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Abstract

Recent technological advances have enabled DNA methylation to be assayed at single-cell resolution. However,

current protocols are limited by incomplete CpG coverage and hence methods to predict missing methylation

states are critical to enable genome-wide analyses. We report DeepCpG, a computational approach based on deep

neural networks to predict methylation states in single cells. We evaluate DeepCpG on single-cell methylation data

from five cell types generated using alternative sequencing protocols. DeepCpG yields substantially more accurate

predictions than previous methods. Additionally, we show that the model parameters can be interpreted, thereby

providing insights into how sequence composition affects methylation variability.
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Background

DNA methylation is one of the most extensively studied

epigenetic marks and is known to be implicated in a wide

range of biological processes, including chromosome in-

stability, X-chromosome inactivation, cell differentiation,

cancer progression and gene regulation [1–4].

Well-established protocols exist for quantifying average

DNA methylation levels in populations of cells. Recent

technological advances have enabled profiling DNA

methylation at single-cell resolution, either using genome-

wide bisulfite sequencing (scBS-seq [5]) or reduced repre-

sentation protocols (scRRBS-seq [6–8]). These protocols

have already provided unprecedented insights into the

regulation and the dynamics of DNA methylation in single

cells [6, 9], and have uncovered new linkages between

epigenetic and transcriptional heterogeneity [8, 10, 11].

Because of the small amounts of genomic DNA start-

ing material per cell, single-cell methylation analyses are

intrinsically limited by moderate CpG coverage (Fig. 1a;

20–40% for scBS-seq [5]; 1–10% for scRRBS-seq [6–8]).

Consequently, a first critical step is to predict missing

methylation states to enable genome-wide analyses.

While methods exist for predicting average DNA

methylation profiles in cell populations [12–16], these

approaches do not account for cell-to-cell variability.

Additionally, existing methods require a priori defined

features and genome annotations, which are typically

limited to a narrow set of cell types and conditions.

Here, we report DeepCpG, a computational method

based on deep neural networks [17–19] for predicting

single-cell methylation states and for modelling the

sources of DNA methylation variability. DeepCpG lever-

ages associations between DNA sequence patterns and

methylation states as well as between neighbouring CpG

sites, both within individual cells and across cells. Unlike

previous methods [12, 13, 15, 20–23], our approach does

not separate the extraction of informative features and

model training. Instead, DeepCpG is based on a modular

architecture and learns predictive DNA sequence and

methylation patterns in a data-driven manner. We

evaluated DeepCpG on mouse embryonic stem cells

profiled using whole-genome single-cell methylation

profiling (scBS-seq [5]), as well as on human and mouse

cells profiled using a reduced representation protocol

(scRRBS-seq [8]). Across all cell types, DeepCpG yielded

substantially more accurate predictions of methylation
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states than previous approaches. Additionally, DeepCpG

uncovered both previously known and de novo sequence

motifs that are associated with methylation changes and

methylation variability between cells.

Results and discussion

DeepCpG is trained to predict binary CpG methylation

states from local DNA sequence windows and observed

neighbouring methylation states (Fig. 1a). A major fea-

ture of the model is its modular architecture, consisting

of a CpG module to account for correlations between

CpG sites within and across cells, a DNA module to de-

tect informative sequence patterns, and a Joint module

that integrates the evidence from the CpG and DNA

module to predict methylation states at target CpG sites

(Fig. 1b).

Briefly, the DNA and CpG modules were designed to

specifically model each of these data modalities. The

DNA module is based on a convolutional architecture,

which has been successfully applied in different domains

[24–27], including genomics [28–33]. The module takes

DNA sequences in windows centred on target CpG sites

as input, which are scanned for sequence motifs using

convolutional filters, analogous to conventional position

weight matrices [34, 35] (“Methods”). The CpG module

is based on a bidirectional gated recurrent network [36],

a sequential model that compresses patterns of neigh-

bouring CpG states from a variable number of cells into

a fixed-size feature vector (“Methods”). Finally, the Joint

module learns interactions between output features of

the DNA and CpG modules and predicts the methyla-

tion state at target sites in all cells using a multi-task

architecture. The trained DeepCpG model can be used

for different downstream analyses, including i) to impute

low-coverage methylation profiles for sets of cells

(Fig. 1c) and ii) to discover DNA sequence motifs that
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Fig. 1 DeepCpG model training and applications. a Sparse single-cell CpG profiles as obtained from scBS-seq [5] or scRRBS-seq [6–8]. Methylated

