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Abstract: The COVID-19 pandemic has posed unprecedented challenges to global healthcare systems,
highlighting the need for accurate and timely risk prediction models that can prioritize patient care
and allocate resources effectively. This study presents DeepCOVID-Fuse, a deep learning fusion
model that predicts risk levels in patients with confirmed COVID-19 by combining chest radiographs
(CXRs) and clinical variables. The study collected initial CXRs, clinical variables, and outcomes (i.e.,
mortality, intubation, hospital length of stay, Intensive care units (ICU) admission) from February
to April 2020, with risk levels determined by the outcomes. The fusion model was trained on
1657 patients (Age: 58.30 ± 17.74; Female: 807) and validated on 428 patients (56.41 ± 17.03; 190) from
the local healthcare system and tested on 439 patients (56.51 ± 17.78; 205) from a different holdout
hospital. The performance of well-trained fusion models on full or partial modalities was compared
using DeLong and McNemar tests. Results show that DeepCOVID-Fuse significantly (p < 0.05)
outperformed models trained only on CXRs or clinical variables, with an accuracy of 0.658 and an
area under the receiver operating characteristic curve (AUC) of 0.842. The fusion model achieves
good outcome predictions even when only one of the modalities is used in testing, demonstrating its
ability to learn better feature representations across different modalities during training.

Keywords: COVID-19; risk level prediction; multi-modality; fusion CNNs; CXRs; clinical variables

1. Introduction

Coronavirus disease 2019 (COVID-19) has been heavily straining the healthcare sys-
tems of countries across the world, with over 500 million cases and 6 million deaths as
of July 2022 [1]. Reverse-transcription polymerase chain reaction (RT-PCR) is the current
gold standard for the diagnosis of COVID-19. However, the use of RT-PCR for COVID-19
diagnosis is limited to authorized, trained clinical laboratory personnel and patients with
suspected COVID-19, which can create bottlenecks in the testing process. Results can take
more than 24 h to produce, leading to delays in patient care and allocation of resources [2].
Previous studies have shown that chest radiographs (X-rays) and computed tomography
(CT) images can reveal COVID-19 features [3], which can be combined with clinical judg-
ment to make a COVID-19 diagnosis. Artificial Intelligence (AI) algorithms have shown
great promise in detecting these signatures from chest X-rays and CT scans [4–7], enabling
faster and more accurate treatment of suspected patients. The use of CT in this domain is
restrictive, particularly due to their high cost and longer processing time, whereas X-ray
scanning is more commonly conducted and accessible. Nevertheless, relying solely on
chest X-rays may not be sufficient to serve as a diagnostic tool for COVID-19, but they can
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instead be used to inform the diagnosis and flag at-risk patients who may need further
testing [8]. This is particularly important in resource-limited settings, where the use of
chest X-rays can aid in resource allocation, triage, and infection control.

Many AI models have been proposed for the purpose of COVID-19 detection [9–12].
For example, Shaheed et al. developed a computer-aided diagnostic scheme that utilizes
extracted features from transformers and a random forest classifier on CXRs for automatic
recognition of COVID-19 and pneumonia [13]. However, their use of small and biased
public datasets raises skepticism about their deployment [14]. In contrast, DeepCOVID-XR,
which proposes an ensemble of convolutional neural networks (CNNs), serves as one of the
first works trained and tested on a large clinical dataset for COVID-19 detection [4]. It has
been found to be more robust to biases present in models trained on public data. With rapid
testing becoming more readily available than at the beginning of the pandemic, more efforts
can be made to serve those who are infected. Furthermore, identifying the severity and
prognosis of infected individuals can aid in triaging and allocating resources appropriately.
However, while many published AI algorithms have focused on better detection of COVID-
19, risk stratification of confirmed COVID-19 subjects remains relatively unexplored. To
address this gap, we propose DeepCOVID-Fuse, a model that fuses clinical variables
from electronic health record (EHR) data and image features from CXRs to categorize
infected COVID-19 patients into low-, intermediate-, and high-risk classes. Previous
work on fusion and risk prediction has included utilizing the fusion of different image
feature representations for COVID detection [15], tackling binary risk prediction with
patient characteristic data [16] and clinical features [17], predicting the chance of survival
and kidney injury with tabular clinical and biochemistry data [18], and utilizing gene
enrichment profiles from blood transcriptome data to stratify COVID-19 patients [19].
Our DeepCOVID-Fuse model ensembles three different architectures with image and
tabular clinical data, providing accurate fine-grained risk predictions for COVID-19 patients.
Notably, we thoroughly compare the performance of fusion models trained on multiple
modalities but tested on one or a subset of modalities, and find that testing the fusion model
even with a missing modality still provides more informative predictions than networks
trained on a single modality.

