COMBI method we look at three exemplary synthetic datasets and the           
corresponding results (See ​Figure 2​). They can be distinguished by the           
level of association of the 20 informative SNPs (highlighted in pink)           
with the phenotype. In the first column of subfigures the strength of            
association for each replication at positions 5001 - 5020 is shown in the             
corresponding RPVT Manhattan plots. While the first row of subfigures          
represents a replication with very weak associations (small pink tower),          
the second has a moderate association (medium sized tower) and the           
third shows a very strong association (large tower). In the second and            
third column the raw SVM weights and LRP scores are shown. It can be              
seen that LRP yields clearer relevance distributions in comparison to the           
SVM-based method. Even with the huge number of parameters the          
DeepCOMBI models explanation score yields a lot less noise than the           
SVM weights of COMBI. This results in the COMBI method only           
being able to classify the very strong association correctly (third column           
of subfigures), while it misses the weak and moderate ones. In contrast,            
DeepCOMBI is successful for both the second and third replication with           
moderate and strong associations and only misses the very weak          
association (last column of subfigures). Please note that DeepCOMBI         
not only precisely identifies the correct informative tower, but also          
filters out a relatively high noise tower at around position 600 which -             
just by chance - achieved a ​p ​-value . The method thus not only       < 10−5       
increases the probability of finding the correct tower but also, and           
potentially more importantly, decreases the probability of falsely        
selecting a noise tower​31​. 

 
Table 1. Classification performance on generated datasets.  

Summary statistics of the classification accuracy of the SVM (as in the first step of COMBI) and the DNN (as in the first step of DeepCOMBI) are 
presented. Values corresponding to accuracy and balanced accuracy in parentheses are given. 
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 Mean accuracy 
(balanced accuracy) 

Standard deviation of accuracy 
(balanced accuracy) 

Minimum of accuracy 
(balanced accuracy) 

Maximum of accuracy 
(balanced accuracy) 

SVM (as in COMBI) 0.59 (0.54) 0.05 (0.06) 0.41 (0.35) 0.76 (0.71) 

DNN (as in 
DeepCOMBI) 

0.74 (0.74) 0.07 (0.07) 0.55 (0.50) 0.97 (0.98) 
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Figure 2: Three exemplary generated datasets and the corresponding COMBI and DeepCOMBI results. ​We present the results of three exemplary 
replications: one with weak (first row), one with medium (second row) and one with strong (third row) association of the 20 informative SNPs at position 

5001-5020 (highlighted in pink in all subfigures). Standard RPVT ​p-​values are plotted in the first column of subfigures. Absolute SVM weights and 
corresponding ​p-​values of the COMBI method are shown in the second and third column. Finally, LRP relevance scores and the corresponding ​p-​values 

of DeepCOMBI are presented in the fourth and last column. 
 
 

 
Figure 3: ROC and PR curves of DeepCOMBI and all competitor methods on generated datasets. ​Performance curves of all methods averaged 

over the 1,000 generated datasets are shown. ROC curves are presented on the left and PR curves on the right side.  
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To investigate whether these exemplary findings represent a general         
trend, we now examine the results of all competitor methods averaged           
over all 1,000 generated datasets. In ​Figure 3 ​the corresponding ROC           
and PR curves are shown. In both subfigures and for all levels of error              
and detection rates DeepCOMBI (pink line) consistently outperforms        
RPVT (light blue line) and COMBI (dark blue line) in terms of power             
and precision. The combinatorial approaches, DeepCOMBI and       
COMBI, also perform better than their individual components of a          
machine learning algorithm (SVM or DNN with LRP) and a multiple           
testing step (RPVT). This can be deduced from the fact that RPVT as             
well as the other two baseline methods of directly thresholding the raw            
LRP scores (dashed pink line) and SVM weights (dashed dark blue line)            
separately cannot achieve the same performance as their combinations         
(i.e. DeepCOMBI and COMBI).  
 
Results on WTCCC data 
 
Prediction performance on WTCCC data 
In the first step of DeepCOMBI a DNN is trained and we investigate its              
performance on all diseases and chromosomes. ​Figure 4 shows that the           
DNN of DeepCOMBI performs consistently better than the SVM of          
COMBI in terms of all four validation metrics described in the           
Methods Section ​under “Performance metrics”. 
 

