
DeepContour: A Deep Convolutional Feature Learned by Positive-sharing Loss

for Contour Detection

Wei Shen1∗, Xinggang Wang2, Yan Wang3, Xiang Bai2†, Zhijiang Zhang1

1 Key Lab of Specialty Fiber Optics and Optical Access Networks, Shanghai University
2 School of Electronic Information and Communications, Huazhong University of Science and Technology

3 Rapid-Rich Object Search Lab, Nanyang Technological University

Abstract

Contour detection serves as the basis of a variety of com-

puter vision tasks such as image segmentation and object

recognition. The mainstream works to address this prob-

lem focus on designing engineered gradient features. In

this work, we show that contour detection accuracy can be

improved by instead making the use of the deep features

learned from convolutional neural networks (CNNs). While

rather than using the networks as a blackbox feature extrac-

tor, we customize the training strategy by partitioning con-

tour (positive) data into subclasses and fitting each subclass

by different model parameters. A new loss function, named

positive-sharing loss, in which each subclass shares the loss

for the whole positive class, is proposed to learn the param-

eters. Compared to the sofmax loss function, the proposed

one, introduces an extra regularizer to emphasizes the loss-

es for the positive and negative classes, which facilitates to

explore more discriminative features. Our experimental re-

sults demonstrate that learned deep features can achieve top

performance on Berkeley Segmentation Dataset and Bench-

mark (BSDS500) and obtain competitive cross dataset gen-

eralization result on the NYUD dataset.

1. Introduction

In this paper, we investigate a classical and fundamen-

tal problem in computer vision contour detection in natural

images. Accurately detecting object contours serves as the

basis for many tasks, such as image segmentation [2], scene

understanding [3] and object detection [17, 30, 48].

Contour detection is quite challenging and more dif-

ficult than edge detection. According to Martin’s defi-

nition [34], the latter one aims to detect the characteris-

tic changes in brightness, color, and texture; In contrast,

the goal of the former one is to find the changes in pixel
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ownership from one object or surface to another. There-

fore, contours involve the concept of objects, which casts

an obstacle to us: How to distinguish the changes caused

by cluttered textures and those that correspond to objec-

t boundaries? Many researchers have devoted their ef-

forts to addressing this problem and achieved considerable

progress [34, 32, 38, 2, 39, 30, 11, 23, 12]. However, obvi-

ous performance gap is still observed between contour de-

tections given by the algorithms and human annotations.

The traditional framework for contour detection design-

s a variety of gradient features for each image pixel, fol-

lowed by learning a binary classifier to determine whether

an image pixel is passed through by contours or not. Al-

though hand-designed features are widely used and support

top-ranking algorithms on the standard contour detection

benchmark [35, 2] in the past decade, we cannot ignore a

fact that they are not discriminative enough to differentiate

the semantic object boundaries and abrupt changes in low

level image cues. Driven by the recent prevailing trend of

deep neural networks, a few researchers try to learn the deep

features to address the contour vs non-contour classifica-

tion problem [23, 19, 33]. The impressive performances for

many computer vision tasks have proved that the deep fea-

tures outputted by deep neural networks are powerful [1, 37]

and tend to replace the traditional hand-designed features,

such like SIFT [31] and HOG [9]. Therefore, introduc-

ing the deep learning techniques into the contour detection

problem is reasonable and feasible. However, how to learn

discriminative and representative deep features for contour

detection is not trivial. The current usage of deep learning

for contour detection is to take deep networks as blackbox

models to learn the probability of the contour [23] or the

local contour map [19] for each pixel. By such a way, the

flexibility of deep networks may be insufficient even when

employing a very complex and deep architecture [19]. Why

deep networks can achieve breakthroughs on so many gen-

eral object recognition tasks in a walk, while they are denied

by contour detection? The reason is that the diversity of

contours in a local patch is huge, as they contain many types
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of patterns with multiple orientations, such as straight lines,

parallel lines, T-junctions and Y-junctions. Even though

deep networks are powerful, to treat the data with so large

variations as one class is not advisable.