CpG sites are denoted by ones, un-methylated CpG sites by zeros, and question marks denote CpG sites with unknown methylation state (missing

data). b Modular architecture of DeepCpG. The DNA module consists of two convolutional and pooling layers to identify predictive motifs from

the local sequence context and one fully connected layer to model motif interactions. The CpG module scans the CpG neighbourhood of

multiple cells (rows in b) using a bidirectional gated recurrent network (GRU) [36], yielding compressed features in a vector of constant size. The

Joint module learns interactions between higher-level features derived from the DNA and CpG modules to predict methylation states in all cells.

c, d The trained DeepCpG model can be used for different downstream analyses, including genome-wide imputation of missing CpG sites (c)

and the discovery of DNA sequence motifs that are associated with DNA methylation levels or cell-to-cell variability (d)
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are associated with methylation states and cell-to-cell

variability (Fig. 1d).

Accurate prediction of single-cell methylation states

First, we assessed the ability of DeepCpG to predict

single-cell methylation states and compared the model

to existing imputation strategies for DNA methylation

(“Methods”). As a baseline approach, we considered

local averaging of the observed methylation states, either

in 3-kbp windows centred on the target site of the same

cell (WinAvg) or across cells at the target site (CpGAvg).

Additionally, we compared DeepCpG to random forest

classifiers [37] trained on individual cells using the DNA

sequence information and neighbouring CpG states as

input (RF). Finally, we evaluated a recently proposed

random forest model to predict methylation rates for

bulk ensembles of cells [12], which takes comprehensive

DNA annotations into account, including genomic con-

texts, and tissue-specific regulatory annotations such as

DNase1 hypersensitivity sites, histone modification

marks, and transcription factor binding sites (RF Zhang).

All methods were trained, selected and tested on distinct

chromosomes via holdout validation (“Methods”). Since

the proportion of methylated versus unmethylated CpG

sites can be unbalanced in globally hypo- or hyper-

methylated cells, we used the area under the receiver op-

erating characteristics curve (AUC) to quantify the

prediction performance of different models. We have

also considered a range of alternative metrics, including

precision-recall curves, F1 score [38] and Matthews cor-

relation coefficient [39], resulting in overall consistent

conclusions (Additional file 1: Figures S1–S3; Additional

file 2).

Initially, we applied all methods to 18 serum-cultured

mouse embryonic stem cells (mESCs; average CpG

coverage 17.7%; Additional file 1: Figure S4), profiled

using whole-genome single-cell bisulfite sequencing

(scBS-seq) [5].

DeepCpG yielded more accurate predictions than any

of the alternative methods, both genome-wide and in

different genomic contexts (Fig. 2). Notably, DeepCpG

was consistently more accurate than RF Zhang, a model

that relies on genomic annotations. These results indi-

cate that DeepCpG can automatically learn higher-level

features from the DNA sequence. To investigate this, we

tested for associations between the activity of convolu-

tional filters in the DNA module and known sequence

annotations (“Methods”), finding both positive and

negative correlations with several annotations, including

DNase1 hypersensitive sites, histone modification marks,

and CpG-rich genomic contexts (Additional file 1: Fig-

ure S5). The ability to extract higher-level features from

the DNA sequence is particularly important for analys-

ing single-cell datasets, where individual cells may be of

different cell types and states, making it difficult to de-

rive appropriate annotations.

To assess the relative importance of DNA sequence

features compared to neighbouring CpG sites, we trained

the same models, however, either exclusively using DNA

sequence features (DeepCpG DNA, RF DNA) or neigh-

bouring methylation states (DeepCpG CpG, RF CpG).

Consistent with previous studies in bulk populations [12],

methylation states were more predictive than DNA

features, and models trained with both CpG and DNA

features performed best (Fig. 2b). Notably, DeepCpG

trained with CpG features alone outperformed random

forest classifiers trained with both CpG and DNA features.

A likely explanation for the accuracy of the CpG module

is its recurrent network architecture, which enables the

module to effectively transfer information from neigh-

bouring CpG sites across different cells (Additional file 1:

Figure S6).

The largest relative gains between RF and DeepCpG

were observed when training both models with DNA

sequence information only (AUC 0.83 versus 0.80;

Fig. 2b). This demonstrates the strength of the DeepCpG

DNA module to extract predictive sequence features

from large DNA sequence windows of up to 1001 bp

(Additional file 1: Figure S7a), which is particularly crit-

ical for accurate predictions from DNA in uncovered

genomic regions, for example when using reduced repre-

sentation sequencing data [6–8]. Consistent with this,

the relative performance gain of DeepCpG compared to

other methods was highest in contexts with low CpG

coverage (Fig. 2c; Additional file 1: Figure S8).