 
Figure 4. Classification performance on WTCCC data. ​Mean 

validation measures of SVM (as in the first step of COMBI) and DNN (as 
in the first step of DeepCOMBI) averaged over all diseases and 

chromosomes are given with standard deviation. All datasets were split 
into 80% training and 20% validation data. 

 
SNP selection performance on WTCCC data 
In Figure 5 we present the results of the traditional RPVT approach, the             
COMBI method and the DeepCOMBI applied to the seven diseases of           
the WTCCC 2007 dataset. In each corresponding Manhattan plot the          
negative logarithmic ​p​-values of all SNPs at a given position in a            
chromosome are shown. While RPVT assigns ​p​-values smaller than one          
(i.e. nonzero in the plots on logarithmic scale) to all SNPs and in             

consequence produces a lot of statistical noise, both COMBI and          
DeepCOMBI discard most SNPs (i.e. assign ​p​-value one, i.e. zero in the            
plot on logarithmic scale) and hence reduce the level of noise           
significantly. The COMBI method selects 100 SNPs with high SVM          
weights per chromosome and DeepCOMBI chooses 200 SNPs with         
high LRP scores. In all plots the significance threshold is represented         t*    
by dashed horizontal lines and all statistically significant SNP         
associations are highlighted in green. Please note, that in the case of            
RPVT the threshold is constant at (i.e. 5 in the plot) for all      t* = 1 0× 1 −5         
chromosomes. A chromosome wise threshold was generated for both         
COMBI and DeepCOMBI via the permutation based procedure        
described in the ​Methods Section ​to match the expected number of           
false rejections of RPVT. 
 
All SNPs reaching statistical significance in the permutation-based        
thresholding procedure of the DeepCOMBI method are presented in         
Table 2 ​. Besides showing basic information (associated disease,        
chromosome, identifier and χ​2 ​p​-value) for all of these SNPs, the fifth            
and sixth column indicate whether they were found to be significant by            
RPVT with the application of or by the COMBI method. To     t* = 10 

−5        
validate all findings, the seventh and eighth column report whether -           
and if so in which external study - they have been found significantly             
associated with the given disease according to the GWAS catalog. By           
investigating whether the identified SNPs were discovered as significant         
in an independent GWAS published after the original WTCCC study it           
can be determined to which extent those novel findings can be           
confirmed to be true associations. 
The DeepCOMBI method finds 39 significant associations. According        
to the fifth column of ​Table 2 31 of these SNPs were also discovered by               
the traditional RPVT approach, because they have ​p ​-values <10​-5​. The          
other 8 of those 39 SNPs have ​p​-values >10​-5 and were hence not              
determined to be associated with the disease with RPVT in the original            
WTCCC publication. They are of special interest, because they         
represent additional SNP disease associations which the traditional        
analysis of the data was not able to identify. Out of these 8 novel              
discoveries, 6 have been validated independently in later GWAS or          
meta analyses: rs7570682 on chromosome 2 and rs1375144 on         
chromosome 2 for bipolar disorder; rs6907487 on chromosome 6 for          
coronary artery disease; rs12037606 on chromosome 1 for Crohn’s         
disease; rs231726 on chromosome 2 for type 1 diabetes and rs6718526           
on chromosome 2 for type 2 diabetes.  
 
 
 
 

 
Figure 5. (next page) Manhattan plots for WTCCC data. ​The negative 

logarithmic test ​p​-values are plotted against position on each χ2  
chromosome for all seven diseases. Results from the standard RPVT 

approach, the COMBI method and the DeepCOMBI method are shown. 
Thresholds indicating statistical significance are represented by dashed 
horizontal lines and significant ​p​-values are highlighted in green. Please 
note that the y-axes of all plots have the same limits (0 to 15) to enable 