Our goal is to learn discriminative features for contour

detection by the well-known deep convolutional neural net-

works (CNNs) [18, 42, 26]. However, we do not just use the

CNN as a blackbox feature extractor but derive it by consid-

ering the intrinsic properties of contours. We emphasize the

following two points: (1) Partitioning contour patches in-

to compact clusters according to their inherent structures is

necessary for training an effective CNN model. Such a clus-

tering process does lead to a mid-level shape representation

for contour patches. The formed clusters are called shape

classes, and each of them are assigned by a shape label.

Fitting contour data of different shapes by different model

parameters is followed by the spirit of divide-and-conquer

strategy [4], which can ease the training difficulty due to

the diversity of the data. (2) How to define the loss function

of the CNN is significant for learning a discriminative fea-

ture for contour detection. The aforementioned clustering

process converts the binary classification problem (i.e. pre-

dicting whether an image patch belongs to contour or non-

contour) to a multi-class problem (i.e. predicting whether

an image patch belongs to each shape class or the nega-

tive class), which seems can be well solved by minimizing

the softmax loss, the loss function used in standard CNNs.

However, softmax function penalizes the loss of each class

equally, which is not suitable for learning the discriminative

features between contour patches and background patches.

Because, for contour detection, the misclassification among

shape classes is ignorable, while a contour patch is classi-

fied as a background one is a considerable error or vice ver-

sa. Therefore, the losses for positive versus negative should

be emphasized in the training. Based on this observation,

we define a new objective function which combines an ex-

tra loss for contour versus non-contour with the softmax

loss. As in this function the loss for the positive class is

shared among each shape class, we name it positive-sharing

loss. The extra loss brings in better regularization which

lead to better contour feature learning. With the learned

deep features, contour detection can be performed by feed-

ing them into any classifiers followed by a standard non-

maximal suppression scheme [6]. We take the computa-

tionally efficient structured forest [11, 12] as the contour

versus non-contour classifier for our deep features, which

achieves the-state-of-the-art result on the popular Berkeley

Segmentation Dataset and Benchmark (BSDS500) [2].

2. Related Work

Contour Detection: Contour detection is usually con-

sidered as a supervised learning problem. In the pioneer

work of Konishi et al. [24], contour detection is formulated

as a discrimination task specified by a likelihood ratio test-

ed on the filter responses. Martin et al. [34] carefully de-

sign features to characteristic changes in brightness, color,

and texture associated with natural boundaries, and learn a

classifier to combine the features. Dollar et al. [10] use rich

patch features and probabilistic boosting tree [46] to detec-

t contours. Ren and Bo [39] find a sparse coding gradient

feature which is effective for contour detection. Recently,

a mid-level feature named sketch token and a random for-

est based structural classifier are proposed in [30] and [11]

respectively. Besides of supervised learning, in [2], Arbe-

laez et al. combine multiple local cues into a globalization

framework based on spectral clustering for contour detec-

tion.

Deep Learning: Deep learning methods have obtained

great successes for various applications in computer vision,

such as image classification [25], object detection [20], im-

age labeling [15], and super-resolution [14]. Deep con-

volutional neural networks (CNNs) with GPU implemen-

tation and the tricks like rectified linear unit (ReLU) [36]

and dropout [44] are popular for feature learning and super-

vised classification. Restricted Boltzmann machine (RBM),

autoencoder [47] and their variants are popular for unsuper-

vised deep learning.

Deep Learning for Contour Detection: As far as we

know, there are two papers using deep learning for contour

detection. The first one is proposed by Kivinen et al. in [23],

in which image feature is learned by using RBM and clas-

sified multiple read-out layers. The other one is proposed

by Ganin and Lempitsky in [19], in which feature for im-

age patch is learned using a conventional CNN and then the

feature is mapped to an annotation edge map using kd-tree.

Different from these two methods, we learn deep features

using shape labels and a CNN with a novel loss.