2. Materials and Methods
2.1. Patients

This study is based on a cohort of 2085 COVID-19 patients from over 20 different sites
across Northwestern Memorial Health Care System. All patients were tested positive from
February 2020 to April 2020 and their corresponding electronic health records (EHR) were
collected with a positive reverse transcription polymerase chain reaction (RT-PCR). Unlike
a previous study [4], which used CXRs of both COVID-19-negative and positive subjects
to build models for COVID-19-positive prediction, our study focuses exclusively on the
initial CXR taken after the first inpatient admission of each COVID-19-positive subject.
Furthermore, we broaden the scope of our investigation by incorporating clinical variables
from subjects’ EHRs to make risk predictions for COVID-19 subjects. Specifically, each of
the COVID-positive patients was categorized into low-, intermediate-, or high-risk classes.
These three classes correspond, respectively, to (1) hospital length of stay (LoS) of less than
one day, (2) hospital LoS greater than one day but no death or admittance to the ICU, and
(3) death or admittance to the ICU, as documented in the patients’ EHRs.

2.2. CXRs Acquisition and Preprocessing

CXRs images were preprocessed in accordance with metadata using appropriate
windowing operations. The grayscale images were first converted to 3-channel RGB images
(with identical R, G, and B planes) as this is the typical input of deep learning models.
To remove unnecessary background and focus more on lung features, images were then
center-cropped using a UNet-based algorithm [20], which was pre-trained on the public
CXR dataset [21,22] to segment lung fields. Finally, all cropped images were resized to a
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resolution of 224 × 224 pixels, scaled to a range of 0 to 1 by dividing each pixel value by
255 (8-bit images), and normalized using ImageNet’s mean and standard deviation before
being fed into the model. This preprocessing was applied to all training, validation, and
test sets.

2.3. Clinical Data Processing

Clinical variables were obtained from each subject’s EHRs across different categories:
basic demographic information, laboratory results, comorbidities, electrocardiogram (ECG),
and modified early warning score (MEWS). To preprocess the data, we first matched each
subject’s first CXR with its temporally closest EHR within 24 h. We then discarded features
that were missing more than 40% of their entries. The remaining features were classified
into three types for preprocessing, namely, binary, categorical, and continuous, as shown in
Supplementary Figure S1. Specifically, for binary features, such as comorbidities, missing
values in the training set were set to non-existent. For multi-class features, such as race and
smoking status, missing values were set to an additional unknown class, and all classes
were converted to one-hot vectors. For continuous features, missing values were imputed
using the mean computed from the training set and all features were scaled to the range of
0 to 1 using min–max normalization. The mean value of each clinical feature on the training
set was applied to the validation and test sets for normalization. The details of all selected
clinical features are provided in Supplementary Table S1.

2.4. Model Details

The DeepCOVID-Fuse is a combination of three fusion neural network architectures
that were trained using a weighted ensemble approach to accurately classify COVID-19
patients into three risk categories (i.e., low risk, intermediate risk, and high risk), as shown
in Figure 1. Each individual network consists of two branches: the CXR image branch and
the clinical variable branch. In comparison to our previous model DeepCOVID-XR [4],
where six different networks were ensembled—DenseNet-121 [23], ResNet-50 [24], Incep-
tionV3 [25], Inception-ResNetV2 [26], Xception [27], and EfficientNet-B2 [28]—DeepCOVID-
Fuse is designed to balance efficiency with accuracy by utilizing only three CNNs for CXR
image processing. These three CNNs are chosen as the CXR image branch to process
224 × 224 chest X-rays, namely EfficientNet-B2, ResNet50, and DenseNet-121. To each
network, a fully connected layer was added to adjust the feature dimension of the image
branch, followed by a dropout layer to prevent overfitting.