direct comparison. 
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On the other side, 2 out of the 8 novel DeepCOMBI SNPs with ​p​-values              
> 10​-5 have not yet been replicated in any independent GWAS or meta             
analyses. They have also not been identified by the COMBI method.           
Those entirely novel DeepCOMBI discoveries are rs10889923 on        
chromosome 1 for hypertension and rs4769283 on chromosome 13 for          
type 1 diabetes. To determine whether those two SNPs are biologically           
plausible discoveries for an association with the respective disease, their          
genomic regions were investigated in terms of functional indicators.         
Strong evidence of potential functional roles in the diseases were found.  
Firstly, rs10889923 maps on an intron for ​NEGR1 ​(neuronal growth          
receptor 1), a very important gene many times linked to obesity, body            
mass index, triglycerides, cholesterol, etc. and many other phenotypes         
highly correlated with hypertension​66,67,68​. Even though ​NEGR1 ​has        
been associated with many phenotypes in the GWAS Catalog, no          
GWAS has yet been able to directly link it to hypertension. Furthermore            
rs10889923 is part of a high LD region (according to LDmatrix Tool​69​)            
with variants that have been reported to be significantly associated with           
a number of psychiatric disorders and phenotypes, e.g. educational         
attainment (in Lee et al.​17 ​rs12136092 with ​p​-value and a        e< 1 −11    
degree of LD to rs10889923; rs11576565 with ​p ​-value   .86R2 = 0       

and ). This link suggests a potential connectione< 1 −8   .63R2 = 0        
between hypertension and related phenotypes with mental traits.        
rs10889923 can thus altogether be considered an excellent candidate for          
association with hypertension.  
Secondly, rs4769283 on Chr. 13 lies in an intergenic region very close            
to a gene called MIPEP (Mitochondrial peptidase) which cannot be          
directly linked to T1D, but is reported as a significant eQTL (expression            
quantitative trait locus) for two other genes, namely C1QTNF9B and          
PCOTH ​70​. Thus, MIPEP and therefore rs4769283 significantly control        
expression levels ​of ​mRNAs from these two genes in a particular tissue.            
Most remarkably, rs4769283 is a significant eQTL (with ​p​-value         

) for C1QTNF9B (Complement C1q And Tumor Necrosis.1e= 1 −6         
Factor-Related Protein 9B) in (amongst several other tissues) the         
pancreas, which produces very little or no insulin in T1D patients. So            
even though the association of rs4769283 with Type 1 diabetes is not an             
obvious one, it is indeed an interesting novel discovery of the           
DeepCOMBI method.  
 

 
Table 2: Significant SNPs of the DeepCOMBI method and related association details. ​For each SNP identifier on a specific chromosome that was 

found to be significantly associated with a disease by the DeepCOMBI method, we show their χ​2​ test ​p ​-value and indicate whether the RPVT ​p​-value is < 
10​-5​ (i.e. the SNP is a significant finding of RPVT), whether its COMBI ​p​-value is smaller than the corresponding COMBI threshold (i.e. the SNP is a 

significant finding of the COMBI method) and whether the SNP has been found significant with a ​p​-value < 10​-5 ​in an external study with a corresponding 
PMID. Please note that the RPVT result in the fifth column corresponds to the χ​2 ​p​-values we have calculated here, not necessarily to the original 

WTCCC publication, where they also investigated trend test​ p​-values and potentially applied slightly different pre-processing steps. Similarly, the COMBI 
result in the sixth column corresponds to the re-calculations of COMBI we performed here, not necessarily to those of the original COMBI publication 

where slightly different results were produced due to the random nature of the permutation procedure. 
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Disease Chromosome Identifier χ​2 ​p​-value 
Significant 

in RPVT 
Significant 
in COMBI 

p​-value < 10​-5 ​in at least one
external GWAS or 

meta-analysis 

References 
(PMID) 

Bipolar disorder (BD) 
  

2 rs7570682 1.77e-05  YES YES 21254220 
2 rs1375144 1.26e-05  YES YES 21254220 
3 rs514636 2.53e-06 YES YES YES 21254220 

16 rs420259 5.87e-08 YES YES YES 21254220 
Coronary artery disease 

(CAD) 
6 rs6907487 2.92e-05   YES 17634449  
9 rs1333049 1.12e-13 YES YES YES 17634449 

16 rs8055236 5.32e-06 YES YES    
22 rs688034 2.75e-06 YES YES    

Crohn‘s disease (CD) 
  
  
  
  
  
  
  
  

1 rs11805303 6.35e-12 YES YES YES 17435756 
1 rs12037606 1.02e-05   YES 17554261 
2 rs10210302 4.52e-14 YES YES YES 23128233 
3 rs11718165 2.04e-08 YES YES YES 21102463 
5 rs6596075 3.11e-06 YES YES    
5 rs17234657 2.42e-12 YES YES YES 18587394 
5 rs11747270 1.05e-06 YES YES YES 18587394 
7 rs7807268 5.43e-06 YES  YES 26192919 