3. Data Preparation

In this section we describe how to prepare the training

and validation data set for training a CNN model. Take the

BSDS500 dataset as an example. The BSDS500 dataset

contains 200 training, 100 validation, and 200 testing im-

ages. Each image has hand labeled ground truth contours.

Following [30], we obtain the shape classes by clustering

patches extracted from the binary images representing the

hand labeled ground truth contours. Only patches whose

centers are passed through by labeled contours are used for

clustering. We make a customization that we use patches

with the size of 45× 45 pixels (rather than 35× 35 in [30])

in our experiments, since CNNs have strong learning ability

to handle more information. This clustering process leads to

K shape classes, whose patterns are ranging from straight

lines to more complex structures, as visualized in Fig. 1.

With the learned K shape classes, we can assign a la-

bel y to each color image patch x extracted from the im-
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Figure 1. The visualization of some selected shape classes.

ages in the dataset. If x is a contour patch (we set a maxi-

mum slop equals to 3 pixels allowed for the thumbnail dis-

tance between a patch center to a contour), its class label is

supplied by the shape clustering results, i.e. its class label

y = k(k ∈ {1, . . .,K}) if its corresponding patch extracted

from the hand labeled ground truth binary image belongs

to k-th shape class. Otherwise, if x is a background patch,

its label is assigned by y = 0. For denotational simplicity,

contour patch and background patch are also called positive

patch and negative patch in the rest of the paper.

We sample 2,000,000 image patches from the training

set of the BSDS500 dataset, in which the numbers of the

positive and negative patches are equal, to form the training

data for learning our CNN model. Another 2,000,000 image

patches with the same numbers of the positive and negative

patches are sampled from the validation set of the BSDS500

dataset for cross-validation when training our CNN model.

4. Learning Deep Contour Features by CNN

In this section, we describe how to learn the deep fea-

tures for contour detection by our CNN model. First, we

introduce the architecture of our CNN model. Then we dis-

cuss how to define proper loss functions for our task.

4.1. CNN Architecture

We train our CNN on a multi-class classification task,

namely to classify an image patch to which shape class

or the negative class. Fig. 2 depicts the overall architec-

ture of our CNN, which contains six layers with parameters

to be learned; the first four are convolutional and the re-

maining two are fully-connected. Only convolutional and

fully-connected layers contain learnable parameters, while

the others are parameter free.

The input of our CNN is a 3-channels (RGB) image

patch of size 45× 45, which is filtered by the first convolu-

tional layer (COV1) with 32 kernels of size 5 × 5 × 3 with

a padding of 2 pixels. The resulting 45 × 45 × 32 feature

maps are then sequentially given to a local response normal-

ization layer (LRN1) and a max-pooling layer (MAXP1)

which performs max pooling over 3 × 3 spatial neighbor-

hoods with a stride of 2 pixels. The output of the MAXP1

is then passed to the second convolutional layer (COV2).

Except for the number of filter kernels, the parameter con-

figurations for the four convolutional layers are the same.

Each convolutional layer consists of a Rectified Linear units

(ReLU) and is followed by a LRN, and a MAXP, except the

last one, where only a MAXP is applied. The convolution-

al layers are the core of the CNN, which provide various

feature maps [13], while the max-pooling layers make the

activation features which are robust to slight shifts in con-

tour placement. The output of the fourth max-pooling layer

(MAXP4) is fed into the first fully-connected layer (FC1),

which also consists of a ReLU. The fully-connected layer,

in which each output unit is connected to all input nodes,

is able to capture correlations between features activated in

distant parts of the image patch [45], such like the bound-

ary of the stamen in the example image patch in Fig. 2. To

reduce the risk of overfitting, we use dropout [25, 44] in

FC1, which consists of setting to zero the output of each

neuron nodes with probability 0.5. The output of FC1 in

our CNN will be used as the deep features for contour de-

tection, which is a 128-dimensional feature vector. We can

also use more units in this layer to form a feature vector of

higher dimensions. However, it will induce heavier compu-

tational burden. In a standard CNN, the output of the last

fully-connected layer will be fed into a softmax classifier to

produce a distribution over class labels. In our case, assume

that we have K = 50 shape classes, then the unit number of

the final layer of the CNN should be 51.