Specifically, the clinical variable branch includes a fully connected layer designed to
process 99 clinical features from tabular EHR data, followed by a dropout layer. Overall,
the two branches were fused together using a concatenation layer, followed by two fully
connected layers and a three-class output node with a softmax activation function for final
classification. Further information on the hyperparameters can be found in Supplementary
materials. The training process of the entire framework for the two network branches
consists of two steps. First, the weights of the image branch were initialized with the corre-
sponding weights from DeepCOVID-XR, while the clinical variable branch was randomly
initialized in accordance with TensorFlow standards. During this stage, only the clinical
variable branch and the fusion layers were trained, while the convolutional layers of the
image branch were frozen. In the second stage, after early stopping concluded the first
stage of training, all layers were unfrozen and fine-tuned. Finally, the outputs of each of
the three models (i.e., probabilities after softmax) were averaged for the final prediction.
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Figure 1. The architecture of the DeepCOVID-Fuse ensemble model. The preprocessed image was
fed into three different CNN architectures, followed by a fully connected layer to transform the image
feature dimension. The clinical tabular features were fed into a fully connected layer. The features
were fused and fed into another fully connected layer, followed by the last classification layer with
softmax as the activation function. Feat_dim changes to compare different combinations of features
from image and clinical feature branches.

2.5. Statistical Analysis

The performance of different models was evaluated by calculating various metrics
such as overall accuracy, precision, recall, F1 score, MCC (The Matthews correlation coeffi-
cient), and AUC (area under the receiver operating characteristic (ROC) curve). To ensure
reliability, each experiment was run independently five times, and 95% confidence intervals
were obtained. MCC is a useful metric for multi-class classification as it considers true
positives, true negatives, false positives, and false negatives, making it more suitable for
imbalanced classes and providing a comprehensive understanding of the model’s perfor-
mance. McNemar’s test [29] was performed for pairs of models to compare the accuracy,
precision, recall, and F1 score, and the DeLong test [30] was performed to compare the
AUCs of different models. A p-value < 0.05 was considered statistically significant.

3. Results
3.1. Experimental Design

A total of 2085 subjects were included in this study. The demographic distribution
details are shown in Supplementary Table S1. A three-class outcome was predicted for each
COVID-19 subject, i.e., low risk (L), intermediate risk (I) and high risk (H). The data split
follows the approach used in our previous work [4], where the training and validation sets
are sourced from multiple institutes, while the test set is obtained from a separate, different
institute. Since only the initial CXR after each COVID-19 subject’s first inpatient admission
was considered, all experiments had a total of 2085 images, of which 1657 (L: 476, I: 663,
H: 518; Mean age: 58.30 years ± 17.74 (standard deviation); Female: 807) were used for
training and 428 (L: 119, I: 176, H: 133; 56.41 ± 17.03; 190) for validation; the same cohort
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applies to clinical features. A separate hold-out test set of 439 subjects (L: 101, I: 193, H: 145;
56.51 ± 17.78; 205) from a different hospital were used to evaluate model performance.

Overall, three types of models were evaluated and compared in this study, including
(1) the fusion models trained on CXRs and clinical features with different feature size com-
binations (feat_dim in Figure 1) from the image and feature branches, (2) the same models
trained on CXRs only with the image branch and (3) the models trained on clinical features
only with the feature branch. Additionally, for (1), we compared model performances of
three fusion models individually, and the ensemble of all three. For (2), to show the effect of
the fusion model, we evaluated the fusion model on CXRs as input only. Likewise, for (3),
we evaluated the fusion model on clinical features as input only and compared the result
with those trained directly on some machine learning algorithms. Further experimental
details are included in the Supplementary Materials. All experiments were run indepen-
dently five times to account for model variability. The models were trained and evaluated
using Tensorflow 2.0 in Python 3.6 on a single GPU (NVIDIA TITAN V).