Next, we explored the prediction performance of all

models in different genomic contexts. In line with

previous findings [12, 13], all models performed best in

GC-rich contexts (Fig. 2d). However, DeepCpG offered

most advantages in GC-poor genomic contexts, including

non-CpG island promoters, enhancer regions, and histone

modification marks (H3K4me1, H3K27ac)—contexts that

are known to be associated with higher methylation

variability between cells.

We also applied DeepCpG to 12 2i-cultured mESCs

profiled using scBS-seq [5] and to data from three cell

types profiled using scRRBS-seq [8], including 25 hu-

man hepatocellular carcinoma cells (HCCs), six human

heptoplastoma-derived (HepG2) cells, and an additional

set of six mESCs. Notably, in contrast to the serum cells,

the human cell types are globally hypomethylated

(Additional file 1: Figure S4). Across all cell types,

DeepCpG yielded substantially more accurate predictions

than alternative methods (Fig. 2e; Additional file 1:

Figure S2), demonstrating the broad applicability of the

model, including to hypo- and hypermethylated cells,

as well as to data generated using different sequencing

protocols.
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Estimation of the effect of DNA motifs and single-

nucleotide mutations on methylation states

In addition to imputing missing methylation states,

DeepCpG can be used to discover methylation-associated

motifs and to investigate the effect of single-nucleotide

mutations on CpG methylation.

To explore this, we used the DeepCpG DNA module

trained on serum mESCs and analysed the learnt filters of

the first convolutional layer. These filters recognise DNA

sequence motifs similarly to conventional position weight

matrices and can be visualised as sequence logos (Fig. 3;

Additional file 3). We considered two complementary
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metrics to assess the importance of the 128 motifs dis-

covered by DeepCpG: i) their occurrence frequency in

DNA sequence windows (activity), and ii) their estimated

effect on single-cell methylation states (Additional file 1:

Figure S9). To investigate the co-occurrence of motifs

across sequence windows, we applied principal component

analysis (Fig. 3) and hierarchical clustering (Additional file

1: Figures S10 and S11) to motif activities.

Motifs with similar nucleotide composition tended to

co-occur in the same sequence windows, where two major

motif clusters were associated with increased or decreased

methylation levels (Fig. 3; Additional file 1: Figure S12).

Consistent with previous findings [16, 40, 41], we ob-

served that motifs associated with decreased methylation

tended to be CG-rich and were most active in CG-rich

promoter regions, transcription start sites, as well as in

contexts with active promoter marks such as H3K4me3

and p300 sites (Additional file 1: Figure S11). Conversely,

motifs associated with increased methylation levels tended

to be AT rich and were most active in CG-poor genomic

contexts (Additional file 1: Figure S11).

20 out of the 128 learned motifs significantly matched

annotated motifs in the CIS-BP [42] and UniPROPE [43]

databases (FDR <0.05). 17 of these annotated motifs were

transcription factors with a known implication in DNA

methylation [16, 44, 45], including CTCF [46], E2f [47] and

members of the Sp/KLF family [48]—transcription factors

and regulators of cell differentiation. 13 annotated motifs

had been shown to interact with DNMT3a and DNMT3b

[44], two major DNA methylation enzymes. Three anno-

tated motifs have no clear associations with DNA methyla-

tion. These include Foxa2 [49, 50] and Srf [51, 52], which

are implicated in cell differentiation and embryonic devel-

opment, as well as Zfp637 [53, 54], a zinc finger protein

that has recently been linked to spermatogenesis in mouse.

The trained DeepCpG model can also be used to esti-

mate the effect of single-nucleotide mutations on CpG

methylation. We adapted a gradient-based approach [55]

to estimate mutational effects in a computationally effi-

cient manner, thereby greatly reducing the compute cost

compared to previous methods [29, 30, 32] (“Methods”).

As expected, mutations in the direct vicinity of the target

CpG site had the largest effects (Fig. 4). Mutations in CG

dense regions such as CpG islands or promoters tended to

have smaller effects, suggesting that DNA methylation in

these genomic contexts is more robust to single-nucleotide

mutations. Globally, we observed a negative correlation be-

tween mutational effects and DNA sequence conservation
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(P < 1.0 × 10−15; Additional file 1: Figure S13), providing evi-

dence that estimated single-nucleotide effects capture

genuine effects. We further investigated mutational

effects in HepG2 cells for 2379 methylation QTLs

(mQTLs) [56], finding that known mQTL variants have

significantly larger effects than matched random variants

(P < 1.0 × 10−15, Wilcoxon rank sum test; Additional file 1:

Figures S14 and S15).

Discovery of DNA motifs that are associated with

methylation variability

We further analysed the influence of motifs discovered

by DeepCpG on methylation variability between cells.