10 rs10883371 5.23e-08 YES YES YES 21102463 
10 rs10761659 1.69e-06 YES YES YES 22936669 
16 rs2076756 7.55e-15 YES YES YES 21102463  

Hypertension (HT) 1 rs10889923 1.38e-05      
15 rs2398162 6.01e-06 YES     
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To present a more condensed view of these discoveries Table 3           
summarizes the findings of the three competitor methods, RPVT,         
COMBI and DeepCOMBI. When no screening step is conducted and          
RPVT ​p​-values are calculated for all SNPs, 68 locations with ​p < 10​-5             
were identified as significant RPVT hits. COMBI and DeepCOMBI         
both apply a learning based SNP preselection step and thus, find fewer            
significant associations. The DNN based approach to this is seen to be            
more conservative than the SVM based one with only 39 identified           
locations of DeepCOMBI in comparison to 53 findings of the COMBI           
method. Even though the DeepCOMBI method finds fewer significant         
SNPs, the number of independently replicated SNPs of DeepCOMBI (=          
31 replicated SNPs, yielding a precision of 79%) is identical to that of             

COMBI (31, precision = 58%) and almost identical to that of RPVT            
(33, precision = 49%). In addition, the DeepCOMBI method         
misclassified only 8 of all unreplicated SNPs as associated with the           
disease (yielding an error rate of only 21%), while RPVT wrongly           
classified 35 SNPs (error rate = 51%) and the COMBI method made 22             
mistakes (error rate = 42%). These observations are quantified with          
pairwise one-sided Fisher’s exact tests for the null hypothesis of equal           
error rates for both methods. They produce significant ​p​-values for both           
the comparison of DeepCOMBI vs. RPVT (Fisher’s exact test ​p​-value          
of 0.00106) and the comparison of DeepCOMBI vs. COMBI ( ​p​-value =           
0.01910). 
 

 
Table 3. Quantitative summary of the significant findings of RPVT, COMBI and DeepCOMBI. ​For each of the three competitor methods the 

numbers of replicated and unreplicated hits (i.e. the number of true and false positives) as well as precision and error rates are presented. Pairwise tests 
for the null hypothesis of identical distributions for DeepCOMBI and the two baseline methods are performed and corresponding ​p​-values given. 
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Rheumatoid arthritis 
(RA) 

1 rs6679677 <1.0e-15 YES YES YES 20453842 
4 rs3816587 7.28e-06 YES YES    
6 rs9272346 7.38e-14 YES YES    

22 rs743777 1.01e-06 YES  YES 23143596 

Type 1 diabetes (T1D) 
  
  
  
  

1 rs6679677 <1.0e-15 YES YES YES 19430480 
2 rs231726 1.43e-05   YES 30659077 
4 rs17388568 3.07e-06 YES YES YES 21829393 
6 rs9272346 <1.0e-15 YES YES YES 18978792 

12 rs17696736 1.56e-14 YES YES YES 18978792 
12 rs11171739 8.36e-11 YES  YES 19430480 
13 rs4769283 1.20e-05       
16 rs12924729 7.86e-08 YES YES YES 17554260  

Type 2 diabetes (T2D) 
  
  
 

2 rs6718526 1.00e-05  YES YES 20418489 
4 rs1481279 9.44e-06 YES YES YES 28869590 
6 rs9465871 3.38e-07 YES YES YES 21490949 

10 rs4506565 5.01e-12 YES YES YES 23300278 
12 rs1495377 7.21e-06 YES YES YES 22885922 
16 rs7193144 4.15e-08 YES YES YES 22693455 

 Number of significant SNPs of 

RPVT DeepCOMBI method COMBI method 

SNPs that have achieved ​p ​< 10​−5​ in 
at least one external study 

33 (49% precision) 31 (79% precision) 31 (58% precision) 

SNPs that have not achieved ​p​ < 
10​−5​ in an external study 

35 (51% error rate) 8 (21% error rate) 22 (42% error rate) 

Overall 68 39 53 

Pairwise ​p​-value (one-sided 
Fisher’s exact test) 