3.2. Performance of DeepCOVID-Fuse

The performance of each individual fusion model and an ensemble of all models on the
testing set are compared in Table 1. Overall, the ensemble model significantly outperformed
all individual models on this COVID-19 risk prediction task, achieving an accuracy of 0.658,
a recall of 0.660, a precision of 0.689, an F1 of 0.660, an MCC of 0.640, and an AUC score of
0.842. Notably, for all individual models, ablation studies of different feature dimensions
from CXRs and clinical variables showed that models with higher proportional features
from the clinical branch than the CXR branch (i.e., CXRs: clinical = 64:128) achieved better
model predictions than equal (i.e., 128:128) or lower fractions (i.e., 1408:128). Furthermore,
the fusion model with a DenseNet architecture had the best performance of AUC from
0.814 to 0.824, followed by a ResNet architecture from 0.794 to 0.815 and an EfficientNet
architecture from 0.794 to 0.805. In addition, we analyzed the performance of the models
across different age groups by categorizing the subjects into four groups: ages 20–40, 40–60,
60–80, and 80–100, as presented in Supplementary Table S2. The findings suggest that our
proposed model performs well across different age groups. However, the results indicate
that the model performs optimally in the middle age group, followed by the younger and
older age groups.

Table 1. Performance of fusion models for risk predictions in confirmed COVID-19 subjects on
external test sets with different combinations of latent feature sizes from X-rays and clinical variables.

EfficientNet ResNet DenseNet Ensemble

Latent feature
(X_ray ×

clinical data)
64 × 128 128 × 128 1408 × 128 64 × 128 128 × 128 2048 × 128 64 × 128 128 × 128 1408 × 128 64 × 128

Accuracy 0.618
[0.600, 0.637]

0.622
[0.606, 0.638]

0.626
[0.590, 0.662]

0.628
[0.610, 0.645]

0.630
[0.620, 0.642]

0.611 [0.589,
0.632]

0.658
[0.650, 0.667]

0.638
[0.622, 0.654]

0.640
[0.632, 0.647] 0.658 *

Recall 0.619
[0.600, 0.639]

0.622
[0.606, 0.638]

0.626
[0.590, 0.662]

0.626
[0.595, 0.656]

0.633
[0.623, 0.642]

0.611
[0.589, 0.632]

0.657
[0.649, 0.666]

0.638
[0.621, 0.655]

0.640
[0.632, 0.647] 0.660 *

Precision 0.649
[0.631, 0.666]

0.648
[0.620, 0.676]

0.675
[0.648, 0.702]

0.665
[0.652, 0.678]

0.675
[0.664, 0.685]

0.652
[0.619, 0.685]

0.671
[0.658, 0.684]

0.641
[0.623, 0.659]

0.647
[0.635, 0.659] 0.689 *

F1 0.616
[0.599, 0.633]

0.619
[0.603, 0.637]

0.623
[0.583, 0.663]

0.626
[0.608, 0.645]

0.627
[0.612, 0.642]

0.607 [0.586,
0.627],

0.658
[0.650, 0.666]

0.638
[0.621, 0.655]

0.639
[0.632, 0.647] 0.660 *

MCC 0.607
[0.603, 0.611]

0.614 [0.606,
0.622]

0.617
[0.609, 0.625]

0.618
[0.612, 0.624]

0.620
[0.615, 0.625]

0.601
[0.594, 0.608]

0.635
[0.629, 0.641]

0.624
[0.619, 0.629]

0.626
[0.620, 0.632] 0.640 *

AUC 0.805
[0.798, 0.812]

0.794
[0.778, 0.811]

0.804
[0.780, 0.827]

0.815
[0.804, 0.826]

0.815
[0.809, 0.820]

0.794
[0.782, 0.807]

0.824
[0.822, 0.826]

0.814
[0.797, 0.831]

0.820
[0.805, 0.836] 0.842 *

Notes: Data in parentheses are 95% CIs from five repeated experimental runs. AUC = area under the receiver
operating characteristic curve. Latent feature = Image and clinical feature dimensions when concatenated in a
fusion model. * p value < 0.05 denotes the comparisons are statistically significant.