To discern motifs that affect variability between cells

from those that affect the average methylation level, we

trained a second neural network. This network had the

same architecture and in particular reused the motifs from

the DNA module of DeepCpG; however, it was trained to

jointly predict the variability across cells and the mean

methylation level of each CpG site (“Methods”).

Notably, this model could predict both global changes in

mean methylation levels (Pearson’s R = 0.80, MAD= 0.01,

mean absolute deviation (MAD); Additional file 1: Figure

S16), as well as cell-to-cell variability (Pearson’s R =

0.44, MAD = 0.03; Fig. 5d; Kendall’s R = 0.29; Add-

itional file 1: Figure S17).

There is an intrinsic relationship between mean

methylation levels and cell-to-cell variance (Additional

file 1: Figure S18); hence, the separation of the motif im-

pact on mean methylation and methylation variance is

partially confounded. To address this, we used a scoring

approach that separates the effect of individual motifs

on cell-to-cell variability and mean methylation levels

(“Methods”). Briefly, we estimated the correlation be-

tween motif activities and predicted mean methylation

levels as well as cell-to-cell variability and used the dif-

ference between the corresponding estimates to identify

variance- and mean methylation-associated motifs. This

analysis identified 22 motifs that were primarily associ-

ated with cell-to-cell variance (Fig. 5). These motifs

tended to be active in CG-poor and active enhancer

regions—sequence contexts with increased epigenetic

variability between cells. Twelve of the identified motifs

were AT-rich and associated with increased variability, in-

cluding the differentiation factors Foxa2 [49, 50], Hmg20b

[57] and Zfp637 [53, 54]. Notably, variance-increasing mo-

tifs were more frequent in unconserved regions such as ac-

tive enhancers, in contrast to variance- decreasing motifs,

which were enriched in evolutionarily conserved regions

such as gene promoters (Fig. 5b; Additional file 1: Figure

S19). Our analysis also revealed four motifs that were pri-

marily associated with mean methylation levels, which were

in contrast CG-rich and most active in conserved regions.

To explore whether the model predictions for vari-

able sites are functionally relevant, we overlaid predic-

tions with methylome–transcriptome linkages obtained

using parallel single-cell methylation and transcriptome

sequencing in the same cell type [10]. The rationale

behind this approach is that regions with increased

methylation variability are more likely to harbour associa-

tions with gene expression. Consistent with this hypothesis,

we observed a weak but globally significant association

(Pearson’s R = 0.11, P = 5.72 × 10−16; Additional file 1:

Figure S20).

Conclusions

Here we report DeepCpG, a computational approach

based on convolutional neural networks for modelling

low-coverage single-cell methylation data. Applying it

to mouse and human cells, we show that DeepCpG
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accurately predicts missing methylation states and de-

tects sequence motifs that are associated with changes

in methylation levels and cell-to-cell variability.

We have demonstrated that our model enables accurate

imputation of missing methylation states, thereby facilitat-

ing genome-wide downstream analyses. DeepCpG offers

major advantages in shallow sequenced cells as well as in

sparsely covered sequence contexts with increased methy-

lation variability between cells. More accurate imputation

methods may also help to reduce the required sequencing

depth in single-cell bisulfite sequencing studies, thereby

enabling the analysis of larger numbers of cells at reduced

cost.

We have further shown that DeepCpG can be used to

identify known and de novo sequence motifs that are

predictive for DNA methylation levels or methylation

variability and to estimate the effect of single-nucleotide

mutations. Several of the motifs discovered by DeepCpG

could be matched to known motifs that are implicated in

the regulation of DNA methylation. The specific motifs

that can be discovered are intrinsically limited to motifs

that account for variations in a given dataset and hence

depend on the considered cell type and latent factors that

drive methylation variability. Computational approaches

such as DeepCpG can also be used to discern pure epigen-

etic effects from variations that reflect DNA sequence

changes. Although we have not considered this in our

work, it would also be possible to use the model residuals

for studying methylation variability that is independent of

DNA sequence effects.

Finally, we have used additional data obtained from

parallel methylation–transcriptome sequencing protocols

a b c

d

Fig. 5 Prediction of methylation variability from local DNA sequence. a Difference of motif effect on cell-to-cell variability and methylation levels

for different genomic contexts. Motifs associated with increased cell-to-cell variability are highlighted in brown; motifs that are primarily associated with

changes in methylation level are shown in purple. b Genome-wide correlation coefficients between motif activity and DNA sequence conservation

(left), as well as cell-to-cell variability (right). c Sequence logos for selected motifs identified in (a), which are highlighted with coloured text in (b).

d Boxplots of the predicted and the observed cell-to-cell variability for different genomic contexts on held-out test chromosomes (left), alongside

Pearson and Kendall correlation coefficients within contexts (right). CGI CpG island, LMR low-methylated region, TSS transcription start site
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[10] to annotate regions with increased methylation vari-

ability. An important area of future work will be to inte-

grate multiple data modalities profiled in the same cells

using parallel-profiling methods [8, 10], which are becom-

ing increasingly available for different molecular layers.