According to the parameter configuration of each layer,

the architecture of the CNN can be described concisely by

layer notations with layer sizes:

COV1(45× 45× 32) → LRN1 → MAXP1 →
COV2(22× 22× 48) → LRN2 → MAXP2 →
COV3(10× 10× 64) → LRN3 → MAXP3 →
COV4(4× 4× 128) → MAXP4 → FC1(128) → FC2(101).

Note that, the number of the layers in our CNN architec-

ture is less than the generic one used for ImageNet LSVR-

C [5], as the contour is always represented by a local image

patch with smaller size than generic objects. From our ex-

periences, four convolutional layers are enough to capture

the discriminative information between contour and back-

ground patches.

4.2. Positive­sharing Loss Function

The goal of training a standard CNN is to maximize the

probability of the correct class, which is achieved by min-

imizing the softmax loss. Given a training set which con-

tains m image patches:
{

x(i), y(i)
}m

i=1
, where x(i) is the

i-th image patch and y(i) ∈ {0, 1, . . .,K} is its class label.

If y(i) = 0, then x(i) is a negative patch; If y(i) = k > 0,

then x(i) is a positive patch and belongs to the k-th shape

class. Let (a
(i)
j ; j = 0, 1, . . .K) be the output of unit j in

FC2 for x(i), then the probability that the label of x(i) is j

3



Figure 2. An illustration of the architecture of our CNN, explicitly visualizing the dimensions of each network layers. Due to the limited

space, we only show the layers with learnable parameters. The convolutional layers are represented by blue squares, while fully-connected

ones are marked by blue dots. The big and small light red blocks depict the convolutional kernels and results, respectively.

is given by

p
(i)
j =

exp(a
(i)
j )

∑K

l=0 exp(a
(i)
l )

. (1)

In a standard CNN, the output of FC2 is then fed into a

(K+1)-way softmax which aims to minimize the following

loss function:

J0 = −
1

m

[

m
∑

i=1

K
∑

j=0

1(y(i) = j) log p
(i)
j

]

, (2)

where 1(·) is the indicator function. The softmax loss func-

tion penalizes the classification error for each class equal-

ly. However, in our case, to estimate the label of a positive

patch to be a wrong nonzero label is not a significant error,

since it still be predicted as a positive one. That is to say, the

losses induced by the incorrect estimation between the zero

label and nonzero labels should be more concerned. To this

end, we add a new term to regularize the loss:

J = J0 −
1

m

[

m
∑

i=1

λ

(

1(y(i) = 0) log p
(i)
0

+
K
∑

j=1

1(y(i) = j) log(1− p
(i)
0 )

)

]

, (3)

where λ is a controlling parameter. When λ is small, E-

q. 3 tends to be the softmax loss function; While when λ is

larger, the effect of the shape partition becomes weaker and

Eq. 3 tends to be an objective function for addressing the

binary classification problem, contour versus non-contour.

We set λ = 1 as the default value in all our experiments,

unless otherwise specified. The intuition behind Eq. 3 is

that we should fit the data from different shape classes by

different model parameters, as they are quite different in

feature space; While we cannot treat them as “absolutely”

distinct classes when computing the classification loss, s-

ince they all belong to the positive class. We call Eq. 3

positive-sharing loss function, as the loss for the positive

class is shared among each shape class in it.