3.3. Comparison of Image-Only with Fusion-Image-Only

To show the importance of fusion, the performance comparison between the model
trained and tested on CXR images only (Image-only) and the model trained on the fusion
model (i.e., both CXRs and clinical variables) but tested on CXR images only (Fusion-image-
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only) are provided in Table 2. Combined with the results in Table 1, the fusion model with
additional clinical variables significantly improved COVID-19 risk prediction compared to
the Image-only model. Notably, even without the clinical variables, the well-trained fusion
model outperformed the Image-only model on the same CXR-only test set. Specifically,
for three individual models, the well-trained fusion model improved the accuracy by
0.008~0.011, the recall by 0.004~0.012, the precision by 0.008~0.043, the F1 by 0.007~0.013,
the MCC by 0.009~0.020, and the AUC by 0.009~0.016. Additionally, heatmaps generated
from the Image-only and Fusion-image-only models using gradient class activation maps
(Grad-CAM) are provided in Figure 2 to visualize the salient features of each CXR used by
the model for COVID-19 risk level classification. For correct risk-level predictions, these
heatmaps highlight abnormalities in the lungs and demonstrate that the fusion model
captures more relevant features for classification than the image-only model. In some
cases, where the fusion model made the correct classification and the image-only model
misclassified, the heatmaps showed different feature patterns, with the former highlighting
lung abnormalities and the latter not.

Typically, the clinical features are partially present. Supplementary Table S3 illustrates
the results of the well-trained fusion model on CXR images with the proportionally in-
creasing clinical variables. The results showed that, as more clinical features are integrated
into the model, its performance of the well-trained fusion model on the test set improves.
For example, when 80% of the clinical variables are present, and only 20% are missing at
random, the fusion model (e.g., with the DenseNet architecture) achieved an accuracy of
0.645, a recall of 0.647, a precision of 0.656, an F1 of 0.644, an MCC of 0.625, and an AUC of
0.816.
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Figure 2. Heatmaps of Gradient class activation maps (Grad-CAM) generated from the model
showing the location of important features for high-risk predictions in confirmed COVID-19 patients.
The redder the intensity of the heatmap, the more important the feature areas. Heatmaps generated
from Image-only models (a,c,e,g) and Fusion-image-only models (b,d,f,h) are compared for cases
of correct (a–d,f,h) and incorrect predictions (e,g). For the same subject using only CXR as model
input, the Fusion model made correct predictions, with heatmaps (f,h) highlighting abnormalities in
the lungs, while the Image-only model misclassified the predictions, (e,g) highlighting unnecessary
background.
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Table 2. Performance of models for risk predictions in confirmed COVID-19 subjects on external test
sets using only CXRs as model input.

COVID-
Level

EfficientNet
Image-Only

ResNet
Image-Only

Densenet
Image-Only

Image-Only
Ensemble

EfficientNet
Fusion-

Image-Only

ResNet
Fusion-

Image-Only

DenseNet
Fusion-

Image-Only

Fusion-
Image-Only
Ensemble

Accuracy 0.582
[0.572, 0.591]

0.614
[0.604, 0.624]

0.615
[0.608, 0.622] 0.621 * 0.593

[0.581, 0.606]
0.625

[0.615, 0.634]
0.623

[0.604, 0.641] 0.632 *

Recall 0.581
[0.572, 0.591]

0.616
[0.604, 0.624]

0.616
[0.607, 0.624] 0.619 * 0.593

[0.582, 0.606]
0.625

[0.615, 0.634]
0.620

[0.608, 0.632] 0.629 *

Precision 0.604
[0.594, 0.614]

0.664
[0.645, 0.683]