Methods
DeepCpG model

DeepCpG consists of a DNA module to extract features

from the DNA sequence, a CpG module to extract fea-

tures from the CpG neighbourhood of all cells and a

multi-task Joint module that integrates the evidence

from both modules to predict the methylation state of

target CpG sites for multiple cells.

DNA module

The DNA module is a convolutional neural network

(CNN) with multiple convolutional and pooling layers and

one fully connected hidden layer. CNNs are designed to ex-

tract features from high-dimensional inputs while keeping

the number of model parameters tractable by applying a

series of convolutional and pooling operations. Unless

stated otherwise, the DNA module takes as input a 1001 bp

long DNA sequence centred on a target CpG site n, which

is represented as a binary matrix sn by one-hot encoding

the D = 4 nucleotides as binary vectors A = [1, 0, 0, 0],

T = [0, 1, 0, 0], G = [0, 0, 1, 0] and C = [0, 0, 0, 1]. The

input matrix sn is first transformed by a 1d-convolutional

layer, which computes the activations anfi of multiple con-

volutional filters f at every position i:

anf i ¼ ReLU
XL

l¼1

XD

d¼1
w
f ld
sn;iþl;d

� �
: ð1Þ

Here, wf are the parameters or weights of convolutional

filter f of length L. These can be interpreted similarly to

position weight matrices, which are matched against the

input sequence sn at every position i to recognise distinct

motifs. The ReLU(x) = max(0, x) activation function

sets negative values to zero, such that anfi corresponds

to the evidence that the motif represented by wf occurs

at position i.

A pooling layer is used to summarise the activations of

P adjacent neurons by their maximum value:

pnf i ¼ max kj j<P=2 anf ;iþk

� �
:

Non-overlapping pooling is applied with step size P to

decrease the dimension of the input sequence and hence

the number of model parameters. The DNA module has

multiple pairs of convolutional-pooling layers to learn

higher-level interactions between sequence motifs, which

are followed by one final fully connected layer with a

ReLU activation function. The number of convolutional-

pooling layers was optimised on the validation set. For

example, two layers were selected for models trained on

serum, HCCs and mESCs and three layers for the 2i and

HepG2 cells (Additional file 4).

CpG module

The CpG module consists of a non-linear embedding

layer to model dependencies between CpG sites within

cells, which is followed by a bidirectional gated recurrent

network (GRU) [36] to model dependencies between

cells. Inputs are 100d vectors x1, …, xT, where xt repre-

sents the methylation state and distance of K = 25 CpG

sites to the left and to the right of a target CpG site in

cell t. Distances were transformed to relative ranges by

dividing by the maximum genome-wide distance. The

embedding layer is fully connected and transforms xt
into a 256d vector xt, which allows learning possible in-

teractions between methylation states and distances

within cell t:

x�t ¼ ReLUðW x� ⋅ xt þ bx�Þ:

The sequence of vectors xt are then fed into a bidirec-

tional GRU [36], which is a variant of a recurrent neural

network (RNN). RNNs have been successfully used for

modelling long-range dependencies in natural language [58,

59], acoustic signals [60] and, more recently, genomic se-

quences [61, 62]. A GRU scans input sequence vectors x1;
…; xT from left to right and encodes them into fixed-size

hidden state vectors h1, …, hT:

rt ¼ sigmoidðWr x� ⋅ x
�
t þWrh⋅ ht−1 þ brÞ

ut ¼ sigmoidðWu x� ⋅ x
�
t þWuh⋅ ht−1 þ buÞ

het ¼ tanh
�
W

he x�⋅ x
�
t þW heh ⋅ ðrt⊙ht−1Þ þ bhe

�

ht ¼ 1−utð Þ⊙ht−1 þ ut⊙~ht :

The reset gate rt and update gate ut determine the

relative weight of the previous hidden state ht−1 and the

current input xt for updating the current hidden state

ht. The last hidden state hT summarises the sequence as

a fixed-size vector. Importantly, the set of parameters W

and b are independent of the sequence length T, which

allows summarising the methylation neighbourhood in-

dependent of the number of cells in the training dataset.