To apply standard back-propagation [41, 27] to opti-

mize the parameters of the network, computing the par-

tial derivatives of the new loss w.r.t. the output of FC2,

(a
(i)
j ; j = 0, 1, . . .K), is required. The first term in Eq. 3

is the standard softmax loss, whose derivatives have been

already provided in the literature. The rest thing is to de-

rive the partial derivatives of the second term w.r.t a
(i)
0 and

a
(i)
l(l=1,...K). One can show that

∂ log p
(i)
0

∂a
(i)
0

= 1− p
(i)
0 ,

∂ log (1− p
(i)
0 )

∂a
(i)
0

= −p
(i)
0 ,

∂ log p
(i)
0

∂a
(i)
l

= −p
(i)
l ,

∂ log (1− p
(i)
0 )

∂a
(i)
l

=
p
(i)
l p

(i)
0

1− p
(i)
0

. (4)

Then the partial derivatives of the new loss are obtained by

∂J

∂a
(i)
0

=
1

m

[

(λ+ 1)1(y(i) = 0)(p
(i)
0 − 1)

+(λ+ 1)

K
∑

j=1

1(y(i) = j)p
(i)
0

]

, (5)

and

∂J

∂a
(i)
l

=
1

m

[

(

λ1(y(i) = 0) + 1
)

p
(i)
l − 1(y(i) = l)

−λ

K
∑

j=1

1(y(i) = j)
( p

(i)
0 p

(i)
l

1− p
(i)
0

)

]

. (6)

One can verify the effectiveness of the CNN model by

a per-patch classification accuracy on the validation set.

However, for detection problem, the performance is more

likely related to the contrast between positive and negative

samples. So we define a contrast score as the measure. Let
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{x
(i)
v , y

(i)
v }mi=1 be the validation set and p

(i)
0 is the probabil-

ity of x
(i)
v belongs to negative class outputted by the trained

CNN. The contrast score is computed by

γ =
1

m

m
∑

i=1

[

(1(y(i)v = 0)−1(y(i)v > 0))(p
(i)
0 −(1−p

(i)
0 ))

]

,

(7)

which ranges from −1 to 1, measuring the discrimination

of the learned model between positive and negative sam-

ples. We run stochastic gradient descent (SGD) on the tar-

get loss functions, by setting a learning rate set to 0.001.

After 100, 000 iterations, the contrast score of the standard

CNN is about 0.56 , while ours is about 0.59, with 0.03
improvement.

5. Experimental results

We analyze the performance of our deep convolutional

features for contour detection. To learn our CNN model,

we take the publicly available modifiable implementation

named “Caffe” [22] and modify the softmax loss layer to

ours. The 128-dimensional feature vector outputted by the

first fully-connected layer (FC1) is our deep features. The

feature vectors for all pixels in a patch are concatenated in-

to one to be fed into a structured forest classifier [11, 12]

to perform contour detection. We start by visualizing the

learned deep features. Next, we compare contour detection

results on the BSDS500 dataset [2] to the state-of-the-art.

Then, the cross dataset generalization of our deep features

are validated on the NYUD dataset [43]. At last, we ana-

lyze the influence of parameters. For the structured forest

classifier, we use its default parameter setting in all our ex-

periments.

5.1. Deep Feature Visualization

Although it has been a common sense that CNNs are ef-

fective feature extractors, to see what we exactly learned

from the millions of image patches is still necessary and

it can help us to understand what is being learned. Given

an image, the image patches densely sampled from it are

inputted into our CNN, which results in 128 feature maps

outputted by FC1. We randomly select some feature maps

and visualize them in Fig. 3. Encouragingly, although some

of them suffer from noise caused by textured regions, still

many of them are quite sparse and well capture the contour

fragments of the objects, which will facilitate contour de-

tection.

5.2. Results on BSDS500 Dataset

The majority of our experiments are performed on the

BSDS500 dataset. The details of this dataset has been in-

troduced in Sec. 3. To evaluate the performance of a con-

tour detection algorithm, three standard quantities are used:

the best F-measure on the dataset for a fixed scale (ODS),

the aggregate F-measure on the dataset for the best scale in

each image (OIS), and the average precision (AP) on the

full recall range. [2]. We compare our contour detection

method against other leading methods, such as Structured

Edge (SE) [11] as well as its Variants (SE-Var) [12], S-

parse Code Gradients (SCG) [39] and Deep Neural Predic-

tion Network (DeepNet) [23]. Precision/recall curves are

shown in Fig. 4 and summary statistics are in Table 1.