0.631
[0.627, 0.634] 0.665 * 0.657

[0.646, 0.667]
0.662

[0.643, 0.681]
0.639

[0.623, 0.647] 0.664 *

F1 0.576
[0.567, 0.586]

0.609
[0.595, 0.624]

0.614
[0.606, 0.621] 0.620 * 0.583

[0.567, 0.600]
0.619

[0.607, 0.631]
0.627

[0.611, 0.639] 0.634 *

MCC 0.553
[0.540, 0.566]

0.587
[0.580, 0.594]

0.602
[0.590, 0.614] 0.608 0.562

[0.553, 0.571]
0.607

[0.594, 0.620]
0.613

[0.605, 0.621] 0.618

AUC 0.769
[0.764, 0.774]

0.798
[0.788, 0.808]

0.781
[0.72, 0.792] 0.807 * 0.781

[0.768, 0.796]
0.807

[0.803, 0.811]
0.797

[0.784, 0.806] 0.813 *

Notes: Data in parentheses are 95% CIs from five repeated experimental runs. AUC = area under
the receiver operating characteristic curve; Image-only = models trained and tested with CXRs only;
Fusion-image-only = well-trained fusion models but tested with CXRs only. * p value < 0.05 denotes the compar-
isons are statistically significant.

3.4. Comparison of Feature-Only with Fusion-Feature-Only

We performed the same analysis as described above, by comparing the performance
of models trained and tested on clinical features only (Feature-only) with models first
well-trained on the fusion model but tested on the clinical features (Fusion-Feature-only).
As shown in Table 3, even without CXRs as input, the well-trained fusion model sig-
nificantly outperformed the Feature-only model with an AUC of 0.733. In addition, we
compared the neural-network-based models with several machine learning algorithms
trained on the same clinical features, including random forests (RM), quadratic discrimi-
nant analysis (QDA), and Linear Ridge (LR) classification. Interestingly, RF achieved the
best performance, followed by Fusion-Feature-only and LR, while Feature-only had the
lowest performance among all metrics. Furthermore, it is still worth noting that the model
in Table 1 combining CXRs and clinical variables still outperformed all results in Table 3.

Table 3. Performance of models for risk predictions in confirmed COVID-19 subjects on external test
sets using only clinical variables as model input.

COVID-Level DNN
Feature-Only

Fusion
Feature-Only Random Forests QDA Linear Ridge

Accuracy 0.440
[0.432, 0.448]

0.539
[0.525, 0.553]

0.560
[0.553, 0.567]

0.526
[0.519, 0.533]

0.536
[0.527, 0.546]

Recall 0.441
[0.430, 0.449]

0.540
[0.526, 0.555]

0.563
[0.554, 0.569]

0.528
[0.517, 0.539]

0.533
[0.525, 0.541]

Precision 0.193
[0.183, 0.214]

0.567
[0.553, 0.582]

0.588
[0.517, 0.671]

0.532
[0.526, 0.538]

0.544
[0.532, 0.556]

F1 0.269
[0.253, 0.280]

0.560
[0.542, 0.577]

0.573
[0.568, 0.581]

0.479
[0.461, 0.496]

0.536
[0.527, 0.545]

MCC 0.243
[0.230, 0.256]

0.541
[0.529, 0.553]

0.562
[0.550, 0.574]

0.435
[0.421, 0.449]

0.507
[0.497, 0.517]

AUC 0.502
[0.481, 0.522]

0.733
[0.730, 0.737]

0.768
[0.759, 0.777]

0.600
[0.587, 0.613]

0.625
[0.613, 0.636]

Notes: Data in parentheses are 95% CIs from five repeated experimental runs. AUC = area under the receiver
operating characteristic curve; QDA = Quadratic Discriminant Analysis; Feature-only = models trained and tested
with clinical variables only; Fusion-Feature-only = well-trained fusion models but tested with clinical variables
only.
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4. Discussion