To encode cell-to-cell dependencies independently of

the order of cells, the CpG module is based on a bidirec-

tional GRU. It consists of a forward and backward GRU

with 256d hidden state vectors ht, which scan the input

sequence from the left and right, respectively. The last

hidden state vector of the forward and backward GRU

are concatenated into a 512d vector, which forms the

output of the CpG module.
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Joint module

The Joint module takes as input the concatenated last hid-

den vectors of the DNA and CpG module and models in-

teractions between the extracted DNA sequence and CpG

neighbourhood features via two fully connected hidden

layers with 512 neurons and ReLU activation function.

The output layer contains T sigmoid neurons to predict

the methylation rate ŷnt ∈ [0; 1] of CpG site n in cell t:

ŷnt xð Þ ¼ sigmoid xð Þ ¼
1

1þ e−x

� �
:

Model training

Model parameters were learnt on the training set by

minimizing the following loss function:

L wð Þ ¼ NLLw ŷ; yð Þ þ λ2 wk k2:

Here, the weight-decay hyper-parameter λ2 penalises

large model weights quantified by the L2 norm, and

NLLw(ŷ, y) denotes the negative log-likelihood, which

measures how well the predicted methylation rates ŷnt fit

to observed binary methylation states ynt ∈ {0, 1}:

NLLwðŷ ; yÞ ¼ −
XN

n¼1

XT

t¼1
ont ½ynt logðŷntÞ

þ ð1−yntÞlogð1−ŷntÞ�:

The binary indicator ont is set to one if the methylation

state ynt is observed for CpG site n in cell t, and zero

otherwise. Dropout [63] with different dropout rates for

the DNA, CpG and Joint module was used for additional

regularization. Model parameters were initialised ran-

domly following the approach in Glorot et al. [64]. The

loss function was optimised by mini-batch stochastic gra-

dient descent with a batch size of 128 and a global learn-

ing rate of 0.0001. The learning rate was adapted by Adam

[65] and decayed by a factor of 0.95 after each epoch.

Learning was terminated if the validation loss did not

improve over ten consecutive epochs (early stopping). The

DNA and CpG module were pre-trained independently to

predict methylation from the DNA sequence (DeepCpG

DNA) or the CpG neighbourhood (DeepCpG CpG). For

training the Joint module, only the parameters of the

hidden layers and the output layers were optimised, while

keeping the parameters of the pre-trained DNA and CpG

module fixed. Training DeepCpG on 18 serum mESCs

using a single NVIDIA Tesla K20 GPU took approxi-

mately 24 h for the DNA module, 12 h for the CpG mod-

ule and 4 h for the Joint module. Model hyper-parameters

were optimised on the validation set by random sampling

[66] (Additional file 4). DeepCpG is implemented in

Python using Theano [67] 0.8.2 and Keras [68] 1.1.2.

Prediction performance evaluation

Data pre-processing

We evaluated DeepCpG on different cell types profiled

with scBS-seq [5] and scRRBS-seq [8].

scBS-seq-profiled cells contained 18 serum and 12 2i

mESCs, which were pre-processed as described in

Smallwood et al. [5], with reads mapped to the GRCm38

mouse genome. We excluded two serum cells (RSC27_4,

RSC27_7) since their methylation pattern deviated

strongly from the remaining serum cells.

scRRBS-seq-profiled cells were downloaded from the

Gene Expression Omnibus (GEO; GSE65364) and con-

tained 25 human HCCs, six human heptoplastoma-derived

cells (HepG2) and six mESCs. Following Hou et al. [8], one

HCC was excluded (Ca26) and we restricted the analysis to

CpG sites that were covered by at least four reads. For

HCCs and HepG2 cells, the position of CpG sites was lifted

from GRCh37 to GRCh38, and for mESC cells from

NCBIM37 to GRCm38, using the liftOver tool from the

UCSC Genome Browser.

Binary CpG methylation states for both scBS-seq- and

scRRBS-seq-profiled cells were obtained for CpG sites

with mapped reads by defining sites with more methyl-

ated than un-methylated read counts as methylated, and

un-methylated otherwise.

Holdout validation

For all prediction experiments and evaluations, we used

chromosomes 1, 3, 5, 7, 9 and 11 as the training set,

chromosomes 2, 4, 6, 8, 10 and 12 as the test set and the

remaining chromosomes as the validation set (Additional

file 5). For each cell type, models were fitted on the

training set, hyper-parameters were optimised on the

validation set and the final model performance and inter-

pretations were exclusively reported on the test set. For

computing binary evaluation metrics, such as accuracy, F1

score or MCC score, predicted methylation probabilities

greater than 0.5 were rounded to one and set to zero

otherwise. Genomic context annotations as shown in

Fig. 2d are described in Additional file 6.