DeepCOMBI vs. RPVT             DeepCOMBI vs. COMBI 
= 0.00106                                     = 0.01910 
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Instead of investigating the significant findings of the three         
competitor methods achieved by matching a specific error level, it is           
also possible to examine the performance of those methods for          
different levels of error. By increasing the significance threshold of          
each method from very conservative ( , no significant SNPs) to     t* = 0      
very liberal ( , all SNPs significant), we investigate here, how  t* = ∞         
the three methods perform under these circumstances. In ​Figure 6 we           
present the corresponding ROC and PR curves, where we interpret          
the replication of SNPs according to the GWAS catalog as a           
validation, i.e. we count a SNP as a true positive if it has achieved ​p               
< 10​-5 in at least one external study. Overall, the findings obtained by             
the DeepCOMBI method are better replicated than those obtained by          
RPVT and COMBI for all levels of error. The performance metrics of            
the DeepCOMBI method (pink line) are consistently better than that          
of RPVT (light blue lines) and COMBI (dark blue lines). The           

DeepCOMBI method finds more true positives for different levels of          
error and yields higher levels of precision for different levels of recall            
than COMBI and RPVT. ​Figure 6 ​also shows the performance          
curves of the other two baseline methods that threshold SNPs solely           
based on raw LRP relevance scores or raw SVM weights,          
respectively. As we can view these two methods and RPVT as the            
individual components of the combinatorial approaches and neither        
of these three can achieve the same level of performance as COMBI            
and DeepCOMBI, it can be deduced that all subparts are essential.           
Only the combination of the two parts of the DeepCOMBI method           
(NN with LRP explanation and statistical testing) can achieve the          
desired performance increase. 
 
 

 

 
 

Figure 6: ROC and PR curves of DeepCOMBI and all competitor methods on WTCCC datasets. ​Performance curves of all methods averaged over 
all diseases and chromosomes are shown. ROC curves are presented on the left and PR curves on the right side. Replicability according to the GWAS 

catalog was used for validation. 
 

Concluding discussion 
Numerous different approaches for the analysis of GWAS have been          
introduced since the first of its kind was published in 2002.           
Traditionally, they focus either on accurate phenotype prediction​1,2,3,4,5        
or the identification of SNP phenotype associations​6,7,8,9,10​. At first most          
of these approaches were of purely statistical nature​15,16​, but since          
machine learning has become increasingly important in data science, it          
has also found its way to the investigation of genetics data. A large             
range of all kinds of machine learning based tools have been proposed            
and investigated: regression and classification approaches,      
non-penalized and penalized methods, linear and nonlinear       
models​4,28,29,30,​32,33​. A number of very well performing methods introduce         
the combination of traditional statistical testing concepts with more         

sophisticated machine learning tools​6,7,31​. With the increasingly larger        
amounts of available data, deep learning based approaches and artificial          
DNNs are now also being applied to GWAS datasets​41,42​. However,          
most of these publications focus on pure classification or regression          
prediction tasks ​28,43,44,45​, rather than the identification of associated SNPs         
in the corresponding datasets​28,46​.  
To fill this gap and firmly based on the combinatorial approach of the             
COMBI method​31​, the proposed DeepCOMBI method uses a deep         
learning based phenotype prediction in combination with statistical        
testing for the identification of SNPs that are associated with the           
phenotype under investigation. DeepCOMBI could be considered an        
extension of COMBI replacing the rather simple prediction tool of a           
linear SVM with a more sophisticated deep learning method and using           
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the recent concept of explainability to uncover the decision making          
process of DNNs and extract SNP relevance scores via LRP​48,49,50​.  
To our knowledge, Romagnoni et al.​28 were the first and only scientists            
to use explainable AI in the context of GWAS and proposed to apply             
PFI. Even though they were able to identify some novel predictors, the            
prediction performance of their DNN was not better than that of           
traditional machine learning based tools. In addition, PFI is a          
generalized, model-agnostic approach and more sophisticated methods       
specifically tailored to DNNs are available. Hence, DeepCOMBI makes         
use of deep Taylor based explanation techniques by adopting LRP for           
the analysis of such GWAS data.  
DeepCOMBI was shown to compare favorably to its main competitor          
COMBI on both generated controlled datasets as well as seven          
real-world GWAS datasets. These findings are in accordance with         
Romagnoni et al.​28 who found that deep learning based methods can           
provide novel insights into the genetic architecture of specific traits. By           
applying LRP, we were able to leverage the power of DNNs and            
generate relevance scores that are less noise inflicted than the SVM           
importance scores of COMBI. In return, the pre-selection of candidates          
SNPs is better than that of COMBI and higher true positive rate and             
precision can be achieved for all levels of error. Since the COMBI            
method itself was shown before to outperform other combinatorial         
machine learning based approaches (Roshan et al.​6​, Meinshausen et al.​58          