Figure 4. Evaluation of contour detectors on the BSDS500

dataset [2]. Leading contour detection methods are ranked accord-

ing to their best F-measure (ODS) with respect to human ground

truth contours. Our method, DeepContour achieves the top re-

sult and shows both improved recall and precision at most of the

precision-recall regime. See Table 1 for more details ahout the

other two quantities and method citations.

Our method, DeepContour, outperforms all state-of-the-

art methods. We improve ODS/OIS by 1 point over com-

peting methods and achieve comparable AP. The compar-

ison between SE [11] as well as SE-Var [12] and ours di-

rectly prove that the learned deep features are more dis-

criminative than the hand-designed features, such as the

gradient channel features and the self-similarity features,

used in [11, 12]. In comparison to other deep learning-

based approaches to contour detection, we fairly outperform

DeepNet [23] which unsupervised learns the contour fea-

tures, because learning features with supervision improves

the discrimination. Noticeable, to handle the transforma-

tion between contours of different shape classes, DeepNet

is applied to 16 rotated versions of each image and the pre-

diction results are averaged for enhancing the performance

in [23], while we have considered the diversity between d-

ifferent shape classes in training procedure. Unfortunately,
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Figure 3. Left: The testing color image. The ground truth contours are visualized by black curves. Right: Randomly selected deep feature

maps.

Table 1. Contour detection results on the BSDS500 dataset [2].

ODS OIS AP

Human .80 .80 -

Canny [6] .60 .63 .58

Felz-Hutt [16] .61 .64 .56

Normalized Cuts [8] .64 .68 .45

Mean Shift [7] .64 .68 .56

Gb [29] .69 .72 .72

ISCRA [40] .72 .75 .46

gPb-owt-ucm [2] .73 .76 .73

Sketch Tokens [30] .73 .75 .78

DeepNet [23] .74 .76 .76

SCG-[39] .74 .76 .77

PMI+sPb [21] .74 .77 .78

SE [11] .74 .76 .78

SE-Var [12] .75 .77 .80

N4-Fields [19] .75 .77 .78

DeepContour (ours) .76 .78 .80

the result of DeepNet before enhancement is not reported;

so we are unable to perform more detailed discussion about

the effectiveness of shape class partition. Our method al-

so achieves better performance than another deep learning

based approach N4-Fields [19], which also adopts CNNs to

learn contour features. Their CNN model is targeted on a

local contour map, which implicitly performs shape class

partition by CNN itself. However, they use nearest neigh-

bor search in the CNN feature space to obtain the local con-

tour map, which may perform poorly due to the noisy re-

sponses in the CNN feature maps, as shown in Fig. 3. As

we apply random forest to our CNN features, the feature

selection mechanism embedded in this classifier improves

the robustness against the noise. As we obtain the shape

classes according to the definition of sketch tokens [30], the

considerable performance improvement between their and

our method proves the superiority of our deep features. We

illustrate the contour detection results obtained by several

methods in Fig. 5 for qualitative comparison. These qualita-

tive examples shows that our method fires stronger respons-

es on the ground truth contours and meanwhile suppresses

the false positive.

5.3. Cross Dataset Generalization

One may concern the deep features learned from one

dataset might lead to higher generalization error when ap-

plying them to another dataset. To explore whether this is

the case, we apply the deep features learned from the train-

ing set of the BSDS500 dataset to the NYUD dataset [43].