The prediction performance of DeepCpG was com-

pared with random forest classifiers trained on each cell

separately, using either features similar to DeepCpG

(RF) or genome annotation marks as described in Zhang

et al. [12] (RF Zhang). Additionally, we considered two

baseline models, which estimate missing methylation

states by averaging observed methylation states, either

across consecutive 3-kbp regions within individual cells

(WinAvg) or across cells at a single CpG site (CpGAvg).

Window averaging (WinAvg)

For window averaging, the methylation rate ŷnt of CpG

site n and cell t was estimated as the mean of all observed
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CpG neighbours yn+k,t in a window of length W = 3001 bp

centred on the target CpG site n:

ŷnt ¼ mean kj j<W
2 ;k≠0

ynþk;t

� �
:

ŷnt was set to the mean genome-wide methylation rate of

cell t if no CpG neighbours were observed in the window.

CpG averaging (CpGAvg)

For CpG averaging, the methylation rate ŷnt of CpG site

n in cell t was estimated as the average of the observed

methylation states ynt′ across all remaining cells t′≠ t:

ŷnt ¼ meant′≠t ynt′ð Þ:

ŷnt was set to the genome-wide average methylation

rate of cell t if no methylation states were observed in

any of the other cells.

Random forest models (RF, RF Zhang)

Features of the RF model were i) the methylation state

and distance of 25 CpG sites to the left and right of the

target site (100 features) and ii) k-mer frequencies in the

1001-bp genomic sequence centred on the target site

(256 features). The optimal parameter value for k (k = 4)

was found using holdout validation (Additional file 1:

Figure S21a).

The features for the RF Zhang model (Additional file 7)

included i) the methylation state and distance of two CpG

neighbours to the left and right of the target site (eight

features), ii) annotated genomic contexts (23 features), iii)

transcription factor binding sites (24 features), iv) histone

modification marks (28 features) and v) DNaseI hypersen-

sitivity sites (one feature). These features were obtained

from the ChipBase database and UCSC Genome Browser

for the GRCm37 mouse genome and mapped to the

GRCm38 mouse genome using the liftOver tool from the

UCSC Genome Browser.

We trained a separate random forest model for each in-

dividual cell, as a pooled multi-cell model performed

worse (Additional file 1: Figure S21b). Hyper-parameters,

including the number of trees and the tree depth, were

optimised for each cell separately on the validation set by

random sampling. Random forest models were imple-

mented using the RandomForestClassifer class of the

scikit-learn v0.17 Python package.

Motif analysis

The motif analysis as presented in the main text was

performed using the DNA module trained on serum

mESCs. Motifs discovered for 2i cells, HCCs, HepG2

cells and mESCs are provided in Additional file 3. In the

following, motifs are referred to filters of the first convo-

lutional layer of the DNA module.

Visualization, motif comparison, Gene Ontology analysis

Filters of the convolutional layer of the DNA module

were visualised by aligning sequence fragments that

maximally activated them. Specifically, the activations of

all filter neurons were computed for a set of sequences.

For each sequence sn and filter f of length L, sequence

window sn,i − L/2, …, sn,i + L/2 were selected, if the activa-

tion anfi of filter f at position i (Eq. 1), was greater than

0.5 of the maximum activation of f over all se-

quences n and positions i, i.e. anfi > 0.5 maxni(anfi). Se-

lected sequence windows were aligned and visualised as

sequence motifs using WebLogo [69] version 3.4.

Motifs discovered by DeepCpG were matched to anno-

tated motifs in the Mus musculus CIS-BP [42] and

UniPROBE [43] database (version 12.12, updated 14 Mar

2016), using Tomtom 4.11.1 from the MEME-Suite [70].

Matches at FDR <0.05 were considered as significant.

For Gene Ontology enrichment analysis, the web inter-

face of the GOMo tool of MEME-Suite was used.

Quantification of motif importance

Two metrics were used to quantify the importance of

filters: their activity (occurrence frequency) and their

influence on model predictions.

Specifically, the activity of filter f for a set of sequences,

e.g. within a certain genomic context, was computed as

the average of mean sequence activities ānf, where ānf de-

notes the weighted mean of activities anfi across all win-

dow positions i (Eq. 1). A linear weighting function was

used to compute ānf that assigns the highest relative

weight to the centre position.

The influence of filter f on the predicted methylation

states ŷnt of cell t was computed as the Pearson correl-

ation rft = corn(ānf, ŷnt) over CpG sites n, and the mean

influence rf over all cells by averaging rft.