and Wasserman and Roeder​59​) and a number of purely statistical          
analysis tools (Lippert et al.​21,27​), it can be directly deduced that           
DeepCOMBI also outperforms those approaches. For example,       
Wasserman and Roeder​59 lose a great amount of statistical power by           
splitting the GWAS data under investigation into two parts performing          
SNP preselection on one part and statistical testing on the other. This            
approach is significantly less successful in identifying SNP disease         
associations than COMBI and hence DeepCOMBI who perform all         
substeps on the complete (and therefore statistically more powerful)         
dataset. Another exemplary statistical method which was shown to be          
outperformed by COMBI (and in consequence, DeepCOMBI) is based         
on linear mixed models (LMMs) proposed by Lippert et al.​21,27​. Even           
though they test for pairwise epistatic interactions in addition to the           
univariate tests and address the issue of population stratification in          
GWAS, they still test genetic locations and pairs thereof individually          
instead of simultaneously. In comparison to COMBI and DeepCOMBI         
which examine the genomic dataset as a whole, LMMs cannot achieve           
the same level of power and detection rates. 
In addition to the main competitor method, COMBI, we also compared           
DeepCOMBI to the baseline methods of RPVT, raw LRP relevance          
scores and raw SVM importance scores and showed that only the           
combination of deep learning and multiple testing show the desired          
performance increase which cannot be achieved individually by one of          
these components.  
 
A drawback of DeepCOMBI to consider might be that dense DNNs           
scale poorly with the number of SNPs studied, however, we have shown            
that DeepCOMBI performs well in combination with a ​p ​-value based          
SNP preselection step. 
 

In conclusion, DeepCOMBI, a novel, AI based method was proposed          
for the analysis of GWAS data. After training a carefully designed DNN            
for the classification of subjects into their respective phenotype, the          
concept of explainable AI is applied by backpropagating the class          
prediction score to the input layer through the network via LRP. The            
resulting SNP relevance scores are used to select the most relevant           
SNPs for multiple testing in combination with a permutation based          
thresholding procedure. On both generated, controlled datasets as well         
as seven real GWAS datasets, DeepCOMBI was shown to perform          
better than a number of competitor methods in terms of classification           
accuracy of the DNN and in terms of ROC and PR curves when using              
either the generated labels or replicability in external studies as a           
validation criterion. In addition, two very promising, entirely novel SNP          
disease associations were discovered. Located on an intron for ​NEGR1​,          
an important gene many times linked to obesity, body mass index and            
other correlated factors, rs10889923 on chromosome 1 was found to be           
significantly linked to hypertension. Another novel location found by         
DeepCOMBI to be associated with type 1 diabete​s ​, is rs4769283. It is            
part of an intergenic region on chromosome 13 and was previously           
found to be an eQTL for C1QTNF9B in pancreas, the affected organ in             
T1D patients. 
 
Future work on the subject of deep learning and explainable AI in the             
context of analyzing GWAS datasets could focus on one of the three            
steps of DeepCOMBI. 
In the first step, DNNs with different architectures or other suitable           
analysis tools could be investigated. For example, future research could          
aim to harness the potential of convolutional networks ​71 in this          
application. By integrating multiple output nodes for multiple        
phenotypes, the DNN could also be extended to cover multivariate          
output variables and examine multimorbidities. DNNs can easily be         
adjusted to non-binary phenotypes.  
Improvement ideas for the second step of the proposed method include           
the application of different explanation methods (e.g. PFI) or LRP          
backpropagation rules, for example according to the layer types, as          
advised by Montavan et al.​48​. Great potential lies in finding more           
sophisticated ways to combine the local LRP explanations of each          
individual subject to a single global explanation used for SNP selection.           
A very promising candidate would be a method called SpRAy ​72 which           
clusters the individual explanations and simplifies the identification of         
explanatory structures in subsets of subjects. 
Future research work considering the third step of DeepCOMBI might          
examine the effects of replacing the test with a different, more      χ2      
sophisticated kind of test, e.g. investigating pairwise hypotheses or         
other multivariate effects. 
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