In this study, we proposed DeepCOVID-Fuse, a fusion model that incorporates clinical
variables with CXRs to predict future risks of clinically meaningful outcomes in patients
diagnosed with confirmed COVID-19. The fusion model was trained and tested using
only the first inpatient admission data of each subject, which has great clinical implications
for improving our healthcare management system, particularly in intensive care units.
DeepCOVID-Fuse achieved an overall accuracy of 0.658 and an AUC of 0.842 on a hold-
out testing set from a separate hospital. We further compared this model with models
trained on CXR images only or clinical variables only, and evaluated the performance of
DeepCOVID-Fuse when only CXR images or clinical variables were available. To the best
of our knowledge, our study is the first to demonstrate the effectiveness of a fusion model,
which is well-trained on multiple modalities but is capable of achieving a better prediction
performance and generating meaningful visual heatmaps when only one or parts of the
modalities were available on CXRs and clinical features.

The aim of our work is to assist with resource allocation by addressing a three-class
prediction problem, where the level of risk for COVID-19 patients is determined based
on their mortality status, need for mechanical ventilation, ICU admission, and hospital
length of stay (LoS). The three classes are categorized as low, intermediate, and high risk.
As the demand for hospital capacity is reported to be dramatically increasing during
the COVID-19 pandemic [31], predicting ventilator usage or ICU admissions in advance
will reduce pressure on hospitalization management. In addition, LoS is critical to the
allocation of bed capacity, so we chose a 1-day LoS as the separation to differentiate low and
intermediate risk, as only patients with a LoS of more than 1 day needed to be allocated a
bed. Furthermore, the results in Tables 1 and 2 show that the fusion model with the addition
of clinical variables significantly improved risk performances over the model trained only
on CXRs, indicating that clinical variables are strongly associated with COVID-19 severity.
Meanwhile, the performance of the ensemble fusion models being higher than that of each
model individually is consistent with the previous study that showed the ensemble model
reduces the generalization error of predictions [4].

In most real-world scenarios, it is common for a modality to be missing or incomplete.
As such, the fusion model is not guaranteed to utilize inputs from all modalities, i.e., some
COVID-19 patients have either CXRs or a subset of clinical data. One study showed that
this can be a limitation of fusion models, as predictions can be overly influenced by the
most feature-rich modalities leading to poor generalization [32]. However, our study shows
that even if only one or partial modalities are available, well-trained fusion models can
still achieve better performances than models trained on that single or partial modality
alone, as shown in Tables 2 and 3. Learning correlations across different modalities is the
possible explanation for this improved performance. Specifically, since different modalities
of a fusion model are simultaneously back-propagated through the loss, they complement
each other, so the fusion model is able to learn better latent space representations for each
model branch. Therefore, even if only a subset of CXRs or clinical variables are available,
fusion models can still play an important role in learning more discriminative features. The
experiments in Supplementary Table S3 further show that once the fusion model was well
trained, the model performance continued to improve as long as more clinical variables
were available in the test set. This can have significant implications for future medical
research, as it gives a strong support to the scenario that if images are provided with more
usable information during training, i.e., simple features such as age and gender, even if
only images are available at testing stage, a better classification prediction can be achieved
compared with that using only images to train and test models.

Heatmaps generated by Grad-CAM provide another perspective on the superiority of
fusion models in learning feature representations of CXR images compared to image-only
models. As shown in Figure 2e–h, when only CXRs were available, the image-only model
misclassified a high-risk subject as intermediate, while the well-trained fusion model made
the correct prediction. This can be observed from their respective heatmaps, where the
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fusion model highlighted discriminative features of the lung, while the other located the
wrong area. When making the correct predictions, all heatmaps looked at areas close to the
lung, as shown in Figure 2a–d,f–h.