The NYUD dataset (v2) includes 1449 pairs of color and

depth frames of resolution 480x640, with groundtruth se-

mantic regions. This dataset is comprised of images from

a variety of indoor scenes, while the images in BSDS500

mainly illustrates the outdoor scenes. Consequently, the ob-

jects in these two datasets are totally different. We use the

same experimental setup proposed by [39], which chooses

60% images for training and 40% for testing with the im-

ages reduced to 320× 240 resolution. As our deep features

are learned from color images from the BSDS500 dataset,

we only apply them to the color images of the NYUD

dataset. For comparison, we list the cross dataset general-

ization results (applying the model learned on the BSDS500

dataset to the NYUD dataset) of our method and SE [11]

in Table 2. The results of gPb and SCG are used for ref-

erence, while they are obtained by training on the NYUD

dataset. Although supervised learning usually decrease the

generality, the learned deep features achieves comparable

or better cross dataset generalization result than SE and sig-

nificantly outperforms gPb-owt-ucm, even if it is trained on

NYUD dataset. The selected qualitative examples in Fig. 6

are obtained by our deep contour features learned from the

BSDS500 dataset, which evidence that our deep feature is a
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Figure 5. Illustration of contour detection results on the BSDS500 dataset for six selected example images. The first two rows show the

original image and the ground truth. The next five rows depict the results for gPb-owt-ucm [2], Sketch Tokens [30], SCG [39], SE-Var [12]

and our DeepContour. Note that our method fires stronger responses on the ground truth contours (such as the contour of the whale in the

fifth column) and meanwhile suppresses the false positive (such as the edges of the little fishes in the fifth column). It’s better to use viewer

zoom functionality to see fine details.

general and portable contour representation.

5.4. Parameter Discussion

We conduct to validate the influence of parameters intro-

duced in our method on the test set of the BSDS dataset.

There are two important parameters for learning our deep

features: the number of the shape classes K and the control-

ling parameter λ in our loss function. In Fig. 7 we explore

the effect of choices of these two parameters. The stan-

dard metric OSD is used to measure the accuracy. For sav-

ing time, we no longer apply the multi-scale strategy in the

structured forest [11], which will result in a reduction (about

0.006) in OSD. Note that, setting K = 1 means the shape

class partition is not performed, then our model is equiva-

lent to learn a binary contour versus non-contour classifier

with softmax loss, which reduces the performance consider-
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Figure 6. Illustration of our contour detection results on the NYUD dataset [43] for five selected example images (Depth images are not

used). In each example, we see the original image and the ground truth and our results, respectively. Although our deep contour features

are learned from the BSDS dataset, they can represent the object contours in NYUD dataset well.

Table 2. Cross-dataset generalization results. TRAIN/TEST indi-

cates the training/testing dataset used.

ODS OIS AP

gPb [2] (NYU/NYU) .51 .52 .37

SCG [39] (NYU/NYU) .55 .57 .46

SE [11] (BSDS/NYU) .55 .57 .46

DeepContour (BSDS/NYU) .55 .57 .49

ably. This evidences that shape class partition is necessary.

The best performance is achieved by setting K = 50. As

for λ, if λ = 0, then our loss function is reduced to the soft-

max loss which also decrease the performance. Setting a

considerable larger λ, our loss function tends to only focus

on the loss for contour and non-contour classes, which also

results in a reduction in performance.

6. Conclusion and Future Work

In this work we successfully showed how to learn dis-

criminative features from deep convolutional neural net-

works for contour detection in natural images. We em-

phasized two points: one was partition contour (positive)

data subclasses was necessary for training an effective C-

NN model, the other was the proposed positive-sharing

loss function, which emphasized the losses for the con-

tour and non-contour rather than the loss for each sub-

class, facilitating to explore more discriminative features

than softmax loss function. The experiments on the BS-

DS500 dataset [2] demonstrated that the proposed algorith-

m outperformed other competing methods in the literature.

Figure 7. The accuracy obtained by parameter sweeping. K is

the number of partitioned shape classes, and λ is the controlling

parameter introduced in our loss function.

Through parameter sweeping, we verified the necessity of

positive data partition and the effectiveness of the proposed

loss function. We also validated the cross dataset generality

of our deep features on the NYUD data set [43].

The contour detection performance might be further im-

proved by applying other deep networks, such as Deeply-

Supervised Nets [28]. This will be investigated in our future

work.
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