Motif co-occurrence

The co-occurrence of filters was quantified using princi-

pal component analysis on the mean sequence activa-

tions ānf (Fig. 3) and pairwise correlations between mean

sequence activations (Additional file 1: Figure S10).

Conservation analysis

The association between filter activities ānf and sequence

conservation was assessed using Pearson correlation.

PhastCons [71] conservation scores for the Glire subset

(phastCons60wayGlire) were downloaded from the UCSC

Web Browser and used to quantify sequence conservation.

Effect of sequence and methylation state changes

We used gradient-based optimization as described in

Simonyan et al. [55] to quantify the effect of changes in

the input sequence sn on predicted methylation rates

ŷnt(sn). Specifically, let ŷn(sn) = meant(ŷnt(sn)) be the mean
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predicted methylation rate across cells t. Then the effect

esnid of changing nucleotide d at position i was quantified

as:

esnid ¼
Δ ŷnðsnÞ

Δsnid
� ð1−snidÞ:

Here, the first term is the first-order gradient of ŷn with

respect to snid and the second term sets the effect of wild-

type nucleotides (snid = 1) to zero. The overall effect score

esni at position i was computed as the maximum absolute

effect over all nucleotide changes, i.e. esni ¼ maxd esnid
�� �� .

The overall effect of changes at position i as shown in

Fig. 3b was computed as the mean effect esi ¼ meann esni
� �

across all sequences n. For the mutation analysis shown in

Additional file 1: Figure S13, esni was correlated with

PhastCons (phastCons60wayGlire) conservation scores.

For quantifying the effect of methylation QTLs (mQTLs)

as shown in Additional 1: Figure S14, we obtained mQTLs

from the supplementary table of Kaplow et al. [56] and

used the DeepCpG DNA module trained on HepG2 cells

to compute effect scores for true mQTL variants. Non-

mQTL variants were randomly sampled within the same

sequence windows, distance-matched to real mQTL

variants.

Predicting cell-to-cell variability

For predicting cell-to-cell variability (variance) and mean

methylation levels, we trained a second neural network

with the same architecture as the DNA module, except for

the output layer. Specifically, output neurons were re-

placed by neurons with a sigmoid activation function to

predict for a single CpG site n both the mean methylation

rate m̂ns and cell-to-cell variance v̂ns within a window of

size s ∈ {1000, 2000, 3000, 4000, 5000} bp. Multiple win-

dow sizes were used to obtain predictions at different

scales, using a multi-task architecture, thereby mitigating

the uncertainty of mean and variance estimates in low-

coverage regions. For training the resulting model,

parameters were initialised with the corresponding

parameters of the DNA module and fine-tuned, except

for motif parameters of the convolutional layer. The

training objective was:

LðwÞ ¼ MSEwðm^;m; v̂ ; vÞ þ λ2∥w∥2;

where MSE the is mean squared error between model

predictions and training labels:

MSEwðm^;m; v̂ ; vÞ ¼
XN

n¼1

XS

s¼1

ðmns−m^nsÞ
2 þ ðvns−v̂nsÞ

2:

mns is the estimated mean methylation level for a win-

dow centred on target site n of a certain size indexed by s:

mns ¼
1

T

XT

t¼1

mnst:

Here, mnst denotes the estimated mean methylation

rate of cell t computed by averaging the binary methyla-

tion state yit of all observed CpG sites Ynst in window s:

mnst ¼
1

Y nstj j

X
i∈Y nst

yit ;

where vns denotes the estimated cell-to-cell variance

vns ¼
1

T

XT

t¼1
mnst−mnsð Þ2:

Identifying motifs associated with cell-to-cell variability

The influence rvf s of filter f on cell-to-cell variability in

widows of size s was computed as the Pearson correl-

ation between mean sequence filter activities ānf and

predicted variance levels v̂ns of sites n:

rvfs ¼ cornðanf ;v̂nsÞ:

The influence rmf s on predicted mean methylation

levels m̂ns was computed analogously. The difference

rdf s ¼ rvf s

���
���� rmf s

���
��� between the absolute value of the in-

fluence on variance and mean methylation levels was

used to identify motifs that were primarily associated

with cell-to-cell variance ( rdf s > 0.25) or with changes

in mean methylation levels (rdf s < −0.25).

Functional validation of predicted variability

For functional validation, methylation–transcriptome link-

ages as reported in Angermueller et al. [10] were corre-

lated with the predicted cell-to-cell variability. Specifically,

let reij be the linkage between expression levels of gene i

and the mean methylation levels of an adjacent region j

[10]. Then we correlated reij, which is the average predicted

variability over all CpG sites within context j, and FDR ad-

justed P values over genes i and contexts j.
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