Although previous studies have existed to predict the severity of confirmed COVID-19
patients, our work has a different focus and is unique in many ways. For example, Liang
et al. developed a DL-based survival model on a 1D clinical dataset collected at admission
to predict the risk of COVID-19 patients being critically ill within 30 days, achieving an
overall AUC of above 0.85 [33]. However, they were limited by a lack of clinical datasets,
and no imaging data were available. Shamout et al. later proposed a deep learning model
using CXRs and routine clinical variables to predict the deterioration risk (i.e., intubation,
ICU admission, or mortality) in COVID-19 subjects within 96 h with an AUC of 0.786 [34].
Similarly, Jiao et al. used a DL network combining CXR and clinical data to predict binary
outcomes of COVID-19 patient severity (i.e., severe or not), and obtained AUCs ranging
from 0.731 to 0.792 [8]. Although two modalities were provided, both studies adopted a
late fusion strategy with two independently trained models. In contrast, we trained an
end-to-end fusion model that could learn and transfer information between two modalities.
A study similar to our work that combined initial CXRs and clinical variables into an end-to-
end fusion model to predict mortality in COVID-19 subjects achieved an AUC of 0.82 [35].
However, their model was only trained on 499 subjects with an age range of 21 to 50 years,
which may lead to poor model generalization, whereas our model included 2085 subjects of
all ages. Another study from Soda et al. developed a multi-branch deep learning framework
that combined CXRs and clinical information to predict the clinical outcome (binary: mild
or severe) of COVID-19 patients [36]. The model achieved an accuracy of 0.748; however,
the study focused solely on the binary outcome with a relatively small sample size of
820 subjects. In addition, Deb et al. proposed a CovSeverity-Net, which uses CXRs to
estimate the severity (mild, moderate, severe) of COVID-19 patients [37]. However, unlike
our approach, which aims to better assist with resource allocation, Deb et al. included
images from all time points, rather than solely using the first inpatient admission of each
subject. Most importantly, the focus of this paper is to comprehensively evaluate the
statistical and visual performance of fusion models trained on multiple modalities but
tested on one or a subset of modalities.

There are some limitations to this study that need to be acknowledged. First, several
clinical data in the training dataset are still missing or incomplete. Although we have
shown that that not all clinical data is needed in the test set, having a more complete
training dataset guarantees a better and more robust model. Second, we did not compare
the performance of our fusion model with radiologists, because risk prediction by experts
on both CXR and clinical data is challenging and subjective. There is no true, universal
ground truth. Next, as shown in Table 3, we found that basic machine learning algorithms,
such as random forests, outperformed deep learning-based models, indicating that our
fusion model has not yet perfectly extracted features from 1D clinical data. Therefore, future
work will explore integrating random forests with deep neural networks to further improve
model performance. Lastly, it is worth noting that the current model cannot identify the
most relevant features that contribute to patient outcomes, which is important information
for clinicians. To address this limitation, we plan to explore new models, such as the
merging of random forests with CNNs or incorporating attention mechanisms [38,39], as
they may help to predict the importance score of each clinical variable. This information
can be valuable for clinicians in understanding the relative importance of different variables
in determining patient outcomes.

5. Conclusions

In conclusion, we proposed DeepCOVID-Fuse, a fusion model to predict risk levels
in COVID-19 subjects using CXRs and clinical variables obtained at their initial inpatient
admission. We showed that models combining both CXRs and clinical features outper-
formed models with only CXRs or clinical variables. Furthermore, we demonstrated that
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the well-trained fusion model was able to achieve good model performance when only
single or partial modality was available. We believe that this work demonstrates that it is
possible to predict high-risk patients at admission to further benefit hospital triage systems,
and also has the potential to promote the use of fusion models in other fields of medical
research. Finally, we have made our codes and model weights publicly available to facilitate
future research and enable easy comparison of our model’s performance with others.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10050556/s1. Supplementary Table S1: Patient
characteristics from the training, validation and test set; Supplementary Table S2: Performance of
DeepCOVID-Fuse (Ensemble) for risk predictions in confirmed COVID-19 subjects on external test
sets in different age groups; Supplementary Table S3: Performance of fusion-image-only models for
risk predictions in confirmed COVID-19 subjects on external test sets using CXRs as model input with
a random subset (%) of clinical variables (0: no clinical features, 100: full clinical features); Figure S1.
The preprocessing of clinical features. Features are classified into three types, binary, multi-class, and
continuous with different missing imputation and scaling operations